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ANÁLISIS DE LA DISTRIBUCIÓN TÉRMICA EN HIERRO
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RESUMEN

TÍTULO:
ANÁLISIS DE LA DISTRIBUCIÓN TÉRMICA EN HIERRO POR CORRIENTES DE EDDY
UTILIZANDO EL MÉTODO DE ELEMENTOS FINITOS1

AUTOR:2 ALEJANDRO PARADA MAYORGA

PALABRAS CLAVE: Elementos Finitos (FEM), Corrientes de Eddy, calentamiento inductivo,
modelamiento matemático, distribución de temperatura, histéresis, calentamiento por histéresis,
calentamiento por pérdidas óhmicas.

DESCRIPCIÓN:
En este trabajo se aborda el análisis del calentamiento por corrientes de Eddy en materiales fe-

rromagnéticos de geometŕıas cúbicas y rectangulares, utilizando análisis de elementos finitos.
Inicialmente se realiza un estudio de las propiedades electromagnéticas y térmicas de los ma-

teriales a tratar teniendo en cuenta los modelos, sus limitaciones y principales rangos de trabajo.
Aśı mismo se analiza el fenómeno de la histéresis y su estrategia de modelado e introducción dentro
de un planteamiento anaĺıtico.

Con un tratamiento detallado del fenómeno de corrientes de Eddy en materiales ferromagnéticos,
se hace una selección de las formulaciones a emplear junto con un esquema de introducción de la
histéresis, teniendo en cuenta el acople entre el fenómeno electromagnético y el térmico definiendo
los términos de generación de calor. Se aplica análisis de elementos finitos a los planteamientos
anaĺıticos encontrados, y se realiza una implementación de los esquemas resultantes considerando
eficiencia y costo computacional.

Finalmente se presentan los resultados obtenidos realizando una contrastación con trabajos de
otros autores, considerando además el significado f́ısico de los mismos y la consistencia de las solu-
ciones respecto de los modelos que describen el problema.

1Proyecto de Grado
2Facultad de Ingenieŕıas F́ısico-Mecánicas. Escuela de Ingenieŕıa Eléctrica, Electrónica y Telecomunicaciones. Di-

rector: MSc. Ernesto Aguilera Bermúdez. email: alejandro parada.m@hotmail.com
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SUMMARIZE

TITLE:
ANALYSIS OF THERMAL DISTRIBUTION ON IRON FOR EDDY CURRENTS USING THE
FINITE ELEMENT METHOD3

AUTHOR:4 ALEJANDRO PARADA MAYORGA

KEY WORDS: Finite Elements (FEM), Eddy currents, inductive heating, mathematical mode-
ling, thermal distribution, hysteresis, heating for hysteresis, heating for ohmic losses.

DESCRIPTION:
This paper tackles the analysis of the heating by Eddy currents in ferromagnetic materials of

cubic and rectangular geometries using finite element analysis.
Initially a study of thermal and electromagnetic properties of materials to be treated, is done;

taking into account the models, their limitations and ranges of major work. Likewise, an analysis
of hysteresis phenomenon and its modeling strategy is carried out introducing it into an analytical
approach.

With a detailed study and analysis of the phenomenon of Eddy currents in ferromagnetic ma-
terials, a selection choice of formulations to be used together with an outline of the introduction
of hysteresis is done, taking into account the coupling between the electromagnetic and thermal
phenomenon by defining the terms of heat generation. Applies finite element analysis to analytical
approaches found, and is an implementation of the schemes resulting taking into account the effi-
ciency and computational cost.

Finally presents the results obtained by drawing a comparison with works of other authors, taking
into account also the physical meaning of them and the consistency of the solutions to the models
that describe the problem.

3Thesis
4Physics Mechanical Engineering Faculty. Electric, Electronic and Telecommunications School. Director: MSc.

Ernesto Aguilera Bermúdez. email: alejandro parada.m@hotmail.com
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Ferromagnéticos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.5. Estado del Arte en el Análisis de Calentamiento por Corrientes de Eddy en
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6.1.3. Algoritmo: Problema Térmico . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
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7.2.4. Significado F́ısico de los Resultados y Contrastación con otros Trabajos: Pro-
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segundos). Unidades de J en [A/m2]. Máximo de corriente en la muestra 3: 1.5279e3
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temperatura: 509.6181 [K] y 299.3854 [K] . . . . . . . . . . . . . . . . . . . . . . . . 77

7.25. Distribución de temperatura en la muestra 10000 (20 segundos) para el problema
de condición convectiva. Unidades de Temperatura en [K]. Máximo y mı́nimo de
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Caṕıtulo 1

Introducción

Un aspecto inmerso en todas las tendencias de desarrollo de la investigación cient́ıfica y tecnológica
en la electrónica, es la comprensión y manejo de los distintos fenómenos electrotérmicos secundarios,
ya sea por que los efectos de éstos son indeseables y alteran de manera significativa el comporta-
miento de un sistema; o bien porque su estudio hace parte de un valor agregado en un mundo donde
los requerimientos de diseño son cada vez más exigentes.

Los efectos más significativos, en cuanto a este tipo de fenómenos, son referidos frecuentemente
a aplicaciones en donde se manejan altos niveles de corriente y los medios involucrados poseen con-
ductividades térmica y eléctrica elevadas. Actualmente en muchos de los modelos que describen el
funcionamiento de sistémas básicos, se plantea la necesidad de tener en cuenta los efectos secunda-
rios de los campos electromagnéticos.

Teniendo en cuenta el anterior argumento, en este proyecto de grado se plantea el análisis del
calentamiento por corrientes de Eddy en materiales ferromagnéticos. En este caṕıtulo se presentan
los aspectos principales de este trabajo, aśı como las especificaciones que describen el problema a
tratar.

1.1. Motivación

Las crecientes exigencias a nivel de diseño e implementación de dispositivos eléctricos y electrónicos,
han impulsado el desarrollo de esquemas para el análisis y simulación de diferentes fenómenos elec-
tromagnéticos y térmicos existentes en éstos, a fin de conocer sus efectos cualitativos y cuantitativos.
El continuo mejoramiento en rendimiento de las computadoras, ha permitido que la investigación
en este campo se desarrolle y que existan varios trabajos realizados por especialistas de diferentes
áreas, empleando técnicas numéricas de alto nivel.

En este sentido, aunque se realizan simulaciones numéricas de fenómenos acoplados, sólo uno
de éstos es tratado con rigurosidad la mayor parte de las veces, mientras el otro es manejado por
aproximaciones no completamente satisfactorias ni congruentes con la realidad f́ısica del problema;
como consecuencia de ésto el software disponible para estos propósitos está destinado a un conjunto
espećıfico de problemas [1][2]. Actualmente existen algunos paquetes comerciales para ello como
ANSYS y CST, sin embargo con limitaciones enormes para el manejo de caracteŕısticas no lineales
y de histéresis, ya que no ofrece alternativas para el manejo de estos aspectos, por lo cual obtener
una solución y realizar una simulación empleando este recurso, para un problema con estas carac-
teŕısticas, no es posible.

Por tanto, existe la necesidad de investigar fenómenos acoplados, teniendo en cuenta no linealida-
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des e histéresis a fin de mejorar y hacer más confiables las estimaciones de los efectos electrotérmicos
en el comportamiento de distintos sistemas.

En este campo el estudio de las corrientes de Eddy y sus efectos juega un papel esencial, ya que
su existencia, inherente a la de campos variantes en el tiempo en materiales conductores, es un
hecho en casi la totalidad de dispositivos eléctricos y electrónicos, y es de considerable influencia en
el comportamiento de un sistema por sus efectos electrotérmicos. La solución de este problema en
materiales ferromagnéticos es un área con una cantidad reducida de trabajos, muchos de los cuales
son realizados con un número excesivo de simplificaciones.

Con este trabajo se busca realizar una contribución en este campo, calculando los efectos de
calentamiento producido por las corrientes de Eddy en materiales ferromagnéticos de geometŕıas
cúbicas y rectangulares.

Siendo consecuente con este propósito, se usa análisis de elementos finitos. Existen razones para
emplear esta técnica:

La calidad y forma de las aproximaciones en cuanto exactitud, que se obtiene en un problema
de tipo electrotérmico, es superior a la obtenida con otros métodos [1].

FEM posee una sólida fundamentación matemática que permite conocer las caracteŕısticas de
convergencia1 hacia una posible solución del problema [3].

Con FEM las no linealidades se manejan con relativa facilidad [4].

FEM posee versatilidad para el manejo de geometŕıas arbitrarias, no necesariamente rectan-
gulares [2].

1.2. Consideraciones Generales

En la simulación de fenómenos electrotérmicos existen diferentes enfoques, consecuencia del com-
promiso entre exactitud, manejo de la relación entre escalas de tiempo y tratamiento de las variables
involucradas en el problema. Por esto, es esencial considerar los cambios producidos en los factores
que influyen en la evolución del fenómeno2. Deben definirse las relaciones entre las cantidades de
solución, con las propiedades en torno a las cuales están estructurados los modelos que definen el
problema. Esto permite concebir el fenómeno por medio de una interacción.

En la aplicación de FEM, se requiere de la obtención de las fomulaciones variacionales de las
ecuaciones diferenciales parciales que representan los modelos descriptivos, y de la selección de un
espacio de elementos finitos que se adecue a los requerimientos de costo computacional, convergencia
y exactitud de la solución aproximada.

En el tratamiento de las propiedades de los materiales ferromagnéticos, juega un papel esencial
la forma cómo se modela e introduce la histéresis en los planteamientos anaĺıticos, previos a la
implementación de una técnica numérica de solución.

1.2.1. El Fenómeno Electromagnético

Para el análisis de las corrientes de Eddy en materiales ferromagnéticos se requiere de la selección
de una formulación algebraica que se ajuste a los requerimientos de exactitud deseada de la solución

1Aunque la investigación actual en FEM es extensa y rigurosa, las condiciones de convergencia están plenamente
establecidos para dominios de Lipschitz

2Cambios en las propiedades electromagnéticas y térmicas respecto de las variables descriptivas del problema
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Figura 1.1: Diagrama representativo de la interacción entre fenómenos térmicos y electromagnéticos

y adaptabilidad a la geometŕıa del problema, en compromiso con la selección de un esquema para
el manejo e introducción de la histéresis. Se deben considerar los posibles efectos de la temperatura
en las variables electromagnéticas.

1.2.2. El Fenómeno Térmico

El calentamiento por corrientes de Eddy en materiales ferromagnéticos es modelado como un
fenómeno de conducción térmica, descrito mediante la ecuación de difusión de calor, donde existe
un término asociado al calor generado internamente en el material, que se relaciona con las péridas
óhmicas y por histéresis referentes a estas corrientes [5][1]. Los cambios de temperatura atribuidos
a un problema de calentamiento tienen influencia en los valores de las propiedades tanto térmicas
como electromagnéticas.

1.2.3. Relación Entre el Fenómeno Electromagnético y el Fenómeno Térmico

La interacción entre campos térmicos y electromagnéticos no es de fácil descripción y modelamien-
to. La influencia de un campo en las variables que definen el otro, hacen que la tarea de plantear
el problema matemáticamente sea compleja. Para el tratamiento de estos tópicos deben realizarse
consideraciones que permitan definir cuantitativamente cual es el aporte de un campo en las pro-
piedades del otro, aśı como los porcentajes de variación exactos de las variables que describen el
problema, de manera que se puedan establecer criterios de cómputo para la solución. En la figura
1.1 se presenta un diagrama propuesto por Clemens en [6], donde se describe en forma genérica este
tipo de interacción.
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Autor Referencia Año Método
V. Ionita [7] 1996 FEM
V. Ionita [8] 1998 FEM
E. Fallah [9] 2006 FEM
O. Bottauscio [10] 2006 EFGM
A. Manzin [11] 2007 EFGM

Cuadro 1.1: Recopilación de trabajos recientes sobre Corrientes de Eddy en materiales Ferro-
magnéticos

Autor Referencia Año Método
H.H.J.J Hanssen [5] 1995 FEM
J. Driesen [1] 2000 FEM
I.R. Ciric [12] 2008 PFPM

Cuadro 1.2: Recopilación de Trabajos sobre Calentamiento por Corrientes de Eddy en Materiales
Ferromagnéticos

1.2.4. Estado del Arte en el Análisis de Fenómenos Electromagnéticos en Ma-
teriales Ferromagnéticos

Existen varios trabajos realizados, donde se plantean intentos para estimar u obtener equivalencias
en el análisis de fenómenos electromagnéticos en materiales ferromagnéticos. Sin embargo la litera-
tura en donde se consideran las caracteŕısticas de histéresis y no linealidad con fidelidad es escasa, y
más aún cuando se intenta describir los campos en el interior del metal. En el cuadro 1.1 se presenta
una recopilación de los autores más recientes que han abordado el problema de las corrientes de
Eddy en materiales ferromagnéticos considerando con rigurosidad la no linealidad y la histéresis, el
más reciente de éstos emplea una técnica tipo meshless denominada EFGM3 aún en desarrollo.

1.2.5. Estado del Arte en el Análisis de Calentamiento por Corrientes de Eddy
en Materiales Ferromagnéticos

La literatura referente al calentamiento en metales es reducida, y lo es aún más cuando se trata de
abordar el calentamiento en materiales ferromagnéticos. En el cuadro 1.2 se muestran los autores
que han abordado este problema. En el trabajo más reciente, perteneciente a Ciric, se emplea
una técnica novedosa denominada PFPM4, con la que se realizan cálculos de los valores máximos,
mı́nimos y promedio de la distribución de temperatura.

1.3. Especificaciones

Las geometŕıas abordadas en este trabajo son de tipo rectangular y cúbico, por lo cual los sistemas
de coordenadas considerados serán rectangulares, y se hará uso de la nomenclatura clásica corres-

3Element Free-Galerkin Method
4Polarization Fixed Point Method



1.3. ESPECIFICACIONES 23

Ωc

x

y

a b

c

d

Figura 1.2: Configuración 2D

pondiente a este tipo de sistemas5. El esquema rectangular será considerado como la sección de una
barra de longitud infinita orientada en la dirección z, sometida a una intensidad de campo magnéti-
co variable en el tiempo, que está en la dirección de la barra (dirección z); de manera tal que las
corrientes que se inducen sólo tienen componentes en las direcciones xy [13][14][15], y la distribución
de temperatura es dependiente únicamente de estas mismas coordenadas [16][17]. Existen razones
para emplear estas consideraciones:

En muchas aplicaciones, las dimensiones de la sección rectangular de una geometŕıa sometida
a un campo variante en el tiempo, son demasido pequeñas comparadas con la longitud, de
manera que la concepción del problema puede aproximarse satisfactoriamente como el caso
de una sección de una barra de longitud infinita [15].

Las piezas de tipo laminar6 se pueden modelar satisfactoriamente bajo estas consideraciones
[18][19].

Esta sección rectangular se encontrará descrita como se muestra en la figura 1.2, representando
con a, b los ĺımites inferior y superior respectivamente, en el eje x y con c, d los ĺımites inferior y
superior, en el eje y.

El esquema cúbico será considerado como una barra de sección rectangular, orientada en la
dirección z. Esta consideración se basa en el hecho de que en ésta geometŕıa se pueden estudiar los
efectos tridimensionales de las corrientes en distintos materiales, sin pérdida de generalidad7. En la
figura 1.3 se aprecia esta configuración; donde a, b, c, d, e, f representan los ĺımites del volumen en
el sistema coordenado.

5La nomenclatura será xyz
6En donde los efectos de las corrientes de Eddy son indeseados y de considerable influencia, los materiales se

laminan para reducir las pérdidas y el calentamiento
7Como se verá al final de este trabajo los códigos empleados para resolver el problema en 3D son fácilmente

adaptables a distintas dimensiones de la barra
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Figura 1.3: Configuración 3D

1.3.1. Naturaleza de las Condiciones de Frontera

Los alcances de este trabajo están ligados al estudio de materiales espećıficos, de los cuales se tiene
información experimental para exitaciones de tipo cosenoidal. Ésta viene dada para intensidades de
campo magnético del tipo:

H(t) = H0max cos(2πft)[A/m]

es decir exitaciones cosenoidales a una frecuencia de f Hz con amplitudes entre −H0max y H0max

amperes sobre metro. Por lo cual las condiciones de frontera empleadas están referidas a esta forma.
En el problema térmico se emplearán los tres tipos básicos de condiciones de frontera a partir

de los cuales se describen todos los demás posibles, éstos son:

Condición de frontera tipo Dirichlet (Valor conocido de temperatura en la frontera).

Condición de frontera tipo Newmann (Conocimiento de las derivadas de la temperatura en la
frontera).

Condición de frontera tipo Robin (Conocimiento de la relación entre derivadas y valores de la
temperatura en la frontera).

1.4. Organización del Documento

En este trabajo se realiza el análisis del calentemiento por corrientes de Eddy utilizando el método
de elementos finitos. Con el presente documento, se da informe de los pasos seguidos durante el
desarrollo de la investigación. Para dar una ubicación al lector sobre el contenido y alcances del
libro, a continuación se da una breve descripción de los principales aspectos del contenido.

En el caṕıtulo 2 se analizan las propiedades del material ferromagnético involucradas en los mo-
delos que describen el fenómeno en estudio, y su relación con las variables que se desea calcular.
Posteriormente se determina por medio de un análisis cuales son los modelos más adecuados para
representar las caracteŕıticas del material.
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Las corrientes de Eddy son abordadas en el caṕıtulo 3. En donde se analiza su descripción cuantita-
tiva, para seleccionar la representación más adecuada en términos de aproximación y adaptabilidad
a la geometŕıa. Asi mismo, se selecciona el esquema de introducción de la histéresis y se verifica la
unicidad de la solución del problema para descartar fallas de convergencia en la aplicación de FEM.

En el caṕıtulo 4 se considera el problema térmico, describiendo los modelos en torno a los cuales
está estructurado el fenómeno y especificando cual es la forma de los términos de generación de
calor con relación a las cantidades electromagnéticas.

El caṕıtulo 5 expone la aplicación de elementos finitos a los planteamientos anaĺıticos determi-
nados en los caṕıtulos precedentes. Se realiza una seleción del tipo de espacio de elementos finitos
y se demuestra que las relaciones obtenidas son estables en cuanto su discretización en el tiempo,
encontrándose que la constante que da la medida de la estabilidad para variaciones temporales es,
dependiente de las caracteŕısticas de las matrices principales de geometŕıa obtenidas para el proble-
ma espacial.

Los aspectos principales de implementación son descritos en el caṕıtulo 6, en donde se realiza
una selección de las herramientas más adecuadas para la implementación en Matlab de los plante-
amientos resultantes del caṕıtulo 5.

El caṕıtulo 7 exhibe los resultados alcanzados, presentando en primera instancia las simulaciones
de dos materiales ferromagnéticos, realizándose una descripción de los datos obtenidos, para enfocar
alrededor de éstos una discusión en torno a su significado f́ısico y su relación con los trabajos de
otros autores.
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Caṕıtulo 2

Propiedades del Hierro en Presencia
de Campos Electromagnéticos

El hierro es un material ferromagnético, posee una alta densidad y conductividades térmica y eléctri-
ca elevadas. Es extensivamente usado en aplicaciones donde se requieren excelentes conductores y
medios de gran permeabilidad magnética [20][21].

En la fabricación de la mayor parte de motores, transformadores y generadores se emplean ma-
teriales de este tipo en grandes proporciones [20][21], hecho que implica una notable influencia de
los efectos de las corrientes de Eddy en el comportamiento de estos sistemas.

La forma funcional de la permeabilidad magnética aunque conocida, presenta una enorme di-
ficultad a la hora de realizar estudios cuantitativos debido a la no linealidad y la histéresis. En
este caṕıtulo se hace un análisis de las propiedades del hierro involucradas en el fenómeno f́ısico de
calentamiento por corrientes de Eddy, teniendo en cuenta los principales modelos que las describen,
sus limitaciones, y principales rangos de trabajo.

2.1. Propiedades Electromagnéticas

2.1.1. Conductividad Eléctrica

La conductividad eléctrica se cuantifica como el inverso de la resistividad. Esta última se modela
en materiales conductores en forma polinómica [1] como1:

ρE = ρEr

(
1 + αρEr∆T + βρEr (∆T )2 + γρEr (∆T )3 + . . .

)
(2.1)

con ∆T = T − Tref , donde Tref es la temperatura de referencia y T la temperatura del cuerpo.
En materiales ferromagnéticos el término dominante es αρEr∆T cuyo valor está alrededor de

4,5× 10−3∆T con una temperatura de referencia de 293,15K[1].
En sistemas como motores, transformadores, generadores y en donde la existencia de las corrientes

de Eddy es indeseable, la magnitud de los cambios de temperatura ∆T , permite usar satisfactoria-

1ρEr, σρEr, son los valores registrados en la temperatura de referencia Tref , generalmente ésta última se asocia a
la temperatura ambiente.
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H
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fls fli

Figura 2.1: Relación B-H en un material ferromagnético

mente el modelo de conductividad eléctrica [1]:

σ =
σref

1 + αρEr∆T
(2.2)

Clemens y Gjonaj han mostrado en [22], que los cambios de las propiedades electromagnéticas y
térmicas, no son significativos en todos los intervalos de temperatura, ya que existen intervalos ∆Tsc

en los cuales éstas son débilmente dependientes de la última. Esto permite realizar actualizaciones de
las propiedades, por alteraciones térmicas, sólo cuando haya cambios significativos, lo cual se define
observando el porcentaje de variación de las cantidades involucradas, y el grado de aproximación
que se deseea en el tiempo en el que se realiza el estudio.

En este trabajo se considerarán intervalos ∆T donde σ en 2.2 cambie en menos de un 10 %. Por
lo cual no se requieren actualizaciones de la conductividad eléctrica del material respecto a cambios
en la temperatura.

2.1.2. Permeabilidad: Relación B-H

Uno de los principales retos para modelar campos electromagnéticos en materiales ferromagnéticos,
es la modelización y manejo de la histéresis en la relación B-H.

Algunos autores como Naidu en [23], han propuesto modelos matemáticos para simular este
fenómeno a fin de introducirlo en algunos esquemas numéricos, sacrificando exactitud y precisión
a cambio de un manejo y costo computacional aceptables. En otros enfoques, se han empleado
estrictamente las caracteŕıticas experimentales de la curva B-H, y se han diseñado esquemas cada
vez más eficientes adaptados a esta consideración [9][7][8].

Para el uso de las caracteŕısticas experimentales del material se requiere de un proceso de mo-
delado de los lazos de histéresis a partir de los datos obtenidos por medición. Aśı, para introducir
estos modelos en un esquema es necesario que las curvas obtenidas cumplan algunos criterios para
garantizar convergencia [7][8].

En un mismo problema pueden emplearse varios modelos de histéresis con propósitos diferentes
[24]. Es frecuente modelar los lazos de histéresis con curvas por interpolación polinómica fragmen-
tada para calcular los campos evolucionando en el tiempo, y emplear otro modelo más simplificado
para calcular las pérdidas. Existen razones de peso para hacer esto:
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La interpolación polinómica fragmentada permite excelentes aproximaciones para el modela-
miento de los datos, con condiciones de diferenciabilidad e integrabilidad [25], de tal manera
que se obtiene una fiel representación del fenómeno B-H.

Los requerimientos de regularidad (integrabilidad y diferenciabilidad) que son necesarios en
un modelo para el cálculo de campos, son innecesarios para el cálculo de pérdidas ya que se
require a lo más que2: fs ∈ C0(Ω)

⋂
L1(Ω) [26].

El modelo del cálculo de pérdidas debe ser lo suficientemente sencillo como para que la integral∫
fsdH sea manejable en términos de implementación y costo computacional.

Por ello, en este trabajo se hará uso de estas ideas. El modelo principal se seleccionará de forma
tal que las curvas obtenidas son modeladas mediante interpolación por trazadores cúbicos, y sean
funciones de Lipschitz3 en su dominio de definición. Para garantizar esto se realiza un tratamiento
de los datos experimentales (ver caṕıtulo 6), y se asegura el hecho de que las funciones de lazo
obtenidas deben ser no decrecientes.

Entonces, sea H el modelo que representa la histéresis para el cálculo de campos, éste se define
como

H =
{

fls si ti < t ≤ ti+T/2

fli si ti+T/2 < t ≤ ti+T
(2.3)

donde fls, fli son los lazos superior e inferior de la curva de histéresis, ti representa el tiempo inicial
de la exitación en forma cosenoidal, ti+T/2 el tiempo correspondiente a medio periodo de la exitación
y ti+T el tiempo de un periodo, durante un ciclo. Las funciones de lazo superior e inferior f(ver
figura 2.1) poseen las siguientes caracteŕısticas4:

f es un polinomio cúbico, representado fj en el intervalo [Hj ,Hj+1] para cada j = 0, 1, . . . , n−
1.

f(Hj) = Bj∀j = 0, 1, . . . , n.

fj+1(Hj+1) = fj(Hj+1)∀j = 0, 1, . . . , n− 2.

f
′
j+1(Hj+1) = f

′
j(Hj+1)∀j = 0, 1, . . . , n− 2.

f
′′
j+1(Hj+1) = f

′′
j (Hj+1)∀j = 0, 1, . . . , n− 2.

f
′′
(Hmin) = f

′′
(Hmax) = 0

Con Hj , Bj los datos experimentales de las curvas de histéresis.
Pfister en [26] realiza una propuesta para calcular las pérdidas por histéresis empleando un modelo

de función anaĺıtico. En este trabajo se seguirá este enfoque emplenado una función del tipo5:

fs = k1 + k2Tan
−1(H ±Hc)

debido a su semejanza y cercańıa a los datos experimentales del material. Las razones para seguir esta
metodoloǵıa, están definidas por los excelentes resultados que obtuvo Pfister respecto de mediciones
realizadas.

2fs representa la relación B-H, como una función de la intensidad de campo magnético. Cn(X) n = 0, 1, . . .
representa el conjunto de funciones n-diferenciables en el dominio X. L1(X) es el conjunto de funciones integrables
en el dominio X

3Para definición ver [27][28]
4Hj , Bj representan los datos experimentales ya con un tratamiento de adecuación
5k1, k2 son constantes que se ajustan de acuerdo al comportamiento de los datos. Hc es el valor de campo coercitivo
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2.1.3. Propiedades Térmicas

Conductividad Térmica, Densidad y Calor Espećıfico

Al igual que la resitividad eléctrica, la conductividad térmica y el producto densidad-calor espećıfi-
co se modelan como en la ecuación 2.1 [1][29]. Frecuentemente, estas propiedades son consideradas
como constantes dentro de un intervalo adecuado de temperatura [1]. El término dominante para
éstas es del orden de 1 × 10−4∆T [1][29]. Aśı, una selección de ∆T de la misma magnitud que
en la conductividad eléctrica será suficiente para garantizar que una actualización por cambio de
temperatura no sea necesaria y que la dependencia de ésta sea débil.

Ter Maten y Melissen en [30], Janssen en [5], Gong en [31] y Ciric en [12] han realizado cálculos
y simulaciones de calentamiento por corrientes de Eddy, teniendo en cuenta los aspectos considera-
dos anteriormente en materiales lineales y ferromagnéticos, obteniendo resultados satisfactorios en
cuanto a exactitud y precisión respecto de los datos obtenidos por medición.



Caṕıtulo 3

Corrientes de Eddy

Consecuencia de las leyes básicas del electromagnetismo, es el hecho de que a partir de un campo
magnético variante en el tiempo pueda obtenerse una tensión inducida en un material sometido a
éste. Cuando el medio es conductor se forman en él corrientes , denominadas de Eddy, cuya existencia
afecta a la mayor parte de dispositivos eléctricos y electrónicos. El presente caṕıtulo está destinado
al estudio de las corrientes de Eddy, y sus principales formas de descripción, aśı como a un análisis
de sus formulaciones anaĺıticas.

3.1. Descripción Cuantitativa

Como todo fenómeno electromagnético, el fenómeno de Corrientes de Eddy puede describirse a
partir de las ecuaciones de Maxwell:

~∇× ~E = −∂
~B
∂t

(3.1)

~∇× ~H = ~J +
∂~D
∂t

(3.2)

~∇ · ~D = ρv (3.3)

~∇ · ~B = 0 (3.4)

Sin embargo los efectos más significativos de las corrientes de Eddy, se aprecian a menudo en
sistemas con exitaciones de baja frecuencia (50-60 Hz), en cuyo caso la descripción de éstas se
realiza empleando la aproximación cuasiestática de las ecuaciones 3.1 3.2 3.3 3.4 [32][33]

~∇× ~E = −∂
~B
∂t

~∇× ~H = ~J
~∇ · ~D = ρv
~∇ · ~B = 0

(3.5)

cuya validez requiere

máx

∣∣∣∣∣∂~D∂t
∣∣∣∣∣� máx

∣∣∣~J∣∣∣
31
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o en forma equivalente
ωε

σ
� 1

donde ω es la frecuencia angular máxima registrada, ε la permitividad y σ la conductividad eléctri-
ca. Para metales como el hierro la corriente de desplazamiento es despreciable comparada con la
corriente de conducción hasta frecuencias del orden de 1015Hz [32][14].

Adicional a esto, es necesario el conocimiento de la relación entre intensidad de campo magnético
~H y la densidad de flujo magnético ~B, aśı como la relación entre el campo eléctrico y la densidad
de corriente; junto con unas condiciones iniciales y de frontera asociadas a la región de solución
[34][14][35][15].

3.2. Formulaciones de Corrientes de Eddy

Para la solución de las ecuaciones 3.5 existen diferentes planteamientos conocidos como formula-
ciones en los que se introducen nuevas variables, que permiten lograr una forma equivalente de pro-
blema, adecuada a requerimientos de implementación de una técnica numérica de solución [34][36].

Las formulaciones diferenciales son particularmente adaptables a técnicas como FEM, mientras
que las fomulaciones integrales lo son a métodos de elemento de frontera (BEM)[14][4]. Sin em-
bargo, la formulación variacional, un caso particular de formulación integral, se realiza a partir de
formulaciones diferenciales y es necesaria en un planteamineto donde se use FEM; por estas ra-
zones se discutirán en este caṕıtulo las formulaciones diferenciales, y la formulación variacional se
discutirá en el caṕıtulo 5.

3.2.1. Formulaciones Diferenciales

Sea Ωc una región conductora ferromagnética, simplemente conexa y acotada. Ωs una región de
conductividad eléctrica nula circundante a Ωc (ver figura 3.1), en donde puede haber exitaciones
generadoras de campo magnético. Ω = Ωc

⋃
Ωs es en general la región de solución de un problema

de corrientes de Eddy. Para la solución de cualquier planteamiento se requiere:

Un conjunto de ecuaciones descriptivas del problema (EDP).

Condiciones iniciales y de frontera.

Condiciones de interfaz en ∂Ωcs para asegurar la continuidad de algunas cantidades.

El conocimiento de la relación B-H en Ω.

Condiciones de calibración, impuestas para garantizar la unicidad de la solución.

La forma de las EDP depende del esquema empleado para la introducción y representación de la
relación B-H en las ecuaciones, aśı como de las condiciones de calibración y la geometŕıa del problema
[34]. La presentación de dicho esquema se realizará en secciones subsecuentes, a continuación se
presentarán las caracteŕısticas esenciales de cada formulación necesarias para llegar a las EDP.
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Ωc

Ωs

∂Ωs
∂Ωcs

σc > 0

σs = 0

µc

µs

~Hs, ~Js

Figura 3.1: Esquema básico de las corrientes de Eddy

Formulación ~A− φ

Se definen ~A ∈ C2(Ω)
⋂
C1(0, tf ) y φ ∈ C2(Ωc)

⋂
C1(0, tf ) tales que1

~∇× ~A = ~B en Ω = Ωc
⋃

Ωs

~E = −∂
~A
∂t

− ~∇φ en Ωc

(3.6)

Con estas ecuaciones, el conjunto de ecuaciones 3.5 y la relación B-H se obtiene una ecuación
diferencial parcial vectorial en donde ~A y φ son las incógnitas. En la región Ωc habŕıan dos incógnitas
~A y φ, mientras que en Ωs sólo ~A. Las condiciones de frontera son impuestas en ∂Ωs sobre ~A, aśı como
las condiciones de interfaz en ∂Ωcs [34].

Formulación ~A− φ, ψ

En esta formulación, conocida como de potencial escalar reducido [37][38], se definen ~A ∈ C2(Ωc)
⋂
C1(0, tf ),

φ ∈ C2(Ωc)
⋂
C1(0, tf ) y ψ ∈ C2(Ωs)

⋂
C1(0, tf ) tales que

~∇× ~A = ~B

~E = −∂
~A
∂t

− ~∇φ en Ωc

~H = ~Hs − ~∇ψ
~∇× ~Hs = ~Js en Ωs

(3.7)

relacionando con 3.5 y el conocimiento de la relación B-H se obtiene una EDP donde ~A, φ, ψ son
las incógnitas. Este planteamiento implica en términos de implementación de una técnica numérica
de solución, un menor costo computacional, comparativamente con la formulación ~A − φ [34]. Las
condiciones de frontera son impuestas sobre ψ en ∂Ωs, mientras las condiciones de interfaz se
imponen sobre ~A y ψ en ∂Ωcs [14].

1C2(Ω) =
n
~F = Fiûi|Fi ∈ C2(Ω)

o
, y tf el ĺımite superior de tiempo sobre el que se analiza el fenómeno
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Formulación ~T− Õ

De forma análoga a la introducción de un potencial magnético vectorial ~A, puede introducir-
se un potencial eléctrico vectorial ~T ∈ C2(Ω)

⋂
C1(0, tf ) y un potencial magnético escalar Õ ∈

C2(Ω)
⋂
C1(0, tf ) [39][14], tales que :

~J = ~∇× ~T
~H = ~T− ~∇Õ en Ω = Ωc

⋃
Ωs

(3.8)

El uso de esta formulación es menos frecuente que las de tipo potencial magnético vectorial, sin
embargo los resultados obtenidos en algunos estudios y experimentos realizados por Nakata en [36],
muestran que tiene ventajas frente a algunas de este tipo. Las condiciones de frontera y de interfaz
son impuestas sobre ~T y Õ [39].

Formulación ~R− ψ

Sea ~R ∈ C2(Ω)
⋂
C1(0, tf ) y ψ ∈ C2(Ωc)

⋂
C1(0, tf ) tales que:

~H = ~R− ~∇ψ en Ω (3.9)

A diferencia de la formulación ~T − Õ las condiciones de frontera son impuestas únicamente sobre
ψ, aśı como las condiciones de interfaz. Otra diferencia entre este tipo de planteamiento y otras
formulaciones es que en las EDP obtenidas no se involucran derivadas espaciales de la conductividad
eléctrica.

Formulación ~H− ~E

Sin ningún tipo de adecuación algebraica, la formulación del problema de las corrientes de Eddy
puede realizarse en términos de las cantidades primarias de las ecuaciones de Maxwell, empleando
~H y ~E como variables de estado [40]. Las condiciones de calibración en un planteamiento de este
tipo pueden no ser necesarias, y la interpretación f́ısica de la solución es directa.

3.3. Selección de la Formulación

En la solución numérica de un problema electromagnético hay un compromiso entre exactitud y
costo computacional. Los objetivos de este trabajo están enfocados hacia el primer aspecto, y dentro
de este ámbito hay puntos fundamentales para considerar en la selección de una formulación:

3.3.1. Grado de Aproximación

Nakata y Fujiwara han realizado en [36], un estudio comparativo entre formulaciones diferenciales
en el análisis de corrientes de Eddy, en geometŕıas que incluyen cúbicas y rectangulares, usando
FEM. Como resultado de éste se concluye que las mejores aproximaciones a la solución se obtienen
con la formulación ~A− φ, ψ.
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3.3.2. Introducción de un Esquema para el manejo de la Histéresis

Ionita en [7][8] y Fallah en [9] han propuesto independientemente, un esquema de tipo iterativo para
el manejo e introducción de la histéresis, computacionalmente eficiente2, empleando el potencial
magnético vectorial, obteniendo excelentes resultados respecto de mediciones realizadas. En este
esquema se define una variable de actualización de datos dada por:

~R = νFP
~B− ~H con νFP = cte

donde ~B y ~H están dados por el modelo empleado para representar los datos experimentales de
la curva de histéresis, y νFP es seleccionada entre el máximo y mı́nimo valor del inverso de la
permeabilidad [8][7][9]. Con ~R se actualizan las propiedades del material respecto a cambios en el
tiempo, ya que se usa paralelamente con las EDP obtenidas de la formulación seleccionada.

3.3.3. Dominio de Solución

En problemas donde sólo se consideran los efectos de las corrientes de Eddy en el material conduc-
tor, como en este trabajo, se adapta particularmente la formulación ~A − φ, ψ ya que ~A y φ están
definidas sólo en Ωc y ψ que representa la información externa sólo en Ωs.

Teniendo en cuenta estas consideraciones, se selecciona la formulación ~A − φ, ψ junto con el es-
quema de manejo de la histéresis propuesto por Ionita y Fallah.

3.4. Planteamiento del Problema Electromagnético

Con la selección de la formulación y el esquema de manejo de la histéresis, se obtienen las EDP del
problema electromagnético:

− σ

(
∂~A
∂t

+ ~∇φ

)
= νFP

~∇×
(
~∇× ~A

)
− ~∇× ~R en Ωc (3.10)

~H = νFP
~B− ~R en Ωc (3.11)

donde ~A ∈ C2(Ωc)
⋂
C1(0, tf ), φ ∈ C2(Ωc)

⋂
C1(0, tf ) y ~R ∈ C2(Ωc).

3.4.1. Condiciones de Frontera

Las condiciones de frontera empleadas en diversas investigaciones donde sólo se realizan cálculos
en la región conductora, obedecen a la continuidad de la componente tangencial de la intensidad
de campo magnético y de la componente normal de la densidad de flujo magnético en la frontera.

2En la literatura existen pocos esquemas diseñados para introducir la histéresis en forma eficiente teniendo en
cuenta la información experimental. Los trabajos de Ionita y Fallah representaron la única alternativa eficiente donde
se contemplan los datos experimentales con fidelidad. Es más, a partir de los estudios de estos dos autores se realiza
actualmente investigación sobre materiales ferromagnéticos empleando otras técnicas numéricas aún en desarrollo
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Esto se expresa como3 ~H× ~nc = ~Hs × ~nc y ~B · ~nc = ~Bs · ~nc, lo cual implica en términos algebraicos
un conocimiento directo y/o indirecto de una intensidad de campo magnético en ∂Ωc [13][41][42].
Teniendo en cuenta esto, las condiciones de frontera para el problema electromagnético consideradas
en este trabajo tienen las caracteŕısticas siguientes

En el caso de la sección rectangular, la intensidad de campo magnético total es conocida en
la frontera, es decir:

~H|∂Ωc = ~H0(t) =⇒
(
~∇× ~A

)
|∂Ωc = ~B0curve

donde ~H0(t) es una función conocida, ~B0curve = H
(
~H0(t)

)
en ∂Ωc, H es el modelo de la

histéresis.

En el caso de la barra de longitud finita, se tendrá conocimiento de la densidad de flujo
magnético en ∂Ωcb, y la intensidad de campo magnético en ∂Ωch, donde ∂Ωcb, ∂Ωch son dos
subconjuntos del conjunto de frontera, disjuntos entre śı y que cubren completamente a ∂Ωc:

~B|∂Ωcb
= ~B0(t) =⇒

(
~∇× ~A

)
|∂Ωcb

= ~B0(t)

~H|∂Ωch
= ~H0(t) =⇒

(
~∇× ~A

)
|∂Ωch

= ~B0curve

Esto se puede sintetizar para la representación de los dos casos, como el conocimiento ya sea de una
función de intensidad de campo magnético, o el de una función de densidad de flujo magnético en
la frontera.

3.4.2. Condición Inicial

En el instante inicial t = 0 se considerará el material saturado. Esto se realiza teniendo en cuenta
la poca contribución en términos cuantitativos para el calentamiento, correspondiente a la curva de
magnetización, comparativamente con la correspondiente a los lazos superior e inferior de la curva
de histéresis [5]; por lo cual:

~B(t = 0) = Bsatû3 en Ωc

donde Bsat es la densidad de flujo magnético correspondiente a la saturación, û3 es el vector unitario
en la misma dirección de la orientación del paraleleṕıpedo o rectángulo4 considerado en un sistema
cartesiano (û1, û2, û3). Para satisfacer esta condición en términos de ~A, se selecciona ~A0 = ~A(t = 0)
como:

~A0 =
Bsat

2
(−x2û1 + x1û2) en Ωc (3.12)

de forma tal que en t=0, se obtenga ~∇× ~A0 = Bsatû3.

3 ~Hs es la intensidad de campo magnético en el medio circundante al metal. En los problemas donde se analiza
solamente la región conductora, es considerado como una función conocida [13][18]. ~nc es el vector normal a ∂Ωc.

4Según las especificaciones dadas en el caṕıtulo 1, ésta correspondeŕıa a la dirección z
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3.4.3. Condiciones de Calibración

Para garantizar la unicidad del potencial magnético vectorial ~A, no basta con las condiciones de
frontera, es necesario agregar unas condiciones denominadas de calibración [35][15][34], aśı como
la especificación de algunas condiciones implicitas en la naturaleza del fenómeno [34][14]. Para
solucionar problemas de corrientes de Eddy se emplea la condición de calibración de Coulomb
[34][35][15]:

~∇ · ~A = 0 (3.13)
Adicional a ello, se especifican más condicionamientos, los cuales son derivados de la f́ısica del
problema. Aśı de :

~∇ ·~J = 0 en Ωc : Ωc libre de fuentes y sumideros de corriente
~J · ~nc = 0 en ∂Ωc : la corriente no tiene componentes salientes a Ωc

se obtienen

~∇ · σ

(
∂~A
∂t

+ ~∇φ

)
= 0 en Ωc

~nc · σ

(
∂~A
∂t

+ ~∇φ

)
= 0 en ∂Ωc

(3.14)

3.4.4. El significado f́ısico de ~∇φ

En regiones donde la conductividad eléctrica no tiene variaciones espaciales, no se generan superfi-
cies de carga, con lo que se puede asegurar que ~∇φ = 0 [43][44][45]. Los materiales considerados en
este trabajo no poseen variaciones espaciales de la conductividad, por lo cual el término ~∇φ desa-
parece de las EDP del planteamiento. Por otra parte, el hecho de que esta condición se verifique,
garantiza que el cumplimniento de la condición de calibración de Coulomb se encuentre impĺıcito
en la ecuación que define el planteamiento [34][39].5

3.4.5. Unicidad de la Solución

Sea Ωc una región ferromagnética conductora; teniendo en cuenta todas las considerciones anteriores
el planteamiento de corrientes de Eddy es:

−σ∂
~A
∂t

= νFP
~∇×

(
~∇× ~A

)
− ~∇× ~R

~H = νFP
~B− ~R en Ωc

(3.15)

junto con las condiciones (
~∇× ~A

)
|∂Ωc = ~B0curve

~A(t = 0) = ~A0 =
Bsat

2
(−x2û1 + x1û2)

~∇ · ~A = 0 en Ωc

σ
∂~A
∂t

· ~nc = 0 en ∂Ωc

(3.16)

5Esto se ve al tomar la divergencia de 3.10, y teniendo en cuenta que el potencial magnético vectorial es dependiente
del tiempo
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Y sean ~A1, ~A2 ∈ C2(Ω)
⋂
C1(0, tf ) dos soluciones de 3.15 con las condiciones 3.16. Se construye ~A(0)

tal que ~A(0) = ~A1 − ~A2. Teniendo en cuenta las ecuaciones anteriores se tiene

~nc · ~A(0) = 0 en ∂Ωc
~∇× ~A(0) = 0
~∇ · ~A(0) = 0 en Ωc

de la relación de rotacional se implica ~A(0) = ~∇u, para algún u ∈ C2(Ωc). Adicionalmente teniendo
en cuenta las dos relaciones restantes se obtiene

∇2u = 0 en Ωc
∂u

∂n
= 0 en ∂Ωc

lo cual implica que u = cte en Ωc [46][47]. Entonces ~∇u = 0 =⇒ ~A1 = ~A2, con lo que se garantiza
la unicidad de la solución.

En este trabajo se considerarán geometŕıas cúbicas y rectangulares, por lo cual ~nc no estará estric-
tamente definido en todo ∂Ωc. Sin embargo estas geometŕıas son dominios acotados de Lipschitz6

y el conjunto de puntos para los cuales no se define ~nc es de medida cero [49], lo que permite
garantizar unicidad en casi todo punto [50].

6Para detalles de este término ver [48]
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Calentamiento por Corrientes de Eddy

El fenómeno de corrientes de Eddy es caracterizado en algunos sistemas por sus efectos de calenta-
miento [5][29]. En materiales ferromagnéticos éste es consecuencia principalmente del efecto Joule y
la histéresis. En la mayor parte de las situaciones estos efectos son indeseables, debido a que no son
contemplados en los análisis de diseño y en muchos otros casos son sólo estimados. Este caṕıtulo
está destinado a tratar la relación cuantitativa existente entre las corrientes de Eddy y el fenómeno
de calentamiento consecuencia de éstas.

4.1. Planteamiento del Problema Térmico

El calentamiento por corrientes de Eddy en una región ferromagnética Ωc es descrito como un
problema de conducción térmica [5][30], cuya EDP es:

ρc
∂T

∂t
= ~∇ ·

(
λ~∇T

)
+ q en Ωc

donde ρ es la densidad de masa, c el calor espećıfico y λ la conductividad térmica. El término q es
asociado a la generación de calor, y T es la temperatura del cuerpo. Para los materiales tratados en
este trabajo, donde la conductividad térmica es homogénea (ver caṕıtulo 2) la EDP se reduce a [5]:

ρc
∂T

∂t
= λ∇2T + q en Ωc (4.1)

para solucionar esta ecuación se requiere de condiciones de frontera, aśı como de una condición
inicial asociada.

4.1.1. Términos de Generación de Calor

La circulación de corriente en un material ferromagnético está asociada directamente a un ca-
lentamiento descrito mediante el efecto Joule. Por otra parte, el rozamiento entre los dominios
ferromagnéticos cuando existe una intensidad de campo magnético de exitación, tiene como conse-
cuencia un aumento de temperatura considerable. Este último es frecuentemente calculado por ciclo
de exitación [26][51][52][53], sin embargo en el análisis transitorio del fenómeno esto no es admisible
ya que se requiere del conocimiento de los términos de calor en cada instante.

39
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El término q en 4.1 de generación de calor puede expresarse como la suma de un término asociado
a las pérdidas óhmicas qoh y otro asociado las pérdidas por histéresis qhy [1][5]:

q = qoh + qhy (4.2)

qoh = ~J · ~E (4.3)

qhy =
∂

∂t

∫ H(t)

Hi

BdH
′

(4.4)

en donde la densidad de flujo magnético se considera por medio del modelo empleado para repre-
sentar la histéresis, y se realiza la integración entre una intensidad de campo inicial y otro final
referente al instante en el que se calculan las pérdidas. En problemas donde las intensidades de
campo posean dos o tres componentes, habrá un término de pérdidas asociado a cada una de ellas,
de manera que las pérdidas totales asignadas a ese punto se calculan como:

qhy =
√
q2hy(x) + q2hy(y) + q2hy(z)

4.1.2. Condiciones Iniciales y de Frontera

Para el manejo del problema térmico no se requieren condiciones de calibración, ya que las condicio-
nes de frontera y la condición inicial garantizan unicidad [16][5][30]. En este trabajo se considerarán
tres tipos de condiciones de frontera:

T (∂Ωc) = Tamb (Condición tipo Dirichlet). Este condicionamiento resulta adecuado para mo-
delar el efecto de un flujo refrigerante sobre el cuerpo en calentamiento, de manera tal que la
temperatura en las fronteras permanece constante.

−λ∂T
∂n
|∂Ωc = h(Tm − T )|∂Ωc (Condición tipo Robin). Con ésta se modelan los efectos convec-

tivos en ∂Ωc. Representa una transferencia neta de calor entre el metal en calentamiento y el
medio circundante.

∂T

∂n
|∂Ωc = 0 (Condición tipo Newmann). Cuando no hay transferencia de calor entre el cuerpo

en calentamiento y el medio circundante, se emplea esta condición, denominada de aislamiento
térmico.

La condición inicial considerada es T (t = 0) = Tamb, es decir la temperatura inicial es la temperatura
ambiente.



Caṕıtulo 5

Análisis de Elementos Finitos

Para el análisis de fenómenos electromagnéticos y térmicos, hay diversos métodos y técnicas, entre
los cuales sobresalen FEM, BEM y FDTD1. Driesen en [1] muestra que FEM resulta ser el método
más adecuado para el análisis de fenómenos electromagnéticos acoplados a fenómenos térmicos,
teniendo en cuenta exactitud y aspectos de implementación. Algunos estudios y experimentos han
sido realizados empleando FEM para solucionar problemas referentes a las corrientes de Eddy,
obteniéndose excelentes resultados en cuanto a aproximación e implementación, como por ejemplo
en [34][18][9][54][55][38][56]. Igualmente se ha empleado FEM para solucionar numéricamente el
problema de calentamiento producido por éstas corrientes, y los resultados obtenidos son superiores
a los obtenidos por otros métodos en cuanto a exactitud [1][30][5]. En el presente caṕıtulo se realiza
la aplicación de elementos finitos a los planteamientos anaĺıticos obtenidos en los dos caṕıtulos
anteriores, y la implementación de un esquema de discretización en el tiempo a fin de obtener las
ecuaciones matriciales que deben resolverse.

5.1. Formulación Variacional

5.1.1. Problema Electromagnético

La formulación variacional se realiza a partir de las EDP, teniendo en cuenta las condiciones de
frontera empleando el método de Galerkin [3][2][4]. Sea ~v ∈ H1(Ωc)2. Multiplicando la ecuación
3.15a por ~v con el producto punto de Rn e integrando en el dominio de solución, se obtiene

−
∫

Ωc

~v · σ∂
~A
∂t
dΩc =

∫
Ωc

~v · νFP
~∇×

(
~∇× ~A

)
dΩc −

∫
Ωc

~v · ~∇× ~RdΩc ∀~v ∈ H1(Ωc) (5.1)

Esta ecuación puede llevarse por medio de integración por partes e identidades vectoriales3, a una
donde sólo existan términos con primeras derivadas sobre ~A [34][3][50]. Para las geometŕıas tratadas
en este trabajo (cúbicas y rectangulares) se tienen las siguientes ecuaciones, realizadas teniendo en
cuenta las condiciones de frontera descritas en el caṕıtulo 3 y los esquemas de las especificaciones
1.2 1.3:

1Finite Difference Time Domain
2H1(Ωc) = {~F |Fi ∈ H1(Ωc)} esto es, el conjunto de vectores cuyas componentes pertenecen al espacio de sobolev

H1(Ωc)[48][46]
3Para las principales identidades vectoriales véase [57]

41
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Caso 2D

−
∫

Ωc

~v·σ∂
~A
∂t
dΩc = νFP

(∫
Ωc

(
~∇× ~A · ~∇× ~v

)
dΩc −

∮
∂Ωc↑

(
~∇× ~A

)
× ~v · ~nc

)
−
∫

Ωc

~v·~∇×~RdΩc ∀~v ∈ H1(Ωc)

(5.2)
donde

−
∮

∂Ωc↑

(
~∇× ~A

)
×~v·~nc =

∫ b

a
B0curve(t) (vx(y = d)− vx(y = c)) dx+

∫ d

c
B0curve(t) (vy(x = b)− vy(x = a)) dy

Caso 3D

−
∫

Ωc

~v·σ∂
~A
∂t
dΩc = νFP

(∫
Ωc

(
~∇× ~A · ~∇× ~v

)
dΩc −

∮
∂Ωc

(
~∇× ~A

)
× ~v · (−~nc)

)
−
∫

Ωc

~v·~∇×~RdΩc ∀~v ∈ H1(Ωc)

(5.3)
donde ~nc está dirigido de adentro de Ωc hacia afuera, y

−
∮

∂Ωc

(
~∇× ~A

)
×~v·(−~nc) =

∫ f

e

∫ b

a
B0curve (vx(y = d)− vx(y = c)) dxdz−

∫ f

e

∫ d

c
(vy(x = b)− vy(x = a)) dydz

La solución de 5.3 y 5.2 posee menos diferenciabilidad que la solución de 3.15-3.16. En 5.3 y 5.2
se requiere de la existencia de derivadas débiles4, ya que en el procedimeinto se usa integración
de Lebesgue5[3][2], y condiciones de integrabilidad sobre ~A, ~R, φ . Existen razones para emplear
integración de Lebesgue en la obtención de éste planteamiento:

Para obtener resultados de 5.3 y 5.2 no se requiere de la diferenciabilidad en todo punto, sino
en casi todo punto6 [3][50], seleccionando un espacio de elementos finitos con funciones base
lineales a trozos y de soporte compacto.

La integral de Lebesgue coincide con la integral de Riemman, para el caso de funciones Rieman-
Integrables. [49][58].

En los principales resultados y teoremas relacionados con la convergencia, se emplea este tipo
de integración [3].

En este trabajo se hará uso de los rudimentos principales de la integración de Lebesgue, sin entrar
en las rigurosidades de esta extensa y formal teoŕıa, sólo en el planteamiento de la formulación
variacional, ya que en los aspectos de implementación las integrales consideradas por integración de
Lebesgue son Riemman-Integrables. [3][50].

4Derivadas generalizadas
5Para ver los principales aspectos de esta teoŕıa ver[49][58]
6Esto quiere decir que el conunto de puntos en los cuales la derivada usual no está definida es de medida cero
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5.1.2. Problema Térmico

sea v ∈ H1
(),0(Ωc)7. Multiplicando 4.1 por este término e integrando sobre Ωc :∫

Ωc

ρcv
∂T

∂t
dΩc =

∫
Ωc

λv∇2TdΩc +
∫

Ωc

vqdΩc ∀v ∈ H1
(),0(Ωc) (5.4)

al igual que en la ecuación 5.1, puede llevarse por medio de integración por partes a una ecuación
donde sólo existen términos con primeras derivadas sobre T .

Caso 2D

Condición T (∂Ωc) = Tamb.∫
Ωc

ρcv
∂T

∂t
dΩc = −λ

∫
Ωc

~∇T · ~∇vdΩc +
∫

Ωc

vqdΩc ∀v ∈ H1
0 (Ωc) (5.5)

Condición −λ∂T
∂n
|∂Ωc = h(Tm − T )|∂Ωc .∫

Ωc

ρcv
∂T

∂t
dΩc = λ

(
−
∫

Ωc

~∇T · ~∇vdΩc +
∫

∂Ωc↑
v~∇T · ~nc

)
+
∫

Ωc

vqdΩc ∀v ∈ H1(Ωc) (5.6)

donde ∫
∂Ωc↑

v~∇T · ~nc =
−h
λ

(∫ d

c
v (Tm − T ) |x=b

x=ady +
∫ b

a
v (Tm − T ) |y=d

y=cdx

)

Condición
∂T

∂n
|∂Ωc = 0∫

Ωc

ρcv
∂T

∂t
dΩc = −λ

∫
Ωc

~∇T · ~∇vdΩc +
∫

Ωc

vqdΩc ∀v ∈ H1(Ωc) (5.7)

Caso 3D

Condición T (∂Ωc) = Tamb.∫
Ωc

ρcv
∂T

∂t
dΩc = −λ

∫
Ωc

~∇T · ~∇vdΩc +
∫

Ωc

vqdΩc ∀v ∈ H1
0 (Ωc) (5.8)

Condición −λ∂T
∂n
|∂Ωc = h(Tm − T )|∂Ωc∫

Ωc

ρcv
∂T

∂t
dΩc = λ

(
−
∫

Ωc

~∇T · ~∇vdΩc +
∫

∂Ωc

v~∇T · ~nc

)
+
∫

Ωc

vqdΩc ∀v ∈ H1(Ωc) (5.9)

donde∫
∂Ωc

v~∇T ·~nc =
−h
λ

(∫ f

e

∫ d

c
v(Tm − T )|x=b

x=adydz +
∫ f

e

∫ b

a
v(Tm − T )|y=d

y=cdxdz +
∫ d

c

∫ b

a
v(Tm − T )|z=f

z=edxdy

)
7Es decir el espacio de sobolev puede ser H1

0 o bien H1 dependiendo del tipo de condiciones de frontera
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Condición
∂T

∂n
|∂Ωc = 0∫

Ωc

ρcv
∂T

∂t
dΩc = −λ

∫
Ωc

~∇T · ~∇vdΩc +
∫

Ωc

vqdΩc ∀v ∈ H1(Ωc) (5.10)

5.2. Selección de un Espacio de Elementos Finitos

Para tratar el problema de las corrientes de Eddy en materiales ferromagnéticos usando FEM se han
realizado diversos trabajos empleando elementos de primer orden triangulares para 2D y tetrahedri-
cos para 3D [9][7][8][54], obteniéndose excelentes resultados en cuanto a exactitud y precisión. Por
otra parte, existen razones que justifican el uso de elementos triangulares para 2D y tetrahedricos
para 3D de primer orden:

Con elementos triangulares (tetrahedricos para 3D) se obtienen excelentes aproximaciones,
sin necesidad de elevar el costo computacional para el manejo de un espacio de funciones de
mayor orden asociado a otros elementos como rectangulares o elementos exóticos [7][9][2].

La introducción de nodos dado un elemento, es un procedimiento que se realiza por conve-
niencia a problemas espećıficos [2], y por lo tanto no es necesario para llegar a resultados más
exactos.

Para el problema térmico se considerarán los mismos elementos asociados al problema electro-
magnético, ya que esto permite asociar directamente las cantidades involucradas en los dos fenóme-
nos [5]. Ter Maten en [30] ha empleado este esquema para determinar calentamiento por corrientes
de Eddy obteniendo resultados satisfactorios.

Sea K ⊂ Rn una región acotada no vaćıa. Se denominará con V el espacio de dimensión fi-
nita de funciones de forma definidas sobre K, y N = {N1, . . . , Nk} una base de V

′
(el conjunto de

variables nodales, es el espacio dual a V ) [3]. Se define el elemento finito

(K,V,N)

la base {φ1, . . . , φk} de V es la base nodal de V . Entonces el interpolante sobre este elemento finito
de una función v : Ωc −→ R tal que Ni∀i está definido, puede escribirse como

IKv =
k∑

i=1

Ni(v)φi

5.2.1. Caso 2D

Sea Ωc ⊂ R2 un dominio rectangular acotado. Se considera una triangulación8 de Ωc. El elemento
finito para este tipo de subdivisión se particulariza como(

K(e), V (e), N (e)
)

8Para definición ver [59] página 113
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j k

l

Ω(e)

(xj , yj) (xk, yk)

(xl, yl)

Figura 5.1: Elemento triangular de primer orden con su respectiva asignación de nodos

donde K(e) es el e-ésimo triángulo de la subdivisión, V (e) el espacio de funciones asociado cuya base
es {φ1, φ2, φ3} y N (e)una base de V (e)′ que es {N1, N2, N3}. Sean j, k, l los nodos del triángulo (e)
(ver figura 5.1), entonces:

φ
(e)
j (x, y) =

D
(e)
k,l (x, y)

C
(e)
j,k,l

k 6= j 6= l (5.11)

donde

C
(e)
j,k,l =

∣∣∣∣∣∣∣
1 x

(e)
j y

(e)
j

1 x
(e)
k y

(e)
k

1 x
(e)
l y

(e)
l

∣∣∣∣∣∣∣ , D
(e)
k,l (x, y) =

∣∣∣∣∣∣
1 x y

1 x
(e)
k y

(e)
k

1 x
(e)
l y

(e)
l

∣∣∣∣∣∣
5.2.2. Caso 3D

Sea Ωc ⊂ R3 una región acotada en forma de paraleleṕıpedo. Se considera una división de Ωc en
tetrahedros. El elemento finito para este caso es(

K(e), V (e), N (e)
)

donde K(e) es el e-ésimo tetrahedro de la subdivisión, V (e) el espacio de funciones asociadas cuya
base es {φ1, φ2, φ3, φ4}. Sean j, k, l,m los nodos del tetraherdo (e) (ver figura 5.2), entonces:

φ
(e)
j (x, y, z) =

D
(e)
k,l,m(x, y, z)

C
(e)
j,k,l,m

(5.12)

donde

C
(e)
j,k,l,m =

∣∣∣∣∣∣∣∣∣
1 x

(e)
j y

(e)
j z

(e)
j

1 x
(e)
k y

(e)
k z

(e)
k

1 x
(e)
l y

(e)
l z

(e)
l

1 x
(e)
m y

(e)
m z

(e)
m

∣∣∣∣∣∣∣∣∣ , D
(e)
k,l,m(x, y) =

∣∣∣∣∣∣∣∣∣
1 x y z

1 x
(e)
k y

(e)
k z

(e)
k

1 x
(e)
l y

(e)
l z

(e)
l

1 x
(e)
m y

(e)
m z

(e)
m

∣∣∣∣∣∣∣∣∣
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j

k

l

m

Ω(e)

(xj , yj , zj)

(xk, yk, zk)

(xl, yl, zl)

(xm, ym, zm)

Figura 5.2: Elemento tetrahedrico de primer orden con su respectiva asignación de nodos

5.3. Discretización en el Dominio del Tiempo

La aplicación de elementos finitos al problema espacial teniendo en cuenta la variación temporal de
las cantidades involucradas, es una técnica frecuente en el análisis numérico de ecuaciones diferen-
ciales parciales [2]. El uso de esta técnica en este trabajo, es consecuencia del esquema empleado
para introducir la histéresis ya que permite concebir la aproximación espacial con un espacio de
elementos finitos asociado a un enmallado fijo, pero con los valores asignados a los nodos variando
en el tiempo.

Una gran variedad de métodos pueden aplicarse para la discretización temporal en la obtención
de una aproximación de las ecuaciones en cuanto a las variaciones temporales. Las relaciones resul-
tantes son esquemas de ecuaciones en diferencias que deben tener tres caracteŕısticas básicas para
que puedan considerarse como aproximaciones valederas al modelamiento del problema:

Consistencia. Las relaciones resultantes deben ser una buena aproximación de la ecuación
original del problema.9

Convergencia. La solución del sistema discreto debe ser una buena aproximación de la
solución de la ecuación diferencial.

Estabilidad. La solución del sistema discreto no debe ser alterada fácilmente por perturba-
ciones en los datos.

Fallah en [9] y Ionita en [7][8] han empleado para el problema de las corrientes de Eddy en ma-
teriales ferromagnéticos, una discretización temporal basada en integración numérica por trapecios
como un medio para interelacionar las cantidades en el tiempo, empleando el esquema de manejo
de histéresis usado en este trabajo10. La representación de esta aproximación para un término se
expresa como11: ∫ tf

t0

w(t)dt ' ∆t
2

(w(t+ ∆t) + w(t))

9Aqui y en los demás incisos se hace referencia a las ecuaciones en cuanto a variaciones temporales.
10Ionita y Fallah, son independientemente los creadores de este esquema
11∆t es el tamaño de paso empleado para la integración
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Ionita muestra en [7] que el esquema de ecuación en diferencias obtenido es convergente siempre
y cuando haya consistencia y las curvas que modelan la hystértesis sean funciones de Lipschitz. La
consistencia depende de ∆t y su relación con las condiciones de frontera. Tomando un ∆t dentro
de un rango adecuado12, de tal manera que estén descritas las caracteŕısticas principales de las
funciones que definen estas condiciones, se obtiene consistencia [7][9]. En el caso particular de este
trabajo las señales asocidas a las fronteras son funciones cosenoidales de f [Hz].

Teniendo en cuenta estos dos aspectos (consistencia y convergencia) y los espacios de elementos
finitos seleccionados, el problema nuérico se describe con las ecuaciones presentadas en la siguiente
sección. Al final de ésta se demostrará que los esquemas de ecuaciones en diferencias obtenidos son
estables.

Sea [A] = [A1x . . . AndxAy1 . . . Andy]T el vector de valores asignados a los nodos del espacio de ele-
mentos finitos seleccionado en el caso bidimensional, y [A] = [A1x . . . AndxAy1 . . . AndyA1z . . . Andz]T
el vector de valores de los nodos en el caso de tres dimensiones. Se representará de esta manera al po-
tencial magnético vectorial en las ecuaciones matriciales que se presentan en la siguiente sección. De
manera análoga y consistente con las dimensiones de las matrices, se definen los vectores correspon-
dientes a las funciones de prueba13 de la formulación variacional como [v] = [v1x . . . vndxvy1 . . . vndy]
y [v] = [v1x . . . vndxvy1 . . . vndyv1z . . . vndz]T para dos y tres dimensiones respectivamente.

5.3.1. Problema Electromagnético

Caso 2D

El planteamiento por elemento se escribe como

νFP

{
∆t
2

(
Bt+∆t

0curve +Bt
0curve

)
[v][αf ] +

∆t
2

[v][α3]
(
[A]t + [A]t+∆t

)}
− [v][β]

∆t
2
(
[R]t+∆t + [R]t

)
=

−σ[v][γ]
(
[A]t+∆t − [A]t

)
∀ [v]

(5.13)
donde

[αf ] =
[

[αf1]
[αf2]

]
, [β] =

[
[β1]
− [β2]

]
, γ =

[
[γ1] 0
0 [γ1]

]

[α3] =
∫

Ω(e)


[
∂Nj

∂y

]
3×1

−
[
∂Nj

∂x

]
3×1

 [ [∂Nj/∂y]1×3 − [∂Nj/∂x]1×3

]
dΩ(e)

[β1] =
∫

Ω(e)

[Nj ]3×1 [∂Nj/∂y]1×3 dΩ(e) , [β2] =
∫

Ω(e)

[Nj ]3×1 [∂Nj/∂x]1×3 dΩ(e)

[γ1] =
∫

Ω(e)

[Nj ]3×1 [Nj ]1×3 dΩ(e)

12Con el ∆t seleccionado se debe describir los aspectos principales de la señal de frontera, en el sentido de contemplar
crecimiento y decreciemto en todos los intervalos, además de máximos y mı́nimos

13Son las funciones con las que se multiplicaron las ecuaciones diferenciales antes de realizarse el proceso de inte-
gración en el dominio de solución
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[αf1] =

{ ∫ x2

x1
[Nj ]3×1 |

y=d
y=cdx si µR

(
Ω(e)

⋂
∂Ωc

)
6= 0

0 si µR
(
Ω(e)

⋂
∂Ωc

)
= 0

[αf2] =
{ ∫ y2

y1
[Nj ]3×1 |

x=b
x=ady si µR

(
Ω(e)

⋂
∂Ωc

)
6= 0

0 si µR
(
Ω(e)

⋂
∂Ωc

)
= 0

14La expresión del problema ensamblado es

[XX1] [A]t+∆t = [XX2] [A]t+[βT]
∆t
2

(
[R]t+∆t + [R]t

)
−νFP

∆t
2

(
Bt+∆t

0curve +Bt
0curve

)
[αfT] (5.14)

con

[XX1] = νFP
∆t
2

[α3T] + σ [γT] , [XX2] = νFP
∆t
2

[α3T]− σ [γT]

Caso 3D

El planteamiento por elemento es

[v]
{
−σ [γ]− νFP [α3]

∆t
2

}
[A]t+∆t = [v]

{
−σ [γ] + νFP [α3]

∆t
2

}
[A]t +

[v]
{
νFP [αf ]

∆t
2

(
Bt+∆t

0curve +Bt
0curve

)
− [β]

∆t
2

(
[R]t+∆t + [R]t

)}
∀ [v]

(5.15)

donde

[γ] = I3×3 ⊗ [γ1] , [γ1] =
∫

Ω(e)

[Nj ]3×1 [Nj ]1×3 dΩ(e)

[β] =

 0 − [βz] [βy]
[βz] 0 − [βx]
− [βy] [βx] 0

 , [βu] =
∫

Ω(e)

[Nj ]3×1 [∂Nj/∂u]1×3 dΩ(e) u = x, y, z

[α3] = [α32]− [α31]− [α33] + [α34]− [α35]− [α36]

[α32] =

 [α3zz] 0 − [α3zx]
0 0 0
0 0 0

 , [α33] =

 0 0 0
0 − [α3zz] [α3zy]
0 0 0

 , [α35] =

 0 0 0
0 0 0

[α3xz] 0 − [α3xx]


14µR es la medida de lebesgue en R, es una medida de longitud.
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[α36] =

 0 0 0
0 0 0
0 − [α3yz] [α3yy]

 , [α31] =

 − [α3yy] [α3yx] 0
0 0 0
0 0 0

 , [α34] =

 0 0 0
− [α3xy] [α3xx] 0

0 0 0


con

[α3uw] =
∫

Ω(e)

[
∂Nj

∂u

]
3×1

[∂Nj/∂w]1×3 dΩ(e) u,w = x, y, z

[αf ] = [αf1]− [αf2] , [αf1] =

 [αfdc]
0
0

 , [αf1] =

 0
[αfba]

0



[αfdc] =

{ ∫ f
e

∫ b
a [Nj ]3×1 |

d
cdxdz si µR2

(
Ω(e)

⋂
∂Ωc

)
6= 0

0 si µR2

(
Ω(e)

⋂
∂Ωc

)
= 0

[αfba] =

{ ∫ f
e

∫ d
c [Nj ]3×1 |

b
adydz si µR2

(
Ω(e)

⋂
∂Ωc

)
6= 0

0 si µR2

(
Ω(e)

⋂
∂Ωc

)
= 0

15La expresión del problema ensamblado es

[XX1] [A]t+∆t = [XX2] [A]t+[βT]
∆t
2

(
[R]t+∆t + [R]t

)
−νFP

∆t
2

(
Bt+∆t

0curve +Bt
0curve

)
[αfT] (5.16)

con
[XX1] = νFP

∆t
2

[α3T] + σ [γT] , [XX2] = νFP
∆t
2

[α3T]− σ [γT]

5.3.2. Problema Térmico

Caso 2D

La siguiente expresión, por elemento, describe tanto el fenómeno con condición de Dirichlet como
el de aislamiento térmico (véase caṕıtulo 4).

[v] ρc [θ]
{

[T]t+∆t − [T]t
}

= [v] (−λ) [ζ]
∆t
2

{
[T]t+∆t + [T]t

}
+ [v] [θ]

∆t
2

{
[q]t+∆t + [q]t

}
(5.17)

donde

[θ] =
∫

Ω(e)

[Nj ]3×1 [Nj ]1×3 dΩ(e), [ζ] = [ζx]+[ζy] , [ζu] =
∫

Ω(e)

[
∂Nj

∂u

]
3×1

[∂Nj/∂u]1×3 dΩ(e) u = x, y

15µR2 es la medida de lebesgue en R2, es una medida de área
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la versión ensamblada de este planteamiento es

[XX1] [T]t+∆t = [XX2] [T]t + [θT ]
∆t
2

{
[q]t+∆t + [q]t

}
(5.18)

donde
[XX1] = ρc [θT] + λ [ζT] , [XX2] = ρc [θT]− λ [ζT]

Para el problema convectivo se tiene que la versión ensamblada del planteamiento es:

[XX1] [T]t+∆t = [XX2] [T]t −∆thTm [αf1T] + [θT ]
∆t
2

{
[q]t+∆t + [q]t

}
(5.19)

donde

[XX1] = ρc [θT ] + λ
∆t
2

(
h

λ
[αf2T] + [ζT ]

)
, [XX2] = ρc [θT ]− λ

∆t
2

(
h

λ
[αf2T] + [ζT ]

)

[αf1] =
{

[αbab1]− [αbaa1] + [αdcd1]− [αdcc1] si µR
(
Ω(e)

⋂
∂Ωc

)
6= 0

0 si µR
(
Ω(e)

⋂
∂Ωc

)
= 0

[αf2] =
{

[αbaa2]− [αbab2] + [αdcc2]− [αdcd2] si µR
(
Ω(e)

⋂
∂Ωc

)
6= 0

0 si µR
(
Ω(e)

⋂
∂Ωc

)
= 0

[αbar1] =
∫ d

c
[Nj ]3×1 |x=rdy, [αbar2] =

∫ d

c

(
[Nj ]3×1 [Nj ]1×3

)∣∣
x=r

dy r = a, b

[αdcr1] =
∫ b

a
[Nj ]3×1 |x=rdx, [αdcr2] =

∫ b

a

(
[Nj ]3×1 [Nj ]1×3

)∣∣
x=r

dx r = c, d

Caso 3D

La siguiente expresión, por elemento, describe tanto el fenómeno con condición de Dirichlet como
de aislamiento térmico.

[v] ρc [θ]
{

[T]t+∆t − [T]t
}

= [v] (−λ) [ψ]
∆t
2

{
[T]t+∆t + [T]t

}
+ [v] [θ]

∆t
2

{
[q]t+∆t + [q]t

}
(5.20)

donde

[θ] =
∫

Ω(e)

[Nj ]3×1 [Nj ]1×3 dΩ(e), [ψ] = [ψx]+[ψy]+[ψz] , [ψu] =
∫

Ω(e)

[
∂Nj

∂u

]
3×1

[∂Nj/∂u]1×3 dΩ(e) u = x, y, z
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la versión ensamblada de este problema es

[XX1] [T]t+∆t = [XX2] [T]t + [θT ]
∆t
2

{
[q]t+∆t + [q]t

}
(5.21)

[XX1] = ρc [θT] + λ [ψT] , [XX2] = ρc [θT]− λ [ψT]

Para el problema convectivo se tiene que la versión ensamblada del planteamiento es:

[XX1] [T]t+∆t = [XX2] [T]t −∆thTm [αf1T] + [θT ]
∆t
2

{
[q]t+∆t + [q]t

}
(5.22)

[αf1] =
{

[αbab1]− [αbaa1] + [αdcd1]− [αdcc1] + [αfef1]− [αfee1] si µR2

(
Ω(e)

⋂
∂Ωc

)
6= 0

0 si µR2

(
Ω(e)

⋂
∂Ωc

)
= 0

[αf2] =
{

[αbaa2]− [αbab2] + [αdcc2]− [αdcd2] + [αfee2]− [αfef2] si µR2

(
Ω(e)

⋂
∂Ωc

)
6= 0

0 si µR2

(
Ω(e)

⋂
∂Ωc

)
= 0

[αbar1] =
∫ f

e

∫ d

c
[Nj ]3×1 |x=rdydz, [αbar2] =

∫ f

e

∫ d

c

(
[Nj ]3×1 [Nj ]1×3

)∣∣
x=r

dydz r = a, b

[αdcr1] =
∫ f

e

∫ b

a
[Nj ]3×1 |x=rdxdz, [αdcr2] =

∫ f

e

∫ b

a

(
[Nj ]3×1 [Nj ]1×3

)∣∣
x=r

dxdz r = c, d

[αfer1] =
∫ d

c

∫ b

a
[Nj ]3×1 |x=rdxdy, [αfer2] =

∫ d

c

∫ b

a

(
[Nj ]3×1 [Nj ]1×3

)∣∣
x=r

dxdy r = e, f

5.4. Demostración de Estabilidad

En esta sección se presenta una demostración de que las relaciones resultantes a la aplicación de
elementos finitos, forman un conjunto estable de ecuaciones de evolución del fenómeno, por lo cual
los efectos de las perturbaciones por redondeo y malos condicionamientos están acotados, haciendo
aún más confiables los resultados que se obtengan de la simulación.

Considérese las ecuaciones del problema 5.14 5.1616, sustituyendo t + ∆t por n + 1 y t por n17.
Sea [A] la representación de los datos asociados a un problema sin perturbaciones y ˜[A] los datos

16Esta demostración se plantea seguiendo las ecuaciones electromagnéticas, sin embargo debe tenerse en cuenta que
las ecuaciones del problema térmico resultante tienen la misma forma, por lo cual con esta demostración se verifica
la estabilidad tanto en el problema térmico como en el electromagnético

17Esta notación es equivalente, ya que se está describiendo la relación entre cantidades discretas; con la primera
notación sólo se añade el hecho de saber en qué tiempo real se da esa relación
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asociados a un problema con éstas. Se define δn = [A]n− ˜[A]
n
. Se dice que un esquema de ecuaciones

en diferencias es estable si ∃C > 0, independiente de ∆t, tal que18

‖δn‖ < C
∥∥δ0∥∥

cuando n −→ ∞, ∆t −→ 0 y t ≤ tf
19. Empleando 5.14 5.16 con datos perturbados y no pertur-

bados, resultan dos ecuaciones, de cuya resta se obtiene

[XX1] δn+1 = [XX1] δn =⇒
∥∥[XX1] δn+1

∥∥ = ‖[XX1] δn‖ =⇒ ‖[XX1]‖
∥∥δn+1

∥∥ = ‖[XX1]‖ ‖δn‖

=⇒
∥∥δn+1

∥∥ < C ‖δn‖ ∀n con C =
‖[XX2]‖
‖[XX1]‖

entonces20∥∥δn+1
∥∥ < C ‖δn‖ < . . . < Cn+1

∥∥δ0∥∥ =⇒ ∃C > 0 tal que ‖δn‖ < C
∥∥δ0∥∥∀n

este C es independiente de ∆t y la relación se mantiene cuando n −→ ∞, dentro de los ĺımites de
tiempo impuestos para la simulación del fenómeno. Esto garantiza que el esquema es estable, lo cual
coincide con los resultados experimentales obtenidos por Ionita en [7] y Fallah en [9]. Por otra parte
debe prestarse especial atención al hecho de que la constante que da la medida de la estabilidad C, es
dependiente de las caracteŕıticas de geometŕıa del problema espacial, evidenciándose una conexión
en los dos tipos de planteamiento.

18Esta definición de estabilidad es propuesta por Flaherty en [2]
19tf es el tiempo final de simulación
20En la demostración ‖ · ‖ representa la norma de las matrices y los vectores de datos. La norma empleada para la

demostración puede ser l2 o bien l∞ [25]



Caṕıtulo 6

Aspectos de Implementación

La implementación de un algoritmo de solución numérica de un problema dado, requiere de la
selección adecuada de las técnicas para la obtención y realización de operaciones básicas como la
integración, la derivación y los ensambles. En la herramienta de simulación Matlab se cuenta con
varias funciones destinadas para satisfacer en parte éstos propósitos, lo que permite hacer más
sistemático y compacto un código diseñado para éstos problemas. En este caṕıtulo se presentan los
aspectos de implementación considerados para llevar a cabo los algoritmos de solución, seleccionando
las herramientas más adecuadas y eficientes de acuerdo a las necesidades involucradas en cada
sección del problema.

6.1. Algoritmo de Solución

El algoritmo de solución en la parte electromagnética está ligado al esquema empleado para intro-
ducir la histéresis. Es la sistematización del problema en torno a este esquema. Por otra parte, el
algoritmo para el problema térmico es un planteamiento directo ya que no se requieren procesos
iterativos.

6.1.1. Adecuación y Modelado de los datos Experimentales de la relación B-H

Antes de emplear los procesos para resolver el problema de las corrientes de Eddy es necesario
adecuar los datos experimentales y obtener los modelos de la curva de histéresis del material.
Aśı el conjunto de pares ordenados (experimentales) asociados acada lazo debe tener las siguientes
caracteŕısticas

Dada una pareja ordenada de datos (Hj , Bj) no existe otra (Hk, Bk) tal que Hj = Hk o
Bj = Bk.

Los datos tienen un comportamiento no decreciente entre los valores máximo y mı́nimo de la
intensidad de campo magnético considerada.

con el cumplimiento de estos requerimientos se aplican las ĺıneas de códigos descritas a continuación
para modelado de las curvas.

53
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Implementación en Matlab

Sea Hinf,Binf la representación de los datos correspondientes al lazo inferior y Hsup,Bsup los del
lazo superior.
FI=spline(Hinf,Binf);
FIX=spline(Binf,Hinf);
[i,j]=find(Binf==min(abs(Binf)));clear i
Hci=Hinf(j(1));clear j
fl=fittype(’ai*atan(x-ni)+bi’,’problem’,’ni’);
[cli,gli]=fit(Hinf’,Binf’,fl,’problem’,Hci);clear fl
ai=cli.ai;bi=cli.bi;ni=cli.ni;clear cli gli;syms hx
fli=@(hx)(ai*atan(hx-ni)+bi);clear ai ni bi
FS=spline(Hsup,Bsup);
FSX=spline(Bsup,Hsup);
[i,j]=find(Bsup==min(abs(Bsup)));clear i
Hcs=Hsup(j(1));clear j
fl=fittype(’as*atan(x-ns)+bs’,’problem’,’ns’);
[cls,gls]=fit(Hsup’,Bsup’,fl,’problem’,Hcs);clear fl
as=cls.as;bs=cls.bs;ns=cls.ns;clear cls;syms hx
fls=@(hx)(as*atan(hx-ns)+bs);clear as bs ns

6.1.2. Algoritmo: Problema Electromagnético

Cómputo de las Matrices de Geometŕıa: Se computan las matrices [γ] , [β] , [α3] , [ψ].

Cómputo de las Matrices de frontera: Se computan las matrices en las que se involucran
integrales de frotera tales como [αf ].

Aplicación de las condicones iniciales en [A]t=0 y [R]t=0.

Inicialización de [A]t=1
i y [R]t=1

i .

Cómputo de [A]t=1
i+1.

• Si
∑

(e)

∣∣∣[A]t=1
i+1 − [A]t=1

i

∣∣∣ < ∆ε
1 entonces se da paso al siguiente item, si no:

• Se realiza [A]t=1
i = [A]t=1

i+1 , se cálcula el rotacional de [A]t=1
i+1 para obtener [B]t=1

i+1 y con
ello del modelo de la histéresis [H]t=1

i+1; se calcula [R]t=1
i+1 = νFP [B]t=1

i+1 − [H]t=1
i+1, y se hace

[R]t=1
i = [R]t=1

i+1. Con lo que finalmente se vuelve al inciso principal (calcular el valor del
potencial magnético vectorial para la primera muestra).

Inicializar [A]ti y[R]ti.

Cómputo [A]ti+1 y[R]ti+1.

• Si
∑

(e)

∣∣[A]ti+1 − [A]ti
∣∣ < ∆ε entonces se da paso al siguiente item, si no:

1∆ε es el máximo error absoluto aceptado, tomado sobre la suma de los errores absolutos correspondientes a cada
nodo.
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• Se realiza [A]ti = [A]ti+1 , se cálcula el rotacional de [A]ti+1 para obtener [B]ti+1 y con
ello del modelo de la histéresis [H]ti+1; se calcula [R]ti+1 = νFP [B]ti+1− [H]ti+1, y se hace
[R]ti = [R]ti+1. Con lo que finalmente se vuelve al inciso principal (calcular el valor del
potencial magnético vectorial para la muestra t).

Si ya se cumple el máximo tiempo de simulación se finaliza el proceso (continuando en el
siguiente item), si no se hace t = ∆t+ t y se regresa al proceso de inicialización en t.

Cómputo del vector de densidad de corriente a partir de los valores de potencial magnético
vectorial obtenido.

Cómputo de las pérdidas óhmicas y por histéresis para la obtención de [q]

6.1.3. Algoritmo: Problema Térmico

Cómputo de las matrices de geometŕıa: Se computan las matrices [θ], [ζ].

Cómputo de las matrices de frontera: Se computan las matrices en las que se involucran
integrales de frontera tales como [αf ].

Aplicación de las condiciones iniciales en [T]t=0.

Cómputo de los valores restantes de temperatura, si el tiempo de simulación no ha finalizado;
de lo contrario se finaliza el proceso

6.2. Cómputo de operaciones básicas

En la realización de un planteamiento numérico por FEM es necesario emplear e implementar
operaciones de derivación e integración. En el primer caso es frecuente usar herramientas de tipo
simbólico cuando las funciones asociadas a los nodos son lineales de primer orden, como las que
se emplean en este trabajo; mientras que en el segundo hay tendencias a implementaciones por
cuadratura Gaussiana [2]. Las integrales se hacen sobre todos los elementos del dominio para el
caso de las matrices principales de geometŕıa y sobre los elementos tales que Ω(e)

⋂
∂Ωc 6= ∅ para

las matrices de frontera. Hay razones que hacen más adecuada y conveniente la integración por
cuadratura gaussiana para las matrices principales de geometŕıa e integración simbólica para los
elementos de frontera:

Dado que las funciones base asociadas a los nodos son funciones polinomiales lineales de
primer orden, se puede obtener el valor exacto2 de una integral que involucre éstos términos
empleando un número adecuado de puntos usando cuadratura Gaussiana [25]. Además el
tiempo de cómputo se reduce considerablemente respecto del uso de integración simbólica, u
otros tipos de integración.

El cómputo de las integrales de frontera se realiza sobre un número de elementos mucho
menor al total empleado en la región de solución, por ello emplear integración numérica en
para este caso, no reduce significativamente el costo computacional. Adicionalmente el uso
de integración simbólica permite hacer el código correspondiente al cómputo de elementos de
frontera más compacto y manejable.

2Esto es consecuancia de las ortogonalidad de los polinomios de Legendre en [−1, 1] [25]
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Ω(e)(xj , yj)

(xk, yk)

(xl, yl)

x

y

ξ

η

(1, 0)

(0, 1)

Ω0

Figura 6.1: Transformación de un elemento en el plano f́ısico a un elemento canónico en un plano
computacional (caso 2D)

6.2.1. Transformación a Planos Computacionales

Antes de implementar cualquier técnica numérica de integración es conveniente realizar una trans-
formación a un plano computacional, en donde la región de integración tenga una forma más sencilla
en términos anaĺıticos [2]. Esto permite definir exactamente los ĺımites de integración sin necesidad
de ningún tipo de aproximaciones [2]. Las transformaciones realizadas son para el caso 2D-mensional
de un triángulo arbitrario en el plano xy a un triángulo canónico de lado unitario en el plano ξη
con sus lados coincidentes con los ejes ξ y η (ver figura 6.1). Para el caso 3D-mensional se realiza
una transformación de un tetrahedro arbitrario a un tetrahedro canónico de arista unitaria en el
espacio ξηζ con sus vértices coincidentes con los ejes ξ, η y ζ . Las ecuaciones que definen estas
transformaciones son:

Caso 2D-mensional
ξ = φ

(e)
2 (x, y), η = φ

(e)
3 (x, y) (6.1)

Caso 3D-mensional

ξ = φ
(e)
2 (x, y, z), η = φ

(e)
3 (x, y, z), ζ = φ

(e)
4 (x, y, z) (6.2)

de manera que las integrales se transforman de la forma3:∫
Ω(e)

f(x, y)dΩ(e) 7−→
∫

Ω0

f (g(ξ, η), h(ξ, η))
∣∣∣∣∂(x, y)
∂(ξ, η)

∣∣∣∣ dξdη (6.3)

∫
Ω(e)

f(x, y, z)dΩ(e) 7−→
∫

Ω0

f (g(ξ, η, ζ), h(ξ, η, ζ), k(ξ, η, ζ))
∣∣∣∣∂(x, y, z)
∂(ξ, η, ζ)

∣∣∣∣ dξdηdζ (6.4)

las funciones g, h, k definen el valor de las variables x, y, z en térmninos de las nuevas variables
definidas a partir de las transformaciones 6.1 6.2.

3

˛̨̨̨
∂(x, y, z)

∂(ξ, η, ζ)

˛̨̨̨
es el jacobiano de la transformación
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6.2.2. Implementación en Matlab

Integración simbólica:
int(f(x),’x’,a,b);

Integración por Cuadrattura Gaussiana:(como ejemplo se mostrará la generación de la matriz
[γ] por elemento en el caso 2D)
%***** Integrales por Cuadratura *********
u1=sqrt(3)/3;u2=-sqrt(3)/3;
Xi1=(u1+1)*0.5;Eta1=0.25*(1-u1)*(1+sqrt(3)/3);Eta1b=0.25*(1-u1)*(1-sqrt(3)/3);
Xi2=(u2+1)*0.5;Eta2=0.25*(1-u2)*(1+sqrt(3)/3);Eta2b=0.25*(1-u2)*(1-sqrt(3)/3);
syms x y
F1=solve(Nj-Xi1,Nk-Eta1,’x’,’y’);
x=F1.x;
y=F1.y;clear F1
MDjk(3,:)=[1,x,y];clear y x
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
P11=JC*[Xi1;Eta1;Nl]*[Xi1;Eta1;Nl]’;
syms x y
F2=solve(Nj-Xi1,Nk-Eta1b,’x’,’y’);
x=F2.x;
y=F2.y;clear F2
MDjk(3,:)=[1,x,y];clear y x
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
P11b=JC*[Xi1;Eta1b;Nl]*[Xi1;Eta1b;Nl]’;
syms x y
F3=solve(Nj-Xi2,Nk-Eta2,’x’,’y’);
x=F3.x;
y=F3.y;clear F3
MDjk(3,:)=[1,x,y];clear y x
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
P22=JC*[Xi2;Eta2;Nl]*[Xi2;Eta2;Nl]’;
syms x y
F4=solve(Nj-Xi2,Nk-Eta2b,’x’,’y’);
x=F4.x;
y=F4.y;clear F4
MDjk(3,:)=[1,x,y];clear y x
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk MDjk
P22b=JC*[Xi2;Eta2b;Nl]*[Xi2;Eta2b;Nl]’;
gamma=kron(eye(2),0.125*(1-u1)*(P11+P11b)+0.125*(1-u2)*(P22+P22b));

6.3. Proceso de Ensamble de Matrices

Existen diferentes enfoques para la realización de un proceso de ensamble de los elementos que
constituyen el problema [4][2]. En este trabajo se aplicará el método propuesto por Flaherty en
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[2], ya que su costo computacional es menor respecto del propuesto por Johnson en [4]. El método
consiste básicamente en generar a partir de las matrices dadas por elemento, unas matrices asociadas
de las mismas dimensiones de la matriz total ensamblada, tal que ésta ultima se expresa como una
sumatoria de las primeras. a continuación se muestra la aplicación de este proceso de ensamble.

6.3.1. Implementación en Matlab

alpha3S=zeros(2*nd,2*nd);
gammaS=zeros(2*nd,2*nd);
betaS=zeros(2*nd,nd);
rotAS=zeros(nd,2*nd);
rotBS=zeros(nd,nd);
vpru=t1(:,i);
for kk=1:1:3
for ll=1:1:3
alpha3S(vpru(kk),vpru(ll))=alpha3(kk,ll);
alpha3S(vpru(kk),vpru(ll)+nd)=alpha3(kk,ll+3);
alpha3S(vpru(kk)+nd,vpru(ll))=alpha3(kk+3,ll);
alpha3S(vpru(kk)+nd,vpru(ll)+nd)=alpha3(kk+3,ll+3);
gammaS(vpru(kk),vpru(ll))=gamma(kk,ll);
gammaS(vpru(kk),vpru(ll)+nd)=gamma(kk,ll+3);
gammaS(vpru(kk)+nd,vpru(ll))=gamma(kk+3,ll);
gammaS(vpru(kk)+nd,vpru(ll)+nd)=gamma(kk+3,ll+3);
betaS(vpru(kk),vpru(ll))=beta(kk,ll);
betaS(vpru(kk)+nd,vpru(ll))=beta(kk+3,ll);
rotAS(vpru(kk),vpru(ll))=rotA(kk,ll);
rotAS(vpru(kk),vpru(ll)+nd)=rotA(kk,ll+3);
rotBS(vpru(kk),vpru(ll))=rotB(kk,ll);
end
end
clear rotB rotA beta gamma alpha3 kk ll vpru
alpha3T=alpha3S+alpha3T;clear alpha3S
gammaT=gammaS+gammaT;clear gammaS
betaT=betaS+betaT;clear betaS
rotAT=rotAS+rotAT;clear rotAS
rotBT=rotBS+rotBT;clear rotBS

6.4. Ajuste de Valores de la Frontera

En la obtención de los planteamientos variacionales de los problemas acoplados (térmico y electro-
magnético), se ven impĺıcitas en las ecuaciones resultantes algunas condiciones de frontera; tal es
el caso de las condiciones tipo Newmann y Robin. Sin embargo en el caso de las ecuaciones con
condiciones de Dirichlet esto no sucede, de hecho la ecuación variacional asociada a un problema de
éste tipo y uno de condición homégenea tipo Newmann es la misma. Por ello es necesario ajustar los
valores conocidos de frontera en el planteamiento. Esto se realiza asignando los valores conocidos a
los nodos que se encuentran en la frontera, empleando las funciones que definen estás condiciones:

N
(e)
j (g0(t)) = g

(e)
0j (t) donde j es un nodo perteneciente a la frontera
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g0(t) es la función que define la condición de frontera. Esta asignación influye en los datos obte-
nidos para los demás nodos del enmallado y es lo que define la diferencia entre los resultados para
un problema de frontera aislada y uno de temperatura constante en el borde en lo que a resultados
numéricos se refiere.

6.5. Solución de los Sistemas Matriciales

La selección de los métodos empleados para resolver las ecuaciones matriciales, está estrechamente
relacionada con las caractéristicas de las matrices que constituyen el planteamiento. En los problemas
donde se emplea FEM, éstas son matrices esparcidas, es decir poseen un gran número de elementos
nulos y poseen un gran tamaño, t́ıpicamente son arreglos de más de 10000 elementos4. Para este tipo
de arreglos, resultan mucho más convenientes los métodos iterativos por ser más eficientes tanto en
almacenamiento de computaodra como en el tiempo empleado de cómputo [25][2].

Uno de los métodos iterativos preferidos es el de Gradiente conjugado, ya que para matrices
esparcidas de gran tamaño puede llegar a la solución en aproximadamente

√
n5 pasos, lo que lo

hace preferible sobre la eliminación gaussiana y los métodods iterativos de Gauss-Seidel, Jacobi,
SQR, Stein-Rosenberg y Ostrowoski-Reich6 [25][50].

6.5.1. Implementación en Matlab

En Matlab se cuenta con las funciones de gradiente conjugado cgs y pcg. Estas dos funciones se
emplean indistintamente en el caso 2D, sin embargo en el caso 3D se emplea la primera debido a
su ventaja en el manejo de valores numéricos grandes en comparación con pcg. A continuación se
presentan dos ejemplos donde se muestra el empleo de éstas:
SAtimedis=pcg(XX1,XX2*SAtimedis-1+XXF,1e-16,100);
Ttimedis=cgs(XXhnt,vphn,1e-16,100);

6.5.2. Solución de sistemas cuando hay valores conocidos en la frontera

En problemas con condiciones tipo Dirichlet, la asignación de valores en los nodos se traduce en
efectos directos sobre las ecuaciones matriciales que describen el problema, ya que al haber valores
conocidos las dimensiones de las matrices se reducen [2]. Considérese la siguiente ecuación matricial


p11 p1j p1n
...

...
...

pj1 . . . pjj . . . pjn
...

...
...

pn1 pnj pnn




c1
...
cj
...
cn

 =


f1
...
fj
...
fn


4Las matrices generadas en este trabajo alcanzan incluso más de 1 × 106 elementos ya que en los problemas

vectoriales hay varias incógnitas por nodo
5n es el tamaño de la matriz cuadrada generada
6Una discusión sobre las vantajas del gradiente conjugado sobre estos métodos está completamente detallada en

[25]
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en donde cj = γj es un valor conocido, entonces el problema para resolver las demás incógnitas es

p11 p1,j−1 p1,j+1 p1n
...

...
...

...
pj−1,1 . . . pj−1,j−1 pj−1,j+1 . . . pj−1,n

pj+1,1 . . . pj+1,j−1 pj+1,j+1 . . . pj+1,n
...

...
...

...
pn1 pn,j−1 pn,j+1 pnn





c1
...

cj−1

cj+1
...
cn


=



f1 − p1,jγj
...

fj−1 − pj−1,jγj

fj+1 − pj+1,jγj
...

fn − pn,jγj



6.6. Cálculo del Rotacional

Un aspecto esencial en el desarrollo del algoritmo que permite resolver el problema electromagnético,
es el cálculo del rotacional realizado sobre los valores del potencial magnético vectorial. La realización
en un esquema numérico se puede lograr empleando elementos finitos sobre la ecuación que describe
la operación, aprovechando todos los desarrollos realizados hasta ahora con éste. Entonces se plantea
la formulación variacional como ∫

Ωc

~v · ~∇× ~AdΩc =
∫

Ωc

~v · ~BdΩc

de manera tal que, teniendo en cuenta las consideraciones realizadas en el caṕıtulo 5, se obtienen
las relaciones matriciales7

6.6.1. Caso 2D

La versión por elemento es
[v] (− [β]) [A] = [v] [γ1] [B]

6.6.2. caso 3D

La versión por elemento es
[v] [β] [A] = [v] [γ] [B]

6.7. Ajuste y Control de los Datos

En la solución de problemas numéricos es necesario contemplar la influencia de los errores de
redondeo, los efectos del empleo de matrices mal condicionadas y la posibilidad de que se obtengan
datos erroneos que no muestren seguir la tendencia de los datos restantes. Una concepción cualitativa
del fenómeno simulado es de considerable importancia ya que permite establecer criterios sobre los
datos, para descartar aquellos que carezcan de significado f́ısico.

7Las matrices [β], [γ], [γ1], son las mismas que se definieron en el caṕıtulo 5



6.8. RESULTADOS FINALES DE IMPLEMENTACIÓN 61

6.7.1. Ajustes en el Problema Electromagnético

Estimar el comportamiento de las variables electromagnéticas no es una tarea trivial, y no está al
alcance de la intuición f́ısica. Sin embargo si es posible realizar ajustes de valores cuando están fuera
del rango de operación en el que se están considerando las variables del fenómeno. Los dominios y
codominios de las funciones de lazo de con las que se modela la histéresis representan los rangos
para las cantidades magnéticas, aśı un valor de densidad deflujo magnético que no se encuentre en el
intervalo [Bmin, Bmax] debe ser rectificado dentro de éste de acuerdo a la tendencia que se observe.

Implementación en Matlab

for i=1:1:max(size(B{timedis}))
if B{timedis}(i)>1.48
B{timedis}(i)=1.48;
elseif B{timedis}(i)<-1.474
B{timedis}(i)=-1.474;
else
end
end

6.7.2. Ajustes en el Problema Térmico

Si se considera un cuerpo ferromagnético en calentamiento con una temperatura inicial T0, es de es-
perar que en la evolución del problema las temperaturas aumenten, ya sea considerando condiciones
de Dirichlet y/o de Newmann. Aśı, de registrarse en algún paso del esquema de ecuación en diferen-
cias un valor significativamente menor a éste, debe ajustarse de acuerdo a la tendencia que se observa
con la información mayoritaria. Este ajuste de los datos se aplica observando el comportamiento
de la simulación, puede darse el caso de no ser necesario. La idea de realizar este procedimiento es
mantener las tendencias y no estimar cuantitativamente un valor para determinadas regiones.

Implementación en Matlab

for j=1:1:nd
if T{timedis}(j)<(T0ext-10)
T{timedis}(j)=T0ext;
else
end
end

6.8. Resultados Finales de Implementación

El resultado de la realización de las implementaciones, con los aspectos considerados en éste caṕıtu-
lo y todo el análisis y estudio realizado a lo largo del texto se plasma en códigos configurados como
funciones de Matlab:
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6.8.1. Simulación del Fenómeno Electromagnético

Las funciones implementadas para la simulación del fenómeno de corrientes de Eddy en dos y
tres dimensiones son ElectroFEM 2D.m y ElectroFEM 3D.m respectivamente. Con éstos códigos se
simula el problema electromagnético, de manera que se obtiene como variable de salida un término
que contiene los datos correspondientes al calentamiento por histéresis y efecto Joule, y que es una
de la variables de entrada en el proceso de simulación térmico. En la ejecución de las funciones se
muestra el comportamiento de los datos, por ejemplo las tendencias en magnitud y dirección de las
corrientes. Los pormenores de estos códigos se encuentran en los apéndices B y F8.

6.8.2. Simulación del Fenómeno Térmico

Las funciones implementadas para la simulación del problema de calentamiento por corrientes de
Eddy son ThermalFEM 2D.m, ThermalFEMConv 2D.m, ThermalFEMN0 2D.m para el caso de dos di-
mensiones y ThermalFEM 3D.m, ThermalFEMConv 3D.m, ThermalFEMN0 3D.m para tres dimensiones.
La primera función permite tratar el problema con condición de Dirichlet, la segunda con condición
convectiva y la tercera con condición de aislamiento térmico. La variable de salida en la ejecución
de las funciones es la distribución de temperatura en el cuerpo. Aśı mismo se muestran gráficamen-
te cuales son las tendencias de los datos. Los detalles de estos códigos pueden encontrarse en los
apéndices C, D, E, G, H e I respectivamente.

8En el apéndice A se describen los principales aspectos en el manejo de los códigos



Caṕıtulo 7

Resultados

En este caṕıtulo se presentan los resultados obtenidos de las simulaciones realizadas teniendo en
cuenta los desarrollos y planteamientos hechos en los caṕıtulos precedentes. Éstas fueron implemen-
tadas en la herramienta de simulación Matlab. Se consideran dos materiales ferromagnéticos para
mostrar los datos resultantes, acero-silicio 2,5 %1, y hierro de alta pureza (purón)2. En primer lugar
se considera el caso de la sección rectangular de la barra infinita, mostrando en primera instancia
los comportamientos de los datos del problema electromagnético por medio de figuras en las que se
observan las principales caracteŕısticas del vector densidad de corriente. Seguidamente se plasman
los resultados de los problemas térmico para condiciones de tipo Dirichlet y Newmann.

La presentación de los resultados para el porblema de la barra de longitud finita es análoga al
caso de dos dimensiones, con la diferencia de que los resultados del problema térmico se dan para
condiciones convectiva y de aislamiento térmico. El tamaño de paso en el tiempo para todas las
simulaciones es de 0.002 segundos.

7.1. Sección Rectangular de Barra Infinita

En esta configuración la condición de frontera empleada para el problema electromagnético es
~H(∂Ωc) = 500 cos(100πt)k̂[A/m]. Las propiedades del material empleado son:

Propiedades Electromagnéticas: σ = 2,5 × 106[S/m], para los datos referentes a la relación
B-H ver [21] y el apéndice J.

Propiedades Térmicas :ρ = 7,65 × 103[Kg/m3], λ = 31[W/m ·K], c = 434[J/Kg ·K], Tm =
298,15[K].

En la gráfica 7.1 se presenta el dominio estudiado con una triangulación asignada de 1328 triángulos
y 707 nodos. Este enmallado es generado con el pdetool de Matlab. No existen perturbaciones
de triangulación en la frontera3. Las figuras 7.2 hasta la 7.3, muestran el comportamiento de las
corrientes, tanto en magnitud (izquierda), como en forma de campo vectorial (derecha) en diferentes

1Denominado Trafoperm [21]
2Denominado Vacofer [21]
3Es decir los nodos exteriores están ubicados exactamente en ∂Ωc
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Figura 7.1: Enmallado para dominio 2D rectangular. Dimensiones en metros [m].

tiempos. Y en las figuras 7.4 hasta 7.6 se aprecia el comportamiento de las componentes del vector
densidad de corriente en el material en nodos espećıficos. El propósito de presentar los resultados en
cuanto a la parte electromagnética, es verificar los datos electromagnéticos, para su posterior empleo
en el análisis del fenómeno térmico. Por medio de ésto es posible realizar un estudio y mantener un
control más riguroso y minucioso de los cálculos.

La magnitud del vector densidad de corriente es pronunciada hacia las fronteras de la sección, y
las direcciones del campo vectorial que define las corrientes, son arremolinadas. El comportamiento
de las componentes de ~J respecto al tiempo evidencia caracteŕısticas oscilatorias consecuente con
las funciones empleadas para definir las condiciones de frontera.

7.1.1. Significado F́ısico de los Resultados y Contrastación con Otros Traba-
jos:Problema Electromagnético

En las figuras 7.2 hasta 7.3 se aprecian las caracteŕısticas del vector densidad de corriente en el
material. Un análisis cualitativo del fenómeno permite concluir que este comportamiento en cuanto
a las tendencias de la magnitud observada es el esperado, como consecuencia del efecto piel. Esto
es coincidente con los resultados obtenidos por Sawicki en [60] en la simulación de campos electro-
magnéticos y corrientes de Eddy en implantes ferromagnéticos rectangulares y con las simulaciones
realizadas por Botauscio en [10] y Manzin en [11] para secciones rectangulares de cuerpos ferro-
magnéticos.

Las direcciones de la corrientes en los diferentes tiempos permiten asegurar que hay arremo-
linamientos de corrientes, hecho totalmente coherente con la naturaleza del fenómeno estudiado4,
quedando claro que hay una tendencia en los datos que obedce a las condicones f́ısicas del probelma;
mostrándose consistencia con los modelos empleados y coherencia con el trabajo de Zhang, Misaki y
Kameari en [13][42][18] respectivamente, en donde se simulan las corrientes de Eddy en un material
conductor con permeabilidad constante.

En las figuras 7.4 hasta 7.6 se aprecia la descripción de las componentes de las corrientes en el

4El término de corrientes de Eddy se ha empleado en lengua inlgesa respetando una nomenclatura ampliamente
usada, sin embargo esto traduce literalmente: corrientes de remolino
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Figura 7.2: Magnitud y direcciones del vector densidad de corriente en la muestra 1000 (2 segundos).
Unidades de J en [A/m2]

Figura 7.3: Magnitud y direcciones del vector densidad de corriente en la muestra 1005 (2.01 segun-
dos). Unidades de J en [A/m2]
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Figura 7.4: Componentes del vector densidad de corriente en el nodo 43 de coordenadas (0.3775e-3,
0.3854e-3)[m]. Unidades de Jxy en [A/m2], y eje de abscisas en muestras

Figura 7.5: Componentes del vector densidad de corriente en el nodo 156 de coordenadas (0.0604,
0.0001)[m]. Unidades de Jxy en [A/m2], y eje de abscisas en muestras
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Figura 7.6: Componentes del vector densidad de corriente en el nodo 112 de coordenadas (0.0803,
-0.0051)[m]. Unidades de Jxy en [A/m2], y eje de abscisas en muestras

tiempo. Se verifica por medio de éstas el comportamiento oscilatorio, consecuencia de la condición
de frontera empleada. El efecto piel es confirmado observando que las componentes de la corriente
en el interior del material son de menor amplitud que en zonas más externas, y se obtienen formas
periódicas con 110m5 muestras de periodo. Es natural la existencia de armónicos consecuencia de
la no linealidad y de la histéresis.

7.1.2. Resultados problema Térmico con condición de temperatura constante
en la frontera

En las figuras 7.7 hasta 7.10 se aprecian los resultados del problema térmico con condiciones tipo
Dirichlet. Se consideran varios tiempos para describir la evolución del comportamiento térmico del
cuerpo en calentamiento, empleando figuras con mapas de color que hacen alusión al incremento
de temperatura, aśı como representaciones en 3D de los resultados sobre el enmallado empleado. A
medida que transcurre el tiempo de simulación se evidencia una concentración de temperatura hacia
la zona céntrica de la geometŕıa, en donde funcionalmente se aprecia la formación de un máximo
absoluto dentro del dominio.

7.1.3. Resultados problema Térmico con condición de aislamiento térmico

En las figuras 7.11 hasta 7.14, se decribe el calentamiento con condición homogénea tipo Newmann.
Se muestran los datos obtenidos en el tiempo, representando con mapas de color y funciones 3D
los valores de temperatura. Se observa en la evolución de los datos de simulación un incremento
de temperatura hacia la frontera del cuerpo, registrándose los mayores valores en las esquinas. En
la zona central se observan los valores mı́nimos con una clara tendencia hacia un mı́nimo absoluto
dentro del dominio.

5m es un entero positivo
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Figura 7.7: Distribución de temperatura en la muestra 5000 (10 segundos), para el problema con
condición de frontera tipo Dirichlet. Unidades de temperatura en [K]

Figura 7.8: Distribución de temperatura en la muestra 20000 (40 segundos), para el problema con
condición de frontera tipo Dirichlet. Unidades de temperatura en [K]
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Figura 7.9: Distribución de temperatura en la muestra 40000 (80 segundos), para el problema con
condición de frontera tipo Dirichlet. Unidades de temperatura en [K]

Figura 7.10: Distribución de temperatura en la muestra 73730 (147.46 segundos), para el problema
con condición de frontera tipo Dirichlet. Unidades de temperatura en [K]
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Figura 7.11: Distribución de temperatura en la muestra 10000 (20 segundos) del problema con
condición de aislamiento térmico. Unidades de temperatura en [K]

Figura 7.12: Distribución de temperatura en la muestra 20000 (40 segundos) del problema con
condición de aislamiento térmico. Unidades de temperatura en [K]
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Figura 7.13: Distribución de temperatura en la muestra 40000 (80 segundos) del problema con
condición de aislamiento térmico. Unidades de temperatura en [K]

Figura 7.14: Distribución de temperatura en la muestra 70000 (140 segundos) del problema con
condición de aislamiento térmico. Unidades de temperatura en [K]
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Figura 7.15: Gráfica de las Temperaturas máxima (rojo), promedio (azul) y mı́nima (verde) del
calentamiento en la sección rectangular ferromagnética. Eje de abscisas en muestras.

7.1.4. Significado F́ısico de los Resultados y Contrastación con Otros Traba-
jo:Problema Térmico

Los resultados del problema térmico para las distintas condiciones de frontera que se aprecian
en las figuras 7.7 hasta 7.14, permiten describir la evolución en el tiempo de la temperatura. Las
soluciones obtenidas para este problema están dentro del tipo de curvas t́ıpicas de solución para
la ecuación de difusión del calor [46][47], es decir los resultados son consistentes con los modelos
que describen el problema. Por otra parte en la gráfica 7.15 se puede observar el comportamiento
de las temperaturas máxima, promedio y mı́nima obtenidas a lo largo del proceso de simulación
para condición de frontera de Newmann. Este resultado es coherente, consistente y semejante al
obtenido por Ciric en [12] para un material ferromagnético teniendo en cuenta la dependencia de la
permeabilidad respecto de la temperatura6.

6En este trabajo esta consideración está impĺıcita al considerar los datos experimentales del material
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Figura 7.16: Enmallado para dominio 3D. Dimensiones en metros [m].

7.2. Barra Finita de Sección Rectangular

En esta configuración la condición de frontera empleada para el problema electromagnético es
~H = 500 cos(100πt)k̂[A/m] en las tapas laterales de la barra, y ~B = µ0500 cos(100πt)k̂ [T] en las
tapas superior e inferior de la misma. Las propiedades del material empleado son:

Propiedades Electromagnéticas: σ = 1× 107[S/m], para los datos referentes a la relación B-H
ver [21] y el apéndice K.

Propiedades Térmicas :ρ = 7,87 × 103[Kg/m3], λ = 72[W/m ·K], c = 447[J/Kg ·K], Tm =
298,15[K], h = 1[W/m2K].

En la figura 7.16 se presenta la discretización de la barra en 1700 tetrahedros y 440 nodos. Las figuras
7.17 y 7.18 permiten apreciar el comportamiento en magnitud del vector densidad de corriente en
diferentes muestras, se evidencia que los máximos valores se concentran hacia el exterior, evadiendo
las aristas paralelas al eje z. En las figuras 7.19 hasta 7.21 se describe el comportamiento de las
componentes de éste vector en diferentes puntos de la barra, en términos de las muestras.

7.2.1. Significado F́ısico de los Resultados y Contrastación con otros Traba-
jos:Problema Electromagnético

Como se aprecia en las figuras 7.17 y 7.18, se evidencia la tendecia en la magnitud de la corriente a
ser pronunciada hacia el exterior de la barra, lo cual es esperado como consecuencia del efecto piel.
Se observa que las corrientes están nuevamente arremolinadas, por ello la magnitud de ~J es reducida
incluso en las tapas superior e inferior de la barra hacia la zona céntrica. Con las figuras 7.19 hasta
7.21 se pueden confirmar estos comportamientos, y se destaca la existencia de una componente en
la dirección z que es diferente de cero en pequeños intervalos de muestras; además se comprueba
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Figura 7.17: Magnitud del vector densidad de corriente en las muestras 3 y 8 (0.006 y 0.016 segun-
dos). Unidades de J en [A/m2]. Máximo de corriente en la muestra 3: 1.5279e3 [A/m2]. Máximo de
corriente en la muestra 8: 1.2452e3 [A/m2]

Figura 7.18: Magnitud del vector densidad de corriente en las muestras 1000 y 1005 (2 y 2.016
segundos). Unidades de J en [A/m2]. Máximo de corriente en la muestra 1000: 8.2655e3 [A/m2].
Máximo de corriente en la muestra 1005: 9.1165e3 [A/m2]
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Figura 7.19: Componentes del vector densidad de corriente en el nodo 100 de componentes (-0.3312,
0.1683, -0.6424)[m]. Unidades de Jxyz en [A/m2] y eje de abscisas en muestras

Figura 7.20: Componentes del vector densidad de corriente en el nodo 100 de componentes (-0.1647,
0.0681, -0.6358)[m]. Unidades de Jxyz en [A/m2] y eje de abscisas en muestras

Figura 7.21: Componentes del vector densidad de corriente en el nodo 140 de componentes (0.5,
0.15, -0.4591)[m]. Unidades de Jxyz en [A/m2] y eje de abscisas en muestras
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Figura 7.22: Distribución de temperatura en la muestra 800 (1.6 segundos) para el problema de
condición convectiva. Unidades de Temperatura en [K]. Máximo y mı́nimo de temperatura: 500.7629
[K] y 298.5794 [K]

la naturaleza oscilatoria de las corrientes, con una periodicidad cada 110m7. Estos resultados estan
totalmente en acuerdo y semejanza con los obtenidos por Kameari, Tsuboi, Misaki y Enokizono en
[18][41][42][19] respectivamente, en donde se hallan datos con las mismas tendencias en materiales
de permeabilidad constante.

7.2.2. Resultados del problema térmico con condición convectiva

En las figuras 7.22 hasta 7.25 se aprecia la distribución de temperatura obtenida para el problema
de condicón convectiva a manera de un mapa de color sobre la geometŕıa, junto a otro realizado
sobre las aristas de los tetrahedros de tal manera que se puede apreciar el comportamiento de la
temperatura en el interior del metal. Los valores más altos de temperatura se dan en los exteriores de
la barra, mientras que en el interior se conforma un mı́nimo absoluto, considerando la temperatura
como una función de tres variables.

7.2.3. Resultados del problema térmico con condición de aislamiento térmico

En las figuras 7.26 hasta 7.29 se aprecia el comportamiento de la temperatura para el problema
térmico con condición de aislamiento. Igualmente se hace uso de una visualización por medio de
mapas de color, con los que se muestra tanto el exterior como las tendencias en el interior de la
barra. Los mayores valores de temperatura están hacia los exteriores de la ésta, de manera que hacia
el interior se conforma un mı́nimo absoluto, considerando la temperatura como una función de tres
variables.

7m es un entero positivo
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Figura 7.23: Distribución de temperatura en la muestra 2000 (4 segundos) para el problema de
condición convectiva. Unidades de Temperatura en [K]. Máximo y mı́nimo de temperatura: 503.9126
[K] y 299.3663 [K]

Figura 7.24: Distribución de temperatura en la muestra 5000 (10 segundos) para el problema de
condición convectiva. Unidades de Temperatura en [K]. Máximo y mı́nimo de temperatura: 509.6181
[K] y 299.3854 [K]
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Figura 7.25: Distribución de temperatura en la muestra 10000 (20 segundos) para el problema de
condición convectiva. Unidades de Temperatura en [K]. Máximo y mı́nimo de temperatura: 513.3403
[K] y 299.6148 [K]

Figura 7.26: Distribución de temperatura en la muestra 800 (1.6 segundos) para el problema con
condición de aislamiento térmico. Unidades de Temperatura en [K]. Máximo y mı́nimo de tempe-
ratura: 501.2447 [K] y 300.2321 [K]



7.2. BARRA FINITA DE SECCIÓN RECTANGULAR 79

Figura 7.27: Distribución de temperatura en la muestra 2000 (4 segundos) para el problema con con-
dición de aislamiento térmico. Unidades de Temperatura en [K]. Máximo y mı́nimo de temperatura:
505.2017 [K] y 300.4948 [K]

Figura 7.28: Distribución de temperatura en la muestra 5000 (10 segundos) para el problema con
condición de aislamiento térmico. Unidades de Temperatura en [K]. Máximo y mı́nimo de tempe-
ratura: 513.2868 [K] y 300,5610 [K]
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Figura 7.29: Distribución de temperatura en la muestra 10000 (20 segundos) para el problema
con condición de aislamiento térmico. Unidades de Temperatura en [K]. Máximo y mı́nimo de
temperatura: 521.7331 [K] y 300.6225 [K]

7.2.4. Significado F́ısico de los Resultados y Contrastación con otros Trabajos:
Problema Térmico

En las figuras 7.22 hasta 7.29 se aprecia la evolución del calentamiento en una barra ferromagnética,
con una tendencia semejante al problema bidimensional en el caso convectivo y de aislamiento
térmico; se muestran valores elevados hacia el exterior, y las tendencias hacia un mı́nimo se dan en
la zona interior de la barra, de manera que estas soluciones son acordes con el tipo de soluciones
t́ıpicas para la ecuación de calor en este tipo de geometŕıas con esas condiciones [46][47], por lo cual
hay consistencia con los modelos base. Estos resultados son semejantes y coherentes a los presentados
en [61] , donde se calientan, por medio de dispositivos de inducción, materiales ferromagnéticos de
diferentes geometŕıas. Por otra parte, la tendencia mostrada por la temperatura es semejante a la
que se evidencia en [62][63], en donde se realiza una simulación de calentamiento por inducción en
geometŕıas ciĺındricas.

7.3. Conclusiones

Como un aspecto esencial en una gran cantidad de sistemas, la descripción de la temperatura en
el calentamiento por corrientes de Eddy representa actualmente tanto una necesidad, como una
ventaja competitiva en términos de diseño e implementación en diversas aplicaciones. Teniendo en
cuenta lo anterior, en este trabajó se logró determinar la distribución de temperatura en cuerpos
ferromagnéticos de dos y tres dimensiones calentados por estas corrientes, cumpliéndose los objetivos
propuestos y obteniéndose resultados confiables en sus significados f́ısico y anaĺıtico, y coherentes
con los de otros trabajos realizados. En este aspecto se realiza una contribución a la investigación en
la simulación de éstos fenómenos por medio de un estudio detallado y riguroso de las corrientes de
Eddy y sus efectos, aśı como del análisis de elementos finitos aplicado a lo solución de planteamientos
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electrotérmicos. Los beneficios de emplear esta técnica son representativos, teniendo en cuenta que
los materiales abordados son ferromagnéticos y los esquemas diseñados para manejar este tipo de
caracteŕıticas, es escaso y están referidos en su mayoŕıa a éste método.

Considerando los anteriores argumentos, debe resaltarse que los códigos resultantes del proceso de
investigación, permiten realizar simulaciones del calentamiento por corrientes de Eddy en cualquier
tipo de hierro, siempre y cuando se especifiquen los datos experimentales del material. De esta
manera se logran rebasar los alcances planteados en la propuesta de éste trabajo, en donde se
planteaban códigos diseñados para cuatro tipos de hierro.

7.4. Observaciones y Recomendaciones para Trabajos Futuros

Aunque se plantearan estrategias en las que se consideraban totalmente desacoplados los problemas
espacial y temporal, en la demostración de la sección 5.4 se encontró que la constante que da la
medida de la estabilidad en cuanto discretización en el tiempo, depende directamente de la norma
de las matrices principales de geometŕıa que se obtienen para la solución del problema espacial por
elementos finitos.

Los tiempos de ejecución de los códigos en donde se implementan los algoritmos de solución, juegan
un papel secundario en la obtención de los resultados. Sin embargo pueden significar una ventaja
para el investigador dedicado al análisis de éstos fenómenos. A partir de esto se recomienda la
realización de un proyecto de grado dedicado exclusivamente al estudio y obtención de técnicas
para el mejoramiento en eficiencia de la ejecución de códigos de este tipo, y aśı reducir tiempos en
la obtención de los datos.

La escasez de la literatura destinada al análisis de corrientes de Eddy en metales ferromagnéticos,
y más aún al calentamiento por corrientes de Eddy en estos materiales, representó un gran reto en
el proceso de investigación. Aśı mismo, la falta de información detallada respecto al planteamiento,
implementación y cómputo de las simulaciones en estos trabajos, se tradujo en una cantidad per-
manente de obstáculos en la realización y ejecución de este proyecto. Por esto, aspectos sencillos
pero esenciales, dilataron los tiempos de ejecución en cuanto a los pormenores de implementación.

Los resultados obtenidos son contrastados en la literatura con otras técnicas recientes, conocidas
como meshless, las cuales aún se encuentran en estudio y desarrollo. Éstas consisten básicamente en
el empleo de nodos asociados al dominio de análisis, de forma tal que a cada uno de ellos se asigna
una función de interpolación, pero no existe ninguna relación geométrica entre nodos por medio de
alguna entidad, y aśı mismo el comportamiento de las funciones es independiente entre śı.

Las geometŕıas abordadas en este trabajo, son dominios de Lipschitz. Esto permite garantizar que
el planteamiento realizado con FEM converge a la solución, y que un enmallado más fino asegura
una mejor aproximación de la solución [3]. En este sentido se propone la realización de un proyecto
de grado abordando el estudio del calentamiento en geometŕıas que hagan parte de dispositivos
espećıficos y sean dominios de Lipschitz.

Las herramientas de visualización que posee MATLAB jugaron un papel esencial en el análisis
de los datos obtenidos a lo largo de la realización de este trabajo, sin embargo las existentes en
este software para visualización sobre enmallados no rectangulares tridimensionales, poseen serias
limitaciones. Por esto se propone la realización de un proyecto de grado destinado al desarrollo
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de herramientas para la visualización en tres dimensiones de resultados obtenidos por medio del
método de elementos finitos.

En la realización de los experiméntos numéricos, se registró un comportamiento periódico en el
término de generación de calor, correspondiente a pm muestras, con m un entero positivo y p un
valor entero dependiente de ∆t. El número m vaŕıa de acuerdo al punto que se está analizando en la
geometŕıa. Este hecho permite reducir el número de muestras necesarias para simular el problema
electromagnético, ya que se pueden generar tantas como se quieran hasta la desaparición de los
transitorios, y a partir de alĺı se realiza un desplazamiento de los valores obtenidos hasta el ĺımite
de tiempo de simulación del fenómeno térmico.

Con un estudio riguroso del calentamiento en el hierro, el material de más complejo tratamiento
entre los de uso frecuente en la ingenieŕıa electrónica, llevado a cabo en éste trabajo; se propone la
realización de un proyecto de grado en donde se analize el calentamiento por corrientes de Eddy en
configuraciones que posean además de hierro otros materiales como cobre o aluminio.

Biro en [34], encuentra experimentalmente que algunas de las formulaciones de tipo potencial
magnético vectorial, resultan inadecuadas para simular el problema de las corrientes de Eddy utili-
zando elementos finitos a frecuencias cercanas a los 0 Hz. Con ese estudio, se obtuvieron resultados
que no mostraron tener una tendencia y carećıan de significado f́ısico. En este proyecto de grado
se verificó ese comportamiento, simulando las corrientes de Eddy en un material de permeabilidad
unitaria sometido a una exitación de frecuencias menores a los 10 Hz. Los resultados obtenidos no
eran coherentes con la f́ısica del problema. Teniendo en cuenta el anterior argumento, se propone la
realización de un proyecto de grado destinado a la obtención, ya sea por experimentación o análisis,
de una estrategia para superar esta limitación. Para ello, se sugiere seguir el trabajo propuesto
por Zhang en [13], donde se simulan las corrientes de Eddy en un material de sección rectangular
con permeabilidad constante, para exitaciones de frecuencias cercanas al valor cero, empleando una
formulación de tipo potencial magnético vectorial pero haciendo uso de una técnica novedosa de
tipo meshless, con la que se obtuvieron resultados satisfactorios en cuanto a exactitud con relación
a la solución anaĺıtica del problema.



Apéndice A

Parámetros Principales en el Manejo
de los Códigos

Para la aplicación de los códigos se requiere tener en cuenta algunos aspectos referentes a los
parámetros empleados, aśı como la interelación entre éstos considerando las variables de salida. En
este apéndice se presentan algunas generalidades sobre el uso de los códigos, aśı como el significado
de las variables que se introducen para obtener la simulación.

A.1. Parámetros de Geometŕıa

La geometŕıa del problema debe describirse, para el caso 2-dimensional por medio de las matrices
p,e,t, donde p es la matriz de nodos del enmallado, t la matriz de triángulos y e la matriz de
aristas. Siendo consecuente con la implementación de los algoritmos en Matlab, este tipo de datos
puede obtenerse mediante el pdetool. Para el caso de tres dimensiones la geometŕıa se describe
únicamente mediante p,t, una matriz de nodos y tetrahedros respectivamente, las cuales pueden
generarse con el toolbox distmesh diseñado para usar en Matlab, propiedad intelectual de Per
Olof Persson y de libre uso para investigación. Si los enmallados son creados por otros medios, los
resultados deben adecuarse para presentarse como se obtienen mediante el uso de las anteriores
herramientas.

A.2. Parámetros del Problema Electromagnético

A.2.1. Parámetros de histéresis

En la sección 6.1.1 se aprecia el proceso de modelado de las curvas de histéresis en el material,
de donde se obtienen los parámetros FS, FSX, FI, FIX, fls, fli. Con FS, FI, FSX, FIX se
maneja la evolución de los campos mientras que con fls, fli se realiza el cálculo de las pérdidas.
La obtención de éstos, debe realizarse por medio del procedimiento indicado en esa sección.
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A.2.2. Otros parámetros

El tiempo máximo de simulación se define en muestras mediante el parámetro timemax. Es decir que
el tiempo real de simulación seŕıa Deltat*timemax, donde Deltat es el tamaño de paso seleccionado
para la discretización en el dominio del tiempo. Con f se representa la frecuencia de la función de
onda de exitación y H0max el valor máximo de la misma. Con Sigma se asigna la conductividad
eléctrica. Con np se indica el número de muestras que se obtiene con el Deltat seleccionado en
media longitud de onda de la señal de exitación, y en relación con este parámetro nlonda que
indica el número de intervalos con media longitud de onda de extensión que se van a tratar en
el problema. Éste último puede estimarse como timemax/(2*np). El valor seleccionado puede ser
mayor o igual a esta estimación siendo un valor entero1. Y nuFP representa el coeficiente del esquema
de introducción de la histéresis, es un número que se puede seleccionar entre los valores máximo y
mı́nimo del inverso de la permeabilidad.

A.3. Problema Térmico

Con rho, lambda, c y h se representan la densidad, la conductividad térmica, el calor espećıfi-
co y el coeficiente de convección respectivamente. T0ext=Tm2 es la temperatura inicial y externa
del cuerpo en el fenómeno, q representa los valores numéricos del término de generación de calor
resultantes del cálculo de las corrientes. Mientras timeheatmax representa el tiempo máximo de
simulación para el problema térmico.

A.4. Algunos Aspectos para Tener en Cuenta

El proceso de aplicación de los códigos se describe mediante los siguientes pasos

1. Obtener los modelos de la histéresis.

2. Especificar los parámetros restantes de simulación.

3. Emplear la función de cálculo del problema electromagnético : ElectroFEM 2D.m o bien
ElectroFEM 3D.m. La variable de salida de ésta funciones es el término de generación de
calor q, que hace parte de las variables de entrada del problema térmico.

4. Introducir las variables de simulación del problema térmico, dependiendo de cual es el tipo de
condición de frontera deseado.

1siempre y cuando el valor seleccionado cumpla estos condicionamientos se garantiza que los resultados serán los
mismos

2Una misma variable se representó de dos formas en algunos de los códigos para una mayor facilidad de implemen-
tación y seguimiento de funcionamiento.



Apéndice B

ElectroFEM 2D.m

function out q=ElectroFEM 2D(p,e,t,nuFP,Sigma,Deltat,f,H0max,timemax,np,nlonda,FS,FSX,
FI,FIX,fls,fli)
lf1=max(size(t));
nd=max(size(p));
t1=t;
t1(4,:)=[ ];
for i=1:1:lf1
nodos{i}=t1(:,i);
a=nodos{i};
for j=1:1:3
cord{j}=p(:,a(j))’;
end
cord1i=cord;
end
clear nodos cord a j i
vc1=[1;1;1];
alpha3T=0;
gammaT=0;
betaT=0;
rot AT=0;
rot BT=0;
for i=1:1:lf1
i % Indicador de ciclo
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3}];
MDkl=vpa([vc1 s2]);
MDjl=vpa([vc1 s2]);
MDjk=vpa([vc1 s2]);
Cjkl=det([vc1 s2]);clear s2
%********* FORMANDO LOS NMjkl para calcular las integrales en la integrales en la frontera
%************* NMjkld
clear y x
syms x
y=max(p(2,:)); MDkl(1,:)=[1,x,y];
Dkl=det(MDkl);
Nj=Dkl/Cjkl;clear Dkl
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MDjl(2,:)=[1,x,y];
Djl=det(MDjl);
Nk=Djl/Cjkl;clear Djl
MDjk(3,:)=[1,x,y];
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
NMjkld{i}=[Nj;Nk;Nl];clear Nj Nk Nl
clear y
%*******************
%******************* NMjklc
y=min(p(2,:)); % y=c el valor de y
MDkl(1,:)=[1,x,y];
Dkl=det(MDkl);
Nj=Dkl/Cjkl;clear Dkl
MDjl(2,:)=[1,x,y];
Djl=det(MDjl);
Nk=Djl/Cjkl;clear Djl
MDjk(3,:)=[1,x,y];
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
NMjklc{i}=[Nj;Nk;Nl];clear Nj Nk Nl
clear y x
syms y
%*******************
%******************* NMjklb
x=max(p(1,:)); % x=b el valor de x
MDkl(1,:)=[1,x,y];
Dkl=det(MDkl);
Nj=Dkl/Cjkl;clear Dkl
MDjl(2,:)=[1,x,y];
Djl=det(MDjl);
Nk=Djl/Cjkl;clear Djl
MDjk(3,:)=[1,x,y];
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
NMjklb{i}=[Nj;Nk;Nl];clear Nj Nk Nl
clear x
%********************
%******************** NMjkla
x=min(p(1,:)); % x=a el valor de x
MDkl(1,:)=[1,x,y];
Dkl=det(MDkl);
Nj=Dkl/Cjkl;clear Dkl
MDjl(2,:)=[1,x,y];
Djl=det(MDjl);
Nk=Djl/Cjkl;clear Djl
MDjk(3,:)=[1,x,y];
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
NMjkla{i}=[Nj;Nk;Nl];clear Nj Nk Nl
clear y x
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syms y x
%*********************
%********************************************
%Generación de los Nj(x,y) MDkl(1,:)=[1,x,y];
Dkl=det(MDkl);
Nj=Dkl/Cjkl;clear Dkl MDkl
MDjl(2,:)=[1,x,y];
Djl=det(MDjl);
Nk=Djl/Cjkl;clear Djl MDjl
MDjk(3,:)=[1,x,y];
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
dyNjkl=[diff(Nj,’y’), diff(Nk,’y’), diff(Nl,’y’)]; %derivadas en y de los Nj
dxNjkl=[diff(Nj,’x’), diff(Nk,’x’), diff(Nl,’x’)]; %derivadas en x de los Nj
syms Xi Eta
F=solve(Nj-Xi,Nk-Eta,’x’,’y’);
x=F.x;y=F.y;JC=abs(det(jacobian([x;y],[Xi, Eta])));clear F
clear x y;
%******************* Integrales por Cuadratura *******************
u1=sqrt(3)/3;u2=-sqrt(3)/3;
Xi1=(u1+1)*0.5;Eta1=0.25*(1-u1)*(1+sqrt(3)/3);Eta1b=0.25*(1-u1)*(1-sqrt(3)/3);
Xi2=(u2+1)*0.5;Eta2=0.25*(1-u2)*(1+sqrt(3)/3);Eta2b=0.25*(1-u2)*(1-sqrt(3)/3);
syms x y
F1=solve(Nj-Xi1,Nk-Eta1,’x’,’y’);
x=F1.x;
y=F1.y;clear F1
MDjk(3,:)=[1,x,y];clear y x
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
P11=JC*[Xi1;Eta1;Nl]*[Xi1;Eta1;Nl]’;
Q11=[JC*[Xi1; Eta1; Nl]*dyNjkl JC*[Xi1; Eta1; Nl]*dxNjkl];
S11=[JC*[Xi1; Eta1; Nl]*dyNjkl; -JC*[Xi1; Eta1; Nl]*dxNjkl];
T11=[-JC*[Xi1; Eta1; Nl]*dyNjkl JC*[Xi1; Eta1; Nl]*dxNjkl];clear Nl Eta1
syms x y
F2=solve(Nj-Xi1,Nk-Eta1b,’x’,’y’);
x=F2.x;
y=F2.y;clear F2
MDjk(3,:)=[1,x,y];clear y x
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
P11b=JC*[Xi1;Eta1b;Nl]*[Xi1;Eta1b;Nl]’;
Q11b=[JC*[Xi1; Eta1b; Nl]*dyNjkl JC*[Xi1; Eta1b; Nl]*dxNjkl];
S11b=[JC*[Xi1; Eta1b; Nl]*dyNjkl; -JC*[Xi1; Eta1b; Nl]*dxNjkl];
T11b=[-JC*[Xi1; Eta1b; Nl]*dyNjkl JC*[Xi1; Eta1b; Nl]*dxNjkl];clear Nl Xi1 Eta1b
syms x y
F3=solve(Nj-Xi2,Nk-Eta2,’x’,’y’);
x=F3.x;
y=F3.y;clear F3
MDjk(3,:)=[1,x,y];clear y x
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
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P22=JC*[Xi2;Eta2;Nl]*[Xi2;Eta2;Nl]’;
Q22=[JC*[Xi2; Eta2; Nl]*dyNjkl JC*[Xi2; Eta2; Nl]*dxNjkl];
S22=[JC*[Xi2; Eta2; Nl]*dyNjkl; -JC*[Xi2; Eta2; Nl]*dxNjkl];
T22=[-JC*[Xi2; Eta2; Nl]*dyNjkl JC*[Xi2; Eta2; Nl]*dxNjkl];clear Eta2 Nl
syms x y
F4=solve(Nj-Xi2,Nk-Eta2b,’x’,’y’);
x=F4.x;
y=F4.y;clear F4
MDjk(3,:)=[1,x,y];clear y x
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk MDjk
P22b=JC*[Xi2;Eta2b;Nl]*[Xi2;Eta2b;Nl]’;
Q22b=[JC*[Xi2; Eta2b; Nl]*dyNjkl JC*[Xi2; Eta2b; Nl]*dxNjkl];
S22b=[JC*[Xi2; Eta2b; Nl]*dyNjkl; -JC*[Xi2; Eta2b; Nl]*dxNjkl];
T22b=[-JC*[Xi2; Eta2b; Nl]*dyNjkl JC*[Xi2; Eta2b; Nl]*dxNjkl];clear Nl Xi2 Eta2b
alpha3=[dyNjkl’;-dxNjkl’]*[dyNjkl,-dxNjkl]*(Cjkl*0.5);
gamma=kron(eye(2),0.125*(1-u1)*(P11+P11b)+0.125*(1-u2)*(P22+P22b));
beta=(0.125*(1-u1)*(S11+S11b)+0.125*(1-u2)*(S22+S22b));
rot A=0.125*(1-u1)*(T11+T11b)+0.125*(1-u2)*(T22+T22b);
rot B=0.125*(1-u1)*(P11+P11b)+0.125*(1-u2)*(P22+P22b);
clear Xi Eta x y Nj Nk Nl JC dyNjkl dxNjkl P11 P22 Q11 Q22 P11b P22b Q11b Q22b S11 S22
S11b S22b
alpha3S=zeros(2*nd,2*nd);
gammaS=zeros(2*nd,2*nd);
betaS=zeros(2*nd,nd);
rot AS=zeros(nd,2*nd);
rot BS=zeros(nd,nd);
vpru=t1(:,i);
for kk=1:1:3
for ll=1:1:3
alpha3S(vpru(kk),vpru(ll))=alpha3(kk,ll);
alpha3S(vpru(kk),vpru(ll)+nd)=alpha3(kk,ll+3);
alpha3S(vpru(kk)+nd,vpru(ll))=alpha3(kk+3,ll);
alpha3S(vpru(kk)+nd,vpru(ll)+nd)=alpha3(kk+3,ll+3);
gammaS(vpru(kk),vpru(ll))=gamma(kk,ll);
gammaS(vpru(kk),vpru(ll)+nd)=gamma(kk,ll+3);
gammaS(vpru(kk)+nd,vpru(ll))=gamma(kk+3,ll);
gammaS(vpru(kk)+nd,vpru(ll)+nd)=gamma(kk+3,ll+3);
betaS(vpru(kk),vpru(ll))=beta(kk,ll);
betaS(vpru(kk)+nd,vpru(ll))=beta(kk+3,ll);
rot AS(vpru(kk),vpru(ll))=rot A(kk,ll);
rot AS(vpru(kk),vpru(ll)+nd)=rot A(kk,ll+3);
rot BS(vpru(kk),vpru(ll))=rot B(kk,ll);
end
end
clear rot B rot A beta gamma alpha3 kk ll vpru
alpha3T=alpha3S+alpha3T;clear alpha3S
gammaT=gammaS+gammaT;clear gammaS
betaT=betaS+betaT;clear betaS
rot AT=rot AS+rot AT;clear rot AS
rot BT=rot BS+rot BT;clear rot BS
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end
clear i vc1
% Encontrando los nodos que se encuentran
% en la frontera
p olof=p’;
t olof=t1’; %Adecuacion de las matrices para usar programa de olof Persson
bound edges=boundedges(p olof,t olof);
bound nodes=unique(bound edges); clear bound edges % Son los nodos que estan en la frontera
%************* MATRIZ [alphaf] *************
%*************************************
%******** Matriz [alphaf1d] **********
[iid,jjd]=find(p==max(p(2,:)));clear iid
for ll=1:1:max(size(jjd))
[iid2,jjd2]=find(t1==jjd(ll));clear iid2
bord{ll}=jjd2;clear jjd2
end
clear ll jjd
ccbord=bord{1};
for kk=2:1:max(size(bord))
ccbord=[ccbord;bordkk];
end
clear bord kk
for ww=1:1:max(size(ccbord))
[iid3,jjd3]=find(ccbord==ccbord(ww));clear jjd3
iid3=max(size(iid3));
if (iid3)<(2)
ccbord unid(ww)=ccbord(ww);
else
ccbord unid(ww)=0;
end
end
clear ww iid3
ccbord unid=setdiff(ccbord,ccbord unid);clear ccbord
for rr=1:1:max(size(ccbord unid)) ggd=t1(:,ccbord unid(rr));
ggd=intersect(ggd,bound nodes);
if p(1,ggd(1)) < p(1,ggd(2))
alphaf1dccbord unid(rr)=int(NMjkldccbord unid(rr),’x’,p(1,ggd(1)),p(1,ggd(2)));
else
alphaf1dccbord unid(rr)=int(NMjkldccbord unid(rr),’x’,p(1,ggd(2)),p(1,ggd(1)));
end
end
clear ggd rr NMjkld
%*************************************
%**** Matriz [alphaf1c] **********
[iic,jjc]=find(p==min(p(2,:)));clear iic
for ll=1:1:max(size(jjc))
[iic2,jjc2]=find(t1==jjc(ll));clear iic2
bordc{ll}=jjc2;clear jj2
end
clear ll jjc
ccbordc=bordc{1};



90 APÉNDICE B. ELECTROFEM 2D.M

for kk=2:1:max(size(bordc))
ccbordc=[ccbordc;bordc{kk}];
end
clear kk bordc
for ww=1:1:max(size(ccbordc))
[iic3,jjc3]=find(ccbordc==ccbordc(ww));clear jjc3
iic3=size(iic3);
iic3=iic3(1,1);
if (iic3) < (2)
ccbord unic(ww)=ccbordc(ww);
else
ccbord unic(ww)=0;
end
end
clear ww iic3
ccbord unic=setdiff(ccbordc,ccbord unic);clear ccbordc
for rr=1:1:max(size(ccbord unic))
ggc=t1(:,ccbord unic(rr));
ggc=intersect(ggc,bound nodes);
if p(1,ggc(1)) < p(1,ggc(2))
alphaf1cccbord unic(rr)=int(NMjklc{ccbord unic(rr)},’x’,p(1,ggc(1)),p(1,ggc(2)));
else
alphaf1c{ccbord unic(rr)}=int(NMjklc{ccbord unic(rr)},’x’,p(1,ggc(2)),p(1,ggc(1)));
end
end
clear rr ggc NMjklc
%*****************************************
%******** Matriz [alphaf2b] **********
[iib,jjb]=find(p==max(p(1,:)));clear iib
for ll=1:1:max(size(jjb))
[iib2,jjb2]=find(t1==jjb(ll));clear iib2
bordb{ll}=jjb2;clear jjb2
end
clear ll jjb
ccbordb=bordb{1};
for kk=2:1:max(size(bordb))
ccbordb=[ccbordb;bordb{kk}];
end
clear kk bordb
for ww=1:1:max(size(ccbordb))
[iib3,jjb3]=find(ccbordb==ccbordb(ww));clear jjb3
iib3=size(iib3);
iib3=iib3(1,1);
if (iib3) < (2)
ccbord unib(ww)=ccbordb(ww);
else
ccbord unib(ww)=0;
end
end
clear ww iib3
ccbord unib=setdiff(ccbordb,ccbord unib);clear ccbordb
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for rr=1:1:max(size(ccbord unib))
ggb=t1(:,ccbord unib(rr));
ggb=intersect(ggb,bound nodes);
if p(2,ggb(1)) < p(2,ggb(2))
alphaf2b{ccbord unib(rr)}=int(NMjklb{ccbord unib(rr)},’y’,p(2,ggb(1)),p(2,ggb(2)));
else
alphaf2b{ccbord unib(rr)}=int(NMjklb{ccbord unib(rr)},’y’,p(2,ggb(2)),p(2,ggb(1)));
end
end
clear ggb rr NMjklb
%************************************
%******* Matriz [alphaf2a] ******
[iia,jja]=find(p==min(p(1,:)));clear iia
for ll=1:1:max(size(jja))
[iia2,jja2]=find(t1==jja(ll));clear iia2
borda{ll}=jja2;clear jja2
end
clear ll jja
ccborda=borda{1};
for kk=2:1:max(size(borda))
ccborda=[ccborda;borda{kk}];
end
clear kk borda
for ww=1:1:max(size(ccborda))
[iia3,jja3]=find(ccborda==ccborda(ww));clear jja3
iia3=size(iia3);
iia3=iia3(1,1);
if (iia3) < (2)
ccbord unia(ww)=ccborda(ww);
else
ccbord unia(ww)=0;
end
end
clear ww iia3
ccbord unia=setdiff(ccborda,ccbord unia);clear ccborda
for rr=1:1:max(size(ccbord unia))
gga=t1(:,ccbord unia(rr));
gga=intersect(gga,bound nodes);
if p(2,gga(1)) < p(2,gga(2))
alphaf2a{ccbord unia(rr)}=int(NMjkla{ccbord unia(rr)},’y’,p(2,gga(1)),p(2,gga(2)));
else
alphaf2a{ccbord unia(rr)}=int(NMjkla{ccbord unia(rr)},’y’,p(2,gga(2)),p(2,gga(1)));
end
end
clear gga NMjkla
%****** armando la [alphaf] completa
encalpha1d=setdiff((1:1:lf1),ccbord unid);clear ccbord unid
for rr=1:1:max(size(encalpha1d))
alphaf1d{encalpha1d(rr)}=[0;0;0];
end
clear rr encalpha1d
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encalpha1c=setdiff((1:1:lf1),ccbord unic);clear ccbord unic
for rr=1:1:max(size(encalpha1c))
alphaf1c{encalpha1c(rr)}=[0;0;0];
end
clear rr encalpha1c
encalpha2b=setdiff((1:1:lf1),ccbord unib);clear ccbord unib
for rr=1:1:max(size(encalpha2b))
alphaf2b{encalpha2b(rr)}=[0;0;0];
end
clear rr encalpha2b
encalpha2a=setdiff((1:1:lf1),ccbord unia);clear ccbord unia
for rr=1:1:max(size(encalpha2a))
alphaf2a{encalpha2a(rr)}=[0;0;0];
end
clear rr encalpha2a
for rr=1:1:lf1
alphaf{rr}=[alphaf1d{rr}-alphaf1c{rr};-(alphaf2b{rr}-alphaf2a{rr})];
end
clear rr alphaf1d alphaf1c alphaf2b alphaf2a jjc2 p olof t olof
for rr=1:1:lf1
alphafS{rr}=zeros(2*nd,1);
vpru=t1(:,rr);
for kk=1:1:3
alphafS{rr}(vpru(kk))=alphaf{rr}(kk);
alphafS{rr}(vpru(kk)+nd)=alphaf{rr}(kk+3);
end
end
clear alphaf kk rr vpru
alphafT=0;
for rr=1:1:lf1
alphafT=alphafS{rr}+alphafT;
end
clear rr alphafS
%****************************************************************************
%****************************************************************************
%*************** CALCULO DEL POTENCIAL MAGNETICO VECTORIAL ******************
clear SA0
for j=1:1:nd
SA0(j,1)=-p(2,j)*(1.472/2);
SA0(j+nd,1)=p(1,j)*(1.472/2);
end
clear j
XX1=(nuFP)*(Deltat)*0.5*alpha3T+Sigma*gammaT;
XX2=Sigma*gammaT-(nuFP)*(Deltat)*0.5*alpha3T;
bnd=size(bound nodes);
bnd=max(bnd);
cvert=zeros(bnd,1);
chorz=zeros(bnd,1);
for j=1:1:bnd
v=p(:,bound nodes(j));
if ((v(2,1)==min(p(2,:)) || v(2,1)==max(p(2,:)))
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&& (v(1,1)==min(p(1,:)) || v(1,1)==max(p(1,:))))
chorz(j)=bound nodes(j);
cvert(j)=bound nodes(j);
elseif (v(2,1)==min(p(2,:)) || v(2,1)==max(p(2,:)))
chorz(j)=bound nodes(j);
elseif (v(1,1)==min(p(1,:)) || v(1,1)==max(p(1,:)))
cvert(j)=bound nodes(j);
end
end
clear j
chorz=nonzeros(chorz);
chorz=chorz’+nd;
cvert=nonzeros(cvert);
cvert=cvert’;
colelm=[chorz cvert];
XX1(:,colelm)=[ ];XX1(colelm,:)=[ ];
XX2(:,colelm)=[ ];XX2(colelm,:)=[ ];
SA0(colelm,:)=[ ];
%** Para calcular el valor de A en el tiempo=1 para usar en los demas
%** calculos
SAi{1}=(1e3)*ones(2*nd,1); SAi{1}(colelm,:)=[ ];
Ri{1}=(1e3)*ones(nd,1);
errSA1=10;
while (errSA1>(1e-16))
XXF1=0.5*Deltat*betaT*Ri{1}-nuFP*0.5*Deltat*alphafT*(ppval(FS,H0max*cos(2*pi*f*(Deltat)))
+ppval(FS,H0max));
XXF1(colelm,:)=[ ];
clear SA
SA{1}=pcg(XX1,XXF1,1e-16,100)
errSA1=abs(SA{1}-SAi{1});
errSA1=sum(errSA1)
if (errSA1<(1e-16))
clear SA
SA{1}=SAi{1};
else
clear SAi
SAi{1}=SA{1};
clear j i
j=1;
for i=1:1:(2*nd)
if (ismember(i,colelm))
SAc{1}(i)=0;
else
SAc{1}(i)=SA{1}(j);
j=j+1;
end
end
rot BT2=rot BT;
rot BT2(bound nodes,:)=[ ];
vp1=(rot AT)*(SAc{1})’; vp1(bound nodes,:)=[ ];
for j=1:1:max(size(bound nodes))
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vp1=vp1-rot BT2(:,bound nodes(j))*ppval(FS,H0max*cos(2*pi*f*(Deltat)));
end
rot BT2(:,bound nodes)=[ ];
Bc{1}=pcg(rot BT2,vp1,1e-16,100);
clear i j
j=1;
for i=1:1:nd
if ismember(i,bound nodes)
B{1}(i)=ppval(FS,H0max*cos(2*pi*f*(Deltat)));
else
B{1}(i)=Bc{1}(j);
j=j+1;
end
end
for i=1:1:max(size(B{1}))
if B{1}(i)>1.48
B{1}(i)=1.48;
elseif B{1}(i)<-1.474
B{1}(i)=-1.474;
else
end
end
clear H
H{1}=ppval(FSX,B{1});
clear i j
for i=1:1:nd
if ismember(i,bound nodes)
H{1}(i)=H0max*cos(2*pi*f*(Deltat));
else
end
end
clear Ri
Ri{1}=nuFP*B{1}’-H{1}’;
end
end
clear vp1 rot BT2 i j XXF1 errSA1
for timedis=2:1:timemax
timedis
SAi{timedis}=(1e3)*ones(2*nd,1); SAitimedis(colelm,:)=[ ]; Ri{timedis}=(1e3)*ones(nd,1);
errSA=10;
while (errSA>(1e-16))
for ii=0:1:nlonda
if ( timedis>=(2*ii*np) && timedis<(2*ii+1)*np )
XXF=0.5*Deltat*betaT*(Ri{timedis}+Ri{timedis-1})-
nuFP*0.5*Deltat*(ppval(FS,H0max*cos(f*2*pi*timedis*(Deltat)))+
ppval(FS,H0max*cos(f*2*pi*(timedis-1)*(Deltat))))*alphafT;
elseif (timedis>=(2*ii+1)*np && timedis<(2*(ii+1)*np))
XXF=0.5*Deltat*betaT*(Ri{timedis}+Ri{timedis-1})-
nuFP*0.5*Deltat*(ppval(FI,H0max*cos(f*2*pi*timedis*(Deltat)))+
ppval(FI,H0max*cos(2*pi*f*(timedis-1)*(Deltat))))*alphafT;
else
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end
end
XXF(colelm,:)=[ ];
SA{timedis}=pcg(XX1,XX2*SA{timedis-1}+XXF,1e-16,100);
errSA=abs(SA{timedis}-SAi{timedis});
errSA=sum(errSA)
if (errSA <(1e-16))
SA{timedis}=SAi{timedis};
else
SAi{timedis}=SA{timedis};
clear j i
j=1;
for i=1:1:2*nd
if (ismember(i,colelm))
SAc{timedis}(i)=0;
else
SAc{timedis}(i)=SA{timedis}(j);
j=j+1;
end
end
rot BT2b=rot BT;
rot BT2b(bound nodes,:)=[ ];
vp1b=(rot AT)*(SAc{timedis})’;
vp1b(bound nodes,:)=[ ];
for j=1:1:max(size(bound nodes))
for ii=0:1:nlonda
if (timedis>=(2*ii*np) && timedis<(2*ii+1)*np)
vp1b=vp1b-rot BT2b(:,bound nodes(j))*ppval(FS,H0max*cos(f*2*timedis*pi*(Deltat)));
elseif (timedis>=(2*ii+1)*np && timedis<(2*(ii+1)*np))
vp1b=vp1b-rot BT2b(:,bound nodes(j))*ppval(FI,H0max*cos(f*2*timedis*pi*(Deltat)));
else
end
end
end
rot BT2b(:,bound nodes)=[ ];
Bc{timedis}=pcg(rot BT2b,vp1b,1e-16,100);
clear i j
j=1;
for i=1:1:nd
if ismember(i,bound nodes)
for ii=0:1:nlonda
if (timedis>=(2*ii*np) && timedis<(2*ii+1)*np)
B{timedis}(i,1)=ppval(FS,H0max*cos(f*2*pi*timedis*(Deltat)));
elseif (timedis>=(2*ii+1)*np && timedis<(2*(ii+1)*np))
B{timedis}(i,1)=ppval(FI,H0max*cos(f*2*pi*timedis*(Deltat)));
else
end
end
else
B{timedis}(i,1)=Bc{timedis}(j);
j=j+1;
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end
end
for i=1:1:max(size(B{timedis}))
if B{timedis}(i)>1.48
Btimedis(i)=1.48; elseif B{timedis}(i)<-1.474
B{timedis}(i)=-1.474;
else
end
end
for ii=0:1:nlonda
if (timedis>=(2*ii*np) && timedis<(2*ii+1)*np)
H{timedis}=ppval(FSX,B{timedis});
elseif (timedis>=(2*ii+1)*np && timedis<(2*(ii+1)*np))
H{timedis}=ppval(FIX,B{timedis});
else
end
end
clear i j
for i=1:1:nd
if ismember(i,bound nodes)
H{timedis}(i)=H0max*cos(2*pi*f*(Deltat)*timedis);
else
end
end
Ri{timedis}=nuFP*B{timedis}-H{timedis};
end
end
end
clear errSA rot AT rot BT rot BT2b Ri ii j i SAc Bc SAi XX1 XX2 XXF vc1 vp1b
%********************************************************
%** Obteniendo los potenciales magneticos vectoriales****
%********************************************************
clear A
for rr=1:1:timedis
clear j i
j=1;
for i=1:1:(2*nd)
if (ismember(i,colelm))
A{rr}(i)=0;
else
A{rr}(i)=SA{rr}(j);
j=j+1;
end
end
end
clear i j rr SA
%**************CALCULANDO LAS CORRIENTES************
%***************************************************
%***************************************************
clear J
J{1}=-(Sigma/Deltat)*A{1};
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for rr=2:1:timedis
J{rr}=-(Sigma/Deltat)*(A{rr}-A{rr-1});
end
clear A
%***************************************************
%** graficando la magnitud de las corrientes en pdeplot
%***************************************************
for i=1:1:nd
magJ(i)=sqrt(J{rr}(i)*J{rr}(i)+J{rr}(i+nd)*J{rr}(i+nd));
end
magJ=magJ’;
figure, pdeplot(p,e,t,’xydata’,magJ,’colormap’,’pink’)
clear i
%***************************************************
%******* GRAFICANDO LAS DIRECCIONES DE LAS CORRIENTES
%***************************************************
for i=1:1:nd
Jg=J{rr};
mags=1;
if mags∼=0
JX(i)=(1/mags)*Jg(i);
JY(i)=(1/mags)*Jg(i+nd);
else
JX(i)=0;
JY(i)=0;
end
end
Jvecxy=[JX’ JY’];
figure,pdeplot(p,e,t,’flowdata’,Jvecxy)
clear JX JY i mags
%***************************************************
%******* Comportamiento de Jx y Jy en el nodo na ****
%***************************************************
na=43;
qqw=J{1}(na);
qqw2=J{1}(na+nd);
for i=2:1:2000
qqw=[qqw J{i}(na)];
qqw2=[qqw2 J{i}(na+nd)];
end
clear i
figure,plot(qqw);grid;ylabel(’Jx’)
figure,plot(qqw2);grid;ylabel(’Jy’)
clear qqw qqw2
clear B
%***************************************************
%***GENERANDO TERMINO DE PERDIDAS POR HYSTERESIS ***
%***************************************************
for j=1:1:nd
Hval=H{1}(j);
for timedis=1:1:300
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Hval=[Hval H{timedis}(j)];
end
Hmax(j)=max(Hval);Hmin(j)=min(Hval);
end
for j=1:1:nd
qhyst{1}(j)=abs((quad(@(hx)(fls),Hmax(j),H{1}(j)))/Deltat);
end
for timedis=2:1:timemax
timedis
for ii=0:1:nlonda
if (timedis>=(2*ii*np) && timedis<(2*ii+1)*np)
for j=1:1:nd
Fhyst1=quad(@(hx)(fls),Hmax(j),H{timedis}(j));
Fhyst2=quad(@(hx)(fls),Hmax(j),H{timedis-1}(j));
qhyst{timedis}(j)=abs(double((Fhyst1-Fhyst2)/Deltat));clear Fhyst1 Fhyst2
end
elseif (timedis>=(2*ii+1)*np && timedis<(2*(ii+1)*np))
for j=1:1:nd
Fhyst1=quad(@(hx)(fls),Hmax(j),Hmin(j))+quad(@(hx)(fli),Hmin(j),H{timedis}(j));
Fhyst1=quad(@(hx)(fls),Hmax(j),Hmin(j))+quad(@(hx)(fli),Hmin(j),H{timedis-1}(j));
qhyst{timedis}(j)=abs(double((Fhyst1-Fhyst2)/Deltat));clear Fhyst1 Fhyst2
end
else
end
end
end
clear H
%***************************************************
%*****GENERANDO EL TERMINO DE PERDIDAS OHMICAS******
%***************************************************
clear B
for i=1:1:max(size(J))
q2{i}=(1/Sigma)*J{i}.*J{i};
for j=1:1:nd
qoh{i}(j)=q2{i}(j)+q2{i}(j+nd);
end
end
clear q2 i j J
%***************************************************************
%******* Suma de perdidas ohmicas y de histéresis **************
%***************************************************************
for timedis=1:1:timemax
q{timedis}=qoh{timedis}+qhyst{timedis};
end
clear qoh qhyst
out q=q;
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ThermalFEM 2D.m

function out T=ThermalFEM 2D(p,e,t,rho,lambda,c,T0ext,Deltat,q,timeheatmax)
lf1=max(size(t));
nd=max(size(p));
t1=t;
t1(4,:)=[ ];
for i=1:1:lf1
nodos{i}=t1(:,i);
a=nodos{i};
for j=1:1:3
cord{j}=p(:,a(j))’;
end
cord1{i}=cord;
end
clear nodos cord i j a
vc1=[1;1;1];
thetaT=0;
zetaT=0;
for i=1:1:lf1
i % Indicador de ciclo
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3}];
MDkl=vpa([vc1 s2]);
MDjl=vpa([vc1 s2]);
MDjk=vpa([vc1 s2]);
Cjkl=det([vc1 s2]);
%Generación de los Nj(x,y)
syms x y
MDkl(1,:)=[1,x,y];
Dkl=det(MDkl);
Nj=Dkl/Cjkl;clear Dkl MDkl
MDjl(2,:)=[1,x,y];
Djl=det(MDjl);
Nk=Djl/Cjkl;clear Djl MDjl
MDjk(3,:)=[1,x,y];
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
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dyNjkl=[diff(Nj,’y’), diff(Nk,’y’), diff(Nl,’y’)]; dxNjkl=[diff(Nj,’x’), diff(Nk,’x’),
diff(Nl,’x’)]; syms Xi Eta % variables del plano computacional
F=solve(Nj-Xi,Nk-Eta,’x’,’y’);
x=F.x;
y=F.y;clear F
JC=abs(det(jacobian([x;y],[Xi, Eta])));
clear x y
%*************** Integrales por Cuadratura ***************** u1=sqrt(3)/3;u2=-sqrt(3)/3;
Xi1=(u1+1)*0.5;Eta1=0.25*(1-u1)*(1+sqrt(3)/3);Eta1b=0.25*(1-u1)*(1-sqrt(3)/3);
Xi2=(u2+1)*0.5;Eta2=0.25*(1-u2)*(1+sqrt(3)/3);Eta2b=0.25*(1-u2)*(1-sqrt(3)/3);
syms x y
F1=solve(Nj-Xi1,Nk-Eta1,’x’,’y’);
x=F1.x;
y=F1.y;clear F1
MDjk(3,:)=[1,x,y];clear y x
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
P11=JC*[Xi1;Eta1;Nl]*[Xi1;Eta1;Nl]’;
syms x y
F2=solve(Nj-Xi1,Nk-Eta1b,’x’,’y’);
x=F2.x;
y=F2.y;clear F2
MDjk(3,:)=[1,x,y];clear y x
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
P11b=JC*[Xi1;Eta1b;Nl]*[Xi1;Eta1b;Nl]’;
syms x y
F3=solve(Nj-Xi2,Nk-Eta2,’x’,’y’);
x=F3.x;
y=F3.y;clear F3
MDjk(3,:)=[1,x,y];clear y x
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
P22=JC*[Xi2;Eta2;Nl]*[Xi2;Eta2;Nl]’;
syms x y
F4=solve(Nj-Xi2,Nk-Eta2b,’x’,’y’);
x=F4.x;
y=F4.y;clear F4
MDjk(3,:)=[1,x,y];clear y x
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
P22b=JC*[Xi2;Eta2b;Nl]*[Xi2;Eta2b;Nl]’; zeta=dxNjkl’*dxNjkl*Cjkl*0.5+dyNjkl’*dyNjkl*Cjkl*0.5;
theta=0.125*(1-u1)*(P11+P11b)+0.125*(1-u2)*(P22+P22b);
clear JC x y Xi Eta dyNjkl dxNjkl Nj Nk
zetaS=zeros(nd,nd);
thetaS=zeros(nd,nd);
vpru=t1(:,i);
for kk=1:1:3
for ll=1:1:3
zetaS(vpru(kk),vpru(ll))=zeta(kk,ll);
thetaS(vpru(kk),vpru(ll))=theta(kk,ll);
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end
end
clear kk ll zeta theta vpru
thetaT=thetaS+thetaT;
zetaT=zetaS+zetaT;
clear zetaS thetaS
end
%**************************************************
%**************************************************
%*** Calculo de la temperatura en el tiempo 1******
p olof=p’;
t olof=t1’; %Adecuacion de las matrices para usar programa de olof Persson
bound edges=boundedges(p olof,t olof);
bound nodes=unique(bound edges); clear bound edges
XXhn1=rho*c*thetaT+lambda*Deltat*0.5*zetaT;
XXhn2=rho*c*thetaT-lambda*Deltat*0.5*zetaT;
XXh1=XXhn1;
XXh2=XXhn2;
XXh1(bound nodes,:)=[ ];
vph=XXh2*(T0ext*ones(nd,1))+0.5*Deltat*thetaT*(q{1}’);
vph(bound nodes,:)=[ ];
for j=1:1:max(size(bound nodes))
vph=vph-XXh1(:,bound nodes(j))*T0ext;
end
XXh1(:,bound nodes)=[ ];
Tc{1}=cgs(XXh1,vph,1e-16,100);
clear i j
j=1;
for i=1:1:nd
if ismember(i,bound nodes)
T1(i)=T0ext;
else
T{1}(i)=Tc{1}(j);
j=j+1;
end
end
T{1}=T{1}’;
clear XXh1 vph XXh2 j
for timedis=2:1:timeheatmax
timedis
vphn=XXhn2*T{timedis-1}+Deltat*0.5*thetaT*((q{timedis})’+(q{timedis-1})’);
XXhnt=XXhn1;
XXhnt(bound nodes,:)=[ ];
vphn(bound nodes,:)=[ ];
for j=1:1:max(size(bound nodes))
vphn=vphn-XXhnt(:,bound nodes(j))*T0ext;
end
XXhnt(:,bound nodes)=[ ];
Tc{timedis}=cgs(XXhnt,vphn,1e-16,100);
clear i j
j=1;
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for i=1:1:nd
if ismember(i,bound nodes)
T{timedis}(i,1)=T0ext;
else
T{timedis}(i,1)=Tc{timedis}(j);
j=j+1;
end
end
end
clear Tc j XXhnt vphn bound nodes XXhn1 XXhn2
out T=T;



Apéndice D

ThermalFEMConv 2D.m

function out Tconv=ThermalFEMConv 2D(p,e,t,rho,lambda,c,T0ext,h,Deltat,Tm,q,timeheatmax)
lf1=max(size(t));
nd=max(size(p));
t1=t;
t1(4,:)=[ ];
for i=1:1:lf1
nodos{i}=t1(:,i);
a=nodos{i};
for j=1:1:3
cord{j}=p(:,a(j))’;
end
cord1{i}=cord;
end
clear nodos cord i j a
vc1=[1;1;1]
thetaT=0;
zetaT=0;
for i=1:1:lf1
i % par ver donde va la cuenta
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3}];
MDkl=vpa([vc1 s2]);
MDjl=vpa([vc1 s2]);
MDjk=vpa([vc1 s2]);
Cjkl=det([vc1 s2]);
%******** FORMANDO LOS NMjkl para calcular las integrales en la integrales en la frontera
%****************** NMjkld
clear y x
syms x
y=max(p(2,:)); % y=d el valor de y
MDkl(1,:)=[1,x,y];
Dkl=det(MDkl);
Nj=Dkl/Cjkl;clear Dkl
MDjl(2,:)=[1,x,y];
Djl=det(MDjl);
Nk=Djl/Cjkl;clear Djl
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MDjk(3,:)=[1,x,y];
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
NMjkld{i}=[Nj;Nk;Nl];clear Nj Nk Nl
clear y
%**************
%************** NMjklc
y=min(p(2,:)); % y=c el valor de y
MDkl(1,:)=[1,x,y];
Dkl=det(MDkl);
Nj=Dkl/Cjkl;clear Dkl
MDjl(2,:)=[1,x,y];
Djl=det(MDjl);
Nk=Djl/Cjkl;clear Djl
MDjk(3,:)=[1,x,y];
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
NMjklc{i}=[Nj;Nk;Nl];clear Nj Nk Nl
clear y x
syms y
%*********************
%********************* NMjklb
x=max(p(1,:)); % x=b el valor de x
MDkl(1,:)=[1,x,y];
Dkl=det(MDkl);
Nj=Dkl/Cjkl;clear Dkl
MDjl(2,:)=[1,x,y];
Djl=det(MDjl);
Nk=Djl/Cjkl;clear Djl
MDjk(3,:)=[1,x,y];
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
NMjklb{i}=[Nj;Nk;Nl];clear Nj Nk Nl
clear x
%**********************
%********************** NMjkla
x=min(p(1,:)); % x=a el valor de x
MDkl(1,:)=[1,x,y];
Dkl=det(MDkl);
Nj=Dkl/Cjkl;clear Dkl
MDjl(2,:)=[1,x,y];
Djl=det(MDjl);
Nk=Djl/Cjkl;clear Djl
MDjk(3,:)=[1,x,y];
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
NMjkla{i}=[Nj;Nk;Nl];clear Nj Nk Nl
clear y x
syms y x
%***********************
******************************************
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%Generación de los Nj(x,y)
syms x y
MDkl(1,:)=[41,x,y];
Dkl=det(MDkl);
Nj=Dkl/Cjkl;clear Dkl MDkl
MDjl(2,:)=[1,x,y];
Djl=det(MDjl);
Nk=Djl/Cjkl;clear Djl MDjl
MDjk(3,:)=[1,x,y];
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
dyNjkl=[diff(Nj,’y’), diff(Nk,’y’), diff(Nl,’y’)]; %derivadas en y de los Nj
dxNjkl=[diff(Nj,’x’), diff(Nk,’x’), diff(Nl,’x’)]; %derivadas en x de los Nj
syms Xi Eta % variables del plano computacional
F=solve(Nj-Xi,Nk-Eta,’x’,’y’);
x=F.x;
y=F.y;clear F
JC=abs(det(jacobian([x;y],[Xi, Eta])));
MDjk(3,:)=[1,x,y];
Djk=det(MDjk);
Nla=Djk/Cjkl;clear Djk
clear x y
%*********************** Integrales por Cuadratura ********************
u1=sqrt(3)/3;u2=-sqrt(3)/3;
Xi1=(u1+1)*0.5;Eta1=0.25*(1-u1)*(1+sqrt(3)/3);Eta1b=0.25*(1-u1)*(1-sqrt(3)/3);
Xi2=(u2+1)*0.5;Eta2=0.25*(1-u2)*(1+sqrt(3)/3);Eta2b=0.25*(1-u2)*(1-sqrt(3)/3);
syms x y
F1=solve(Nj-Xi1,Nk-Eta1,’x’,’y’);
x=F1.x;
y=F1.y;clear F1
MDjk(3,:)=[1,x,y];clear y x
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
P11=JC*[Xi1;Eta1;Nl]*[Xi1;Eta1;Nl]’;
syms x y
F2=solve(Nj-Xi1,Nk-Eta1b,’x’,’y’);
x=F2.x;
y=F2.y;clear F2
MDjk(3,:)=[1,x,y];clear y x
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
P11b=JC*[Xi1;Eta1b;Nl]*[Xi1;Eta1b;Nl]’;
syms x y
F3=solve(Nj-Xi2,Nk-Eta2,’x’,’y’);
x=F3.x;
y=F3.y;clear F3
MDjk(3,:)=[1,x,y];clear y x
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
P22=JC*[Xi2;Eta2;Nl]*[Xi2;Eta2;Nl]’;
syms x y
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F4=solve(Nj-Xi2,Nk-Eta2b,’x’,’y’);
x=F4.x;
y=F4.y;clear F4
MDjk(3,:)=[1,x,y];clear y x
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
P22b=JC*[Xi2;Eta2b;Nl]*[Xi2;Eta2b;Nl]’;
zeta=dxNjkl’*dxNjkl*Cjkl*0.5+dyNjkl’*dyNjkl*Cjkl*0.5
theta=0.125*(1-u1)*(P11+P11b)+0.125*(1-u2)*(P22+P22b)
clear JC x y Xi Eta dyNjkl dxNjkl Nj Nk
zetaS=zeros(nd,nd);
thetaS=zeros(nd,nd);
vpru=t1(:,i);
for kk=1:1:3
for ll=1:1:3
zetaS(vpru(kk),vpru(ll))=zeta(kk,ll);
thetaS(vpru(kk),vpru(ll))=theta(kk,ll);
end
end
clear kk ll zeta theta vpru
thetaT=thetaS+thetaT;
zetaT=zetaS+zetaT;
clear zetaS thetaS
end
p olof=p’;
t olof=t1’; %Adecuacion de las matrices para usar programa de olof Persson
bound edges=boundedges(p olof,t olof);
bound nodes=unique(bound edges); clear bound edges % Son los nodos que estan en la frontera
%********** MATRIZ [alphaf] ***********************
%********************************************
%********* Matriz [alphaf1d] ************
[iid,jjd]=find(p==max(p(2,:)));clear iid
for ll=1:1:max(size(jjd))
[iid2,jjd2]=find(t1==jjd(ll));clear iid2
bord{ll}=jjd2;clear jjd2
end
clear ll jjd
ccbord=bord{1};
for kk=2:1:max(size(bord))
ccbord=[ccbord;bord{kk}];
end
clear bord kk
for ww=1:1:max(size(ccbord))
[iid3,jjd3]=find(ccbord==ccbord(ww));clear jjd3
iid3=max(size(iid3));
if (iid3)<(2)
ccbord unid(ww)=ccbord(ww);
else
ccbord unid(ww)=0;
end
end
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clear ww iid3
ccbord unid=setdiff(ccbord,ccbord unid);clear ccbord
for rr=1:1:max(size(ccbord unid))
ggd=t1(:,ccbord unid(rr));
ggd=intersect(ggd,bound nodes);
if p(1,ggd(1)) < p(1,ggd(2))
alphafdc d1{ccbord unid(rr)}=int(NMjkld{ccbord unid(rr)},’x’,p(1,ggd(1)),p(1,ggd(2)));
alphafdc d2{ccbord unid(rr)}=int(NMjkld{ccbord unid(rr)}*(NMjkld{ccbord unid(rr)}’)
,’x’,p(1,ggd(1)),p(1,ggd(2)));
else
alphafdc d1{ccbord unid(rr)}=int(NMjkld{ccbord unid(rr)},’x’,p(1,ggd(2)),p(1,ggd(1)));
alphafdc d2{ccbord unid(rr)}=int(NMjkld{ccbord unid(rr)}*(NMjkldccbord unid(rr)’)
,’x’,p(1,ggd(2)),p(1,ggd(1)));
end
end
clear ggd rr NMjkld
%*****************************************
%******** Matriz [alphaf1c] **********
[iic,jjc]=find(p==min(p(2,:)));clear iic
for ll=1:1:max(size(jjc))
[iic2,jjc2]=find(t1==jjc(ll));clear iic2
bordc{ll}=jjc2;clear jj2
end
clear ll jjc
ccbordc=bordc{1};
for kk=2:1:max(size(bordc))
ccbordc=[ccbordc;bordc{kk}];
end
clear kk bordc
for ww=1:1:max(size(ccbordc))
[iic3,jjc3]=find(ccbordc==ccbordc(ww));clear jjc3
iic3=size(iic3);
iic3=iic3(1,1);
if (iic3) < (2)
ccbord unic(ww)=ccbordc(ww);
else
ccbord unic(ww)=0;
end
end
clear ww iic3
ccbord unic=setdiff(ccbordc,ccbord unic);clear ccbordc
for rr=1:1:max(size(ccbord unic))
ggc=t1(:,ccbord unic(rr));
ggc=intersect(ggc,bound nodes);
if p(1,ggc(1)) < p(1,ggc(2))
alphafdc c1{ccbord unic(rr)}=int(NMjklc{ccbord unic(rr)},’x’,p(1,ggd(1)),p(1,ggd(2)));
alphafdc c2{ccbord unic(rr)}=int(NMjklc{ccbord unic(rr)}*(NMjklc{ccbord unic(rr)}’)
,’x’,p(1,ggd(1)),p(1,ggd(2)));
else
alphafdc c1{ccbord unic(rr)}=int(NMjklc{ccbord unic(rr)},’x’,p(1,ggd(2)),p(1,ggd(1)));
alphafdc c2{ccbord unic(rr)}=int(NMjklc{ccbord unic(rr)}*(NMjklc{ccbord unic(rr)}’)
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,’x’,p(1,ggd(2)),p(1,ggd(1)));
end
end
clear rr ggc NMjklc
%**************************************
%******** Matriz [alphaf2b] ***********
[iib,jjb]=find(p==max(p(1,:)));clear iib
for ll=1:1:max(size(jjb))
[iib2,jjb2]=find(t1==jjb(ll));clear iib2
bordb{ll}=jjb2;clear jjb2
end
clear ll jjb
ccbordb=bordb{1};
for kk=2:1:max(size(bordb))
ccbordb=[ccbordb;bordb{kk}];
end
clear kk bordb
for ww=1:1:max(size(ccbordb))
[iib3,jjb3]=find(ccbordb==ccbordb(ww));clear jjb3
iib3=size(iib3);
iib3=iib3(1,1);
if (iib3) < (2)
ccbord unib(ww)=ccbordb(ww);
else
ccbord unib(ww)=0;
end
end
clear ww iib3
ccbord unib=setdiff(ccbordb,ccbord unib);clear ccbordb
for rr=1:1:max(size(ccbord unib))
ggb=t1(:,ccbord unib(rr));
ggb=intersect(ggb,bound nodes);
if p(2,ggb(1)) < p(2,ggb(2))
alphafba b1{ccbord unib(rr)}=int(NMjklb{ccbord unib(rr)},’y’,p(2,ggb(1)),p(2,ggb(2)));
alphafba b2{ccbord unib(rr)}=int(NMjklb{ccbord unib(rr)}*(NMjklb{ccbord unib(rr)}’)
,’y’,p(2,ggb(1)),p(2,ggb(2)));
else
alphafba b1{ccbord unib(rr)}=int(NMjklb{ccbord unib(rr)},’y’,p(2,ggb(2)),p(2,ggb(1)));
alphafba b2{ccbord unib(rr)}=int(NMjklb{ccbord unib(rr)}*(NMjklb{ccbord unib(rr)}’)
,’y’,p(2,ggb(2)),p(2,ggb(1)));
end
end
clear ggb rr NMjklb
%**************************************
%******** Matriz [alphaf2a] ***********
[iia,jja]=find(p==min(p(1,:)));clear iia
for ll=1:1:max(size(jja))
[iia2,jja2]=find(t1==jja(ll));clear iia2
borda{ll}=jja2;clear jja2
end
clear ll jja



109

ccborda=borda{1};
for kk=2:1:max(size(borda))
ccborda=[ccborda;borda{kk}];
end
clear kk borda
for ww=1:1:max(size(ccborda))
[iia3,jja3]=find(ccborda==ccborda(ww));clear jja3
iia3=size(iia3);
iia3=iia3(1,1);
if (iia3) < (2)
ccbord unia(ww)=ccborda(ww);
else
ccbord unia(ww)=0;
end
end
clear ww iia3
ccbord unia=setdiff(ccborda,ccbord unia);clear ccborda
for rr=1:1:max(size(ccbord unia))
gga=t1(:,ccbord unia(rr));
gga=intersect(gga,bound nodes);
if p(2,gga(1)) < p(2,gga(2))
alphafba a1{ccbord unia(rr)}=int(NMjkla{ccbord unia(rr)},’y’,p(2,ggb(1)),p(2,ggb(2)));
alphafba a2{ccbord unia(rr)}=int(NMjkla{ccbord unia(rr)}*(NMjkla{ccbord unia(rr)}’)
,’y’,p(2,ggb(1)),p(2,ggb(2)));
else
alphafba a1{ccbord unia(rr)}=int(NMjkla{ccbord unia(rr)},’y’,p(2,ggb(2)),p(2,ggb(1)));
alphafba a2{ccbord unia(rr)}=int(NMjkla{ccbord unia(rr)}*(NMjkla{ccbord unia(rr)}’)
,’y’,p(2,ggb(2)),p(2,ggb(1)));
end
end
clear gga NMjkla
%******* armando la [alphaf] completa
encalpha1d=setdiff((1:1:lf1),ccbord unid);clear ccbord unid
for rr=1:1:max(size(encalpha1d))
alphafdc d1=[0;0;0];
alphafdc d2=zeros(3,3);
end
clear rr encalpha1d
encalpha1c=setdiff((1:1:lf1),ccbord unic);clear ccbord unic
for rr=1:1:max(size(encalpha1c))
alphafdc c1{encalpha1c(rr)}=[0;0;0];
alphafdc c2{encalpha1c(rr)}=zeros(3,3);
end
clear rr encalpha1c
encalpha2b=setdiff((1:1:lf1),ccbord unib);clear ccbord unib
for rr=1:1:max(size(encalpha2b))
alphafba b1{encalpha2b(rr)}=[0;0;0];
alphafba b2{encalpha2b(rr)}=zeros(3,3);
end
clear rr encalpha2b
encalpha2a=setdiff((1:1:lf1),ccbord unia);clear ccbord unia
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for rr=1:1:max(size(encalpha2a))
alphafba a1{encalpha2a(rr)}=[0;0;0];
alphafba a2{encalpha2a(rr)}=zeros(3,3);
end
clear rr encalpha2a
for rr=1:1:lf1
alphaf1{rr}=alphafba b1{rr}-alphafba a1{rr}+alphafdc d1{rr}-alphafdc c1{rr};
alphaf2{rr}=alphafba a2{rr}-alphafba b2{rr}+alphadc c2{rr}-alphadc d2{rr};
end
clear rr alphafba b1 alphafba a1 alphafdc d1 alphafdc c1 alphafba a2 alphafba b2 alphadc c2
alphadc d2 jjc2
p olof t olof
for rr=1:1:lf1
alphaf1S{rr}=zeros(nd,1);
alphaf2S{rr}=zeros(nd,nd);
vpru=t1(:,rr);
for kk=1:1:3
alphaf1S{rr}(vpru(kk))=alphaf1{rr}(kk);
for ll=1:1:3
alphaf2S{rr}(vpru(kk),vpru(ll))=alphaf2{rr}(kk,ll);
end
end
end
clear alphaf1 alphaf2 kk rr vpru
alphaf1T=0;
alphaf2T=0;
for rr=1:1:lf1
alphaf1T=alphaf1Srr+alphaf1T;
alphaf2T=alphaf2Srr+alphaf2T;
end
clear rr alphaf1S alphaf2S
%***************************************************
%***************************************************
%** Calculo de la temperatura en el tiempo 1********
XXhn1=rho*c*thetaT+lambda*Deltat*0.5*((h/lambda)*alphaf2T+zetaT);
XXhn2=rho*c*thetaT-lambda*Deltat*0.5*((h/lambda)*alphaf2T+zetaT);
XXh1=XXhn1;
XXh2=XXhn2;
vph=XXh2*(T0ext*ones(nd,1))-Deltat*h*Tm*alphaf1T+Deltat*0.5*thetaT*(q{1}’);
T{1}=cgs(XXh1,vph,1e-16,100);
clear XXh1 vph XXh2
for timedis=2:1:timeheatmax
timedis
vphn=XXhn2*T{timedis-1}-Deltat*h*Tm*alphaf1T+Deltat*0.5*thetaT((q{timedis})’+(q{timedis-1})’);
XXhnt=XXhn1;
T{timedis}=cgs(XXhnt,vphn,1e-16,100);
end
clear XXhnt vphn bound nodes XXhn1 XXhn2
out Tconv=T;
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ThermalFEMN0 2D.m

function out TN0=ThermalFEMN0 2D(p,e,t,rho,lambda,c,T0ext,Deltat,q,timeheatmax)
lf1=max(size(t));
nd=max(size(p));
t1=t;
t1(4,:)=[ ];
for i=1:1:lf1
nodos{i}=t1(:,i);
a=nodos{i};
for j=1:1:3
cord{j}=p(:,a(j))’;
end
cord1{i}=cord;
end
clear nodos cord i j a
vc1=[1;1;1];
thetaT=0;
zetaT=0;
for i=1:1:lf1
i % par ver donde va la cuenta
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3}];
MDkl=vpa([vc1 s2]);
MDjl=vpa([vc1 s2]);
MDjk=vpa([vc1 s2]);
Cjkl=det([vc1 s2]);
%Generación de los Nj(x,y)
syms x y
MDkl(1,:)=[1,x,y];
Dkl=det(MDkl);
Nj=Dkl/Cjkl;clear Dkl MDkl
MDjl(2,:)=[1,x,y];
Djl=det(MDjl);
Nk=Djl/Cjkl;clear Djl MDjl
MDjk(3,:)=[1,x,y];
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
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dyNjkl=[diff(Nj,’y’), diff(Nk,’y’), diff(Nl,’y’)]; %derivadas en y de los Nj
dxNjkl=[diff(Nj,’x’), diff(Nk,’x’), diff(Nl,’x’)]; %derivadas en x de los Nj
syms Xi Eta % variables del plano computacional
F=solve(Nj-Xi,Nk-Eta,’x’,’y’);
x=F.x;
y=F.y;clear F
JC=abs(det(jacobian([x;y],[Xi, Eta])));
MDjk(3,:)=[1,x,y];
Djk=det(MDjk);
Nla=Djk/Cjkl;clear Djk
clear x y
%*************** Integrales por Cuadratura ************
u1=sqrt(3)/3;u2=-sqrt(3)/3;
Xi1=(u1+1)*0.5;Eta1=0.25*(1-u1)*(1+sqrt(3)/3);Eta1b=0.25*(1-u1)*(1-sqrt(3)/3);
Xi2=(u2+1)*0.5;Eta2=0.25*(1-u2)*(1+sqrt(3)/3);Eta2b=0.25*(1-u2)*(1-sqrt(3)/3);
syms x y
F1=solve(Nj-Xi1,Nk-Eta1,’x’,’y’);
x=F1.x;
y=F1.y;clear F1
MDjk(3,:)=[1,x,y];clear y x
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
P11=JC*[Xi1;Eta1;Nl]*[Xi1;Eta1;Nl]’;
syms x y
F2=solve(Nj-Xi1,Nk-Eta1b,’x’,’y’);
x=F2.x;
y=F2.y;clear F2
MDjk(3,:)=[1,x,y];clear y x
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
P11b=JC*[Xi1;Eta1b;Nl]*[Xi1;Eta1b;Nl]’;
syms x y
F3=solve(Nj-Xi2,Nk-Eta2,’x’,’y’);
x=F3.x;
y=F3.y;clear F3
MDjk(3,:)=[1,x,y];clear y x
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
P22=JC*[Xi2;Eta2;Nl]*[Xi2;Eta2;Nl]’;
syms x y
F4=solve(Nj-Xi2,Nk-Eta2b,’x’,’y’);
x=F4.x;
y=F4.y;clear F4
MDjk(3,:)=[1,x,y];clear y x
Djk=det(MDjk);
Nl=Djk/Cjkl;clear Djk
P22b=JC*[Xi2;Eta2b;Nl]*[Xi2;Eta2b;Nl]’;
zeta=dxNjkl’*dxNjkl*Cjkl*0.5+dyNjkl’*dyNjkl*Cjkl*0.5;
theta=0.125*(1-u1)*(P11+P11b)+0.125*(1-u2)*(P22+P22b);
clear JC x y Xi Eta dyNjkl dxNjkl Nj Nk
zetaS=zeros(nd,nd);
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thetaS=zeros(nd,nd);
vpru=t1(:,i);
for kk=1:1:3
for ll=1:1:3
zetaS(vpru(kk),vpru(ll))=zeta(kk,ll);
thetaS(vpru(kk),vpru(ll))=theta(kk,ll);
end
end
clear kk ll zeta theta vpru
thetaT=thetaS+thetaT;
zetaT=zetaS+zetaT;
clear zetaS thetaS
end
%***************************************************
%***************************************************
%*** Calculo de la temperatura en el tiempo 1*******
rho=7.65*(1e3);lambda=31;c=434;T0ext=25+273.15;
XXhn1=rho*c*thetaT+lambda*Deltat*0.5*zetaT;
XXhn2=rho*c*thetaT-lambda*Deltat*0.5*zetaT;
XXh1=XXhn1;
XXh2=XXhn2;
vph=XXh2*(T0ext*ones(nd,1))+0.5*Deltat*thetaT*(q{1}’);
T{1}=cgs(XXh1,vph,1e-16,100);
clear XXh1 vph XXh2
for timedis=2:1:timeheatmax
timedis
vphn=XXhn2*T{timedis-1}+Deltat*0.5*thetaT*((q{timedis})’+(q{timedis-1})’);
XXhnt=XXhn1;
T{timedis}=cgs(XXhnt,vphn,1e-16,100);
end
clear Tc j XXhnt vphn bound nodes XXhn1 XXhn2
out TN0=T;
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Apéndice F

ElectroFEM 3D.m

function out q=ElectroFEM 3D(p,t,nuFP,Sigma,Deltat,f,H0max,np,nlonda,timemax,FS,FSX,FI
,FIX,fls,fli)
lf1=max(size(t));
nd=max(size(p));
for i=1:1:lf1
nodos{i}=t(i,:);
for j=1:1:4
cord{j}=p(nodos{i}(j),:);
end
cord1{i}=cord;
end
clear nodos cord j i
gammaT=0;
betaT=0;
alpha3T=0;
rotAT=0;
rotBT=0;
vc1=[1;1;1;1];
for i=1:1:lf1
i
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDklm=vpa([vc1 s2]);
MDjlm=vpa([vc1 s2]);
MDjkm=vpa([vc1 s2]);
MDjkl=vpa([vc1 s2]);
Cjklm=det([vc1 s2]);clear s2
%syms x y z
MDklm(1,:)=[1,x,y,z];
Dklm=det(MDklm);
Nj=Dklm/Cjklm;clear Dklm MDklm
MDjlm(2,:)=[1,x,y,z];
Djlm=det(MDjlm);
Nk=Djlm/Cjklm;clear Djlm MDjlm
MDjkm(3,:)=[1,x,y,z];
Djkm=det(MDjkm);
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Nl=Djkm/Cjklm;clear Djkm MDjkm
MDjkl(4,:)=[1,x,y,z];
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
dxNjklm=[diff(Nj,’x’),diff(Nk,’x’),diff(Nl,’x’),diff(Nm,’x’)];
dyNjklm=[diff(Nj,’y’),diff(Nk,’y’),diff(Nl,’y’),diff(Nm,’y’)];
dzNjklm=[diff(Nj,’z’),diff(Nk,’z’),diff(Nl,’z’),diff(Nm,’z’)];
syms Xi Eta zzeta
F=solve(Nj-Xi,Nk-Eta,Nl-zzeta,’x’,’y’,’z’);
x=F.x;
y=F.y;
z=F.z;clear F
JC=abs(det(jacobian([x;y;z],[Xi, Eta, zzeta])));
MDjkl(4,:)=[1,x,y,z];
Djkl=det(MDjkl);
Nma=Djkl/Cjklm;clear Djkl
clear x y z;
%****************** Integrales por cuadratura *****************
u1=sqrt(3/5);u2=0;u3=-u1;
c1=(5/9);c2=8/9;c3=c1;
Xi1=0.5*(u1+1);Xi2=0.5*(u2+1);Xi3=0.5*(u3+1);
Eta1=(1-u1)*(1+sqrt(3)/3)*0.25;Eta1b=(1-u1)*(1-sqrt(3)/3)*0.25;
Eta2=(1-u2)*(1+sqrt(3)/3)*0.25;Eta2b=(1-u2)*(1-sqrt(3)/3)*0.25;
Eta3=(1-u3)*(1+sqrt(3)/3)*0.25;Eta3b=(1-u3)*(1-sqrt(3)/3)*0.25;
zzeta1=(1-u1)*(1-sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzeta1b=(1-u1)*(1-sqrt(3)/3)*(1-sqrt(3)/3)*0.125;
zzeta1c=(1-u1)*(1+sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzeta2=(1-u2)*(1-sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzeta2b=(1-u2)*(1-sqrt(3)/3)*(1-sqrt(3)/3)*0.125;
zzeta2c=(1-u2)*(1+sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzeta3=(1-u3)*(1-sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzeta3b=(1-u3)*(1-sqrt(3)/3)*(1-sqrt(3)/3)*0.125;
zzeta3c=(1-u3)*(1+sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
syms x y z
F1=solve(Nj-Xi1,Nk-Eta1,Nl-zzeta1,’x’,’y’,’z’);
x=F1.x;y=F1.y;z=F1.z;clear F1
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P111=JC*[Xi1;Eta1;zzeta1;Nm]*[Xi1;Eta1;zzeta1;Nm]’;
betaz111=JC*[Xi1;Eta1;zzeta1;Nm]*dzNjklm;
betay111=JC*[Xi1;Eta1;zzeta1;Nm]*dyNjklm;
betax111=JC*[Xi1;Eta1;zzeta1;Nm]*dxNjklm;clear Nm
syms x y z
F2=solve(Nj-Xi1,Nk-Eta1,Nl-zzeta1b,’x’,’y’,’z’);
x=F2.x;y=F2.y;z=F2.z;clear F2
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P111b=JC*[Xi1;Eta1;zzeta1b;Nm]*[Xi1;Eta1;zzeta1b;Nm]’;
betaz111b=JC*[Xi1;Eta1;zzeta1b;Nm]*dzNjklm;
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betay111b=JC*[Xi1;Eta1;zzeta1b;Nm]*dyNjklm;
betax111b=JC*[Xi1;Eta1;zzeta1b;Nm]*dxNjklm;clear Nm zzeta1b
syms x y z
F3=solve(Nj-Xi1,Nk-Eta1b,Nl-zzeta1c,’x’,’y’,’z’);
x=F3.x;y=F3.y;z=F3.z;clear F3
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P11b1c=JC*[Xi1;Eta1b;zzeta1c;Nm]*[Xi1;Eta1b;zzeta1c;Nm]’;
betaz11b1c=JC*[Xi1;Eta1b;zzeta1c;Nm]*dzNjklm;
betay11b1c=JC*[Xi1;Eta1b;zzeta1c;Nm]*dyNjklm;
betax11b1c=JC*[Xi1;Eta1b;zzeta1c;Nm]*dxNjklm;clear Nm zzeta1c
syms x y z
F4=solve(Nj-Xi1,Nk-Eta1b,Nl-zzeta1,’x’,’y’,’z’);
x=F4.x;y=F4.y;z=F4.z;clear F4
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P11b1=JC*[Xi1;Eta1b;zzeta1;Nm]*[Xi1;Eta1b;zzeta1;Nm]’;
betaz11b1=JC*[Xi1;Eta1b;zzeta1;Nm]*dzNjklm;
betay11b1=JC*[Xi1;Eta1b;zzeta1;Nm]*dyNjklm;
betax11b1=JC*[Xi1;Eta1b;zzeta1;Nm]*dxNjklm;clear Nm
syms x y z
F5=solve(Nj-Xi2,Nk-Eta2,Nl-zzeta2,’x’,’y’,’z’);
x=F5.x;y=F5.y;z=F5.z;clear F5
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P222=JC*[Xi2;Eta2;zzeta2;Nm]*[Xi2;Eta2;zzeta2;Nm]’;
betaz222=JC*[Xi2;Eta2;zzeta2;Nm]*dzNjklm;
betay222=JC*[Xi2;Eta2;zzeta2;Nm]*dyNjklm;
betax222=JC*[Xi2;Eta2;zzeta2;Nm]*dxNjklm;clear Nm
syms x y z
F6=solve(Nj-Xi2,Nk-Eta2,Nl-zzeta2b,’x’,’y’,’z’);
x=F6.x;y=F6.y;z=F6.z;clear F6
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P222b=JC*[Xi2;Eta2;zzeta2b;Nm]*[Xi2;Eta2;zzeta2b;Nm]’;
betaz222b=JC*[Xi2;Eta2;zzeta2b;Nm]*dzNjklm;
betay222b=JC*[Xi2;Eta2;zzeta2b;Nm]*dyNjklm;
betax222b=JC*[Xi2;Eta2;zzeta2b;Nm]*dxNjklm;clear Nm
syms x y z
F7=solve(Nj-Xi2,Nk-Eta2b,Nl-zzeta2c,’x’,’y’,’z’);
x=F7.x;y=F7.y;z=F7.z;clear F7
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P22b2c=JC*[Xi2;Eta2b;zzeta2c;Nm]*[Xi2;Eta2b;zzeta2c;Nm]’;
betaz22b2c=JC*[Xi2;Eta2b;zzeta2c;Nm]*dzNjklm;
betay22b2c=JC*[Xi2;Eta2b;zzeta2c;Nm]*dyNjklm;
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betax22b2c=JC*[Xi2;Eta2b;zzeta2c;Nm]*dxNjklm;clear Nm
syms x y z
F8=solve(Nj-Xi2,Nk-Eta2b,Nl-zzeta2,’x’,’y’,’z’);
x=F8.x;y=F8.y;z=F8.z;clear F8
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P22b2=JC*[Xi2;Eta2b;zzeta2;Nm]*[Xi2;Eta2b;zzeta2;Nm]’;
betaz22b2=JC*[Xi2;Eta2b;zzeta2;Nm]*dzNjklm;
betay22b2=JC*[Xi2;Eta2b;zzeta2;Nm]*dyNjklm;
betax22b2=JC*[Xi2;Eta2b;zzeta2;Nm]*dxNjklm;clear Nm
syms x y z
F9=solve(Nj-Xi3,Nk-Eta3,Nl-zzeta3,’x’,’y’,’z’);
x=F9.x;y=F9.y;z=F9.z;clear F9
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P333=JC*[Xi3;Eta3;zzeta3;Nm]*[Xi3;Eta3;zzeta3;Nm]’;
betaz333=JC*[Xi3;Eta3;zzeta3;Nm]*dzNjklm;
betay333=JC*[Xi3;Eta3;zzeta3;Nm]*dyNjklm;
betax333=JC*[Xi3;Eta3;zzeta3;Nm]*dxNjklm;clear Nm
syms x y z
F10=solve(Nj-Xi3,Nk-Eta3,Nl-zzeta3b,’x’,’y’,’z’);
x=F10.x;y=F10.y;z=F10.z;clear F10
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P333b=JC*[Xi3;Eta3;zzeta3b;Nm]*[Xi3;Eta3;zzeta3b;Nm]’;
betaz333b=JC*[Xi3;Eta3;zzeta3b;Nm]*dzNjklm;
betay333b=JC*[Xi3;Eta3;zzeta3b;Nm]*dyNjklm;
betax333b=JC*[Xi3;Eta3;zzeta3b;Nm]*dxNjklm;clear Nm
syms x y z
F11=solve(Nj-Xi3,Nk-Eta3b,Nl-zzeta3c,’x’,’y’,’z’);
x=F11.x;y=F11.y;z=F11.z;clear F11
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P33b3c=JC*[Xi3;Eta3b;zzeta3c;Nm]*[Xi3;Eta3b;zzeta3c;Nm]’;
betaz33b3c=JC*[Xi3;Eta3b;zzeta3c;Nm]*dzNjklm;
betay33b3c=JC*[Xi3;Eta3b;zzeta3c;Nm]*dyNjklm;
betax33b3c=JC*[Xi3;Eta3b;zzeta3c;Nm]*dxNjklm;clear Nm
syms x y z
F12=solve(Nj-Xi3,Nk-Eta3b,Nl-zzeta3,’x’,’y’,’z’);
x=F12.x;y=F12.y;z=F12.z;clear F12
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P33b3=JC*[Xi3;Eta3b;zzeta3;Nm]*[Xi3;Eta3b;zzeta3;Nm]’;
betaz33b3=JC*[Xi3;Eta3b;zzeta3;Nm]*dzNjklm;
betay33b3=JC*[Xi3;Eta3b;zzeta3;Nm]*dyNjklm;
betax33b3=JC*[Xi3;Eta3b;zzeta3;Nm]*dxNjklm;clear Nm
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gamma=kron(eye(3),c1*(1-u1)∧2*(1-sqrt(3)/3)*(1/64)*(P111+P111b)+
c1*(1-u1)∧2*(1+sqrt(3)/3)*(1/64)*(P11b1c+P11b1)+
c2*(1-u2)∧2*(1-sqrt(3)/3)*(1/64)*(P222+P222b)+
c2*(1-u2)∧2*(1+sqrt(3)/3)*(1/64)*(P22b2c+P22b2)+
c3*(1-u3)∧2*(1-sqrt(3)/3)*(1/64)*(P333+P333b)+
c3*(1-u3)∧2*(1+sqrt(3)/3)*(1/64)*(P33b3c+P33b3));
betaz=c1*(1-u1)∧2*(1-sqrt(3)/3)*(1/64)*(betaz111+betaz111b)+
c1*(1-u1)∧2*(1+sqrt(3)/3)*(1/64)*(betaz11b1c+betaz11b1)+
c2*(1-u2)∧2*(1-sqrt(3)/3)*(1/64)*(betaz222+betaz222b)+
c2*(1-u2)∧2*(1+sqrt(3)/3)*(1/64)*(betaz22b2c+betaz22b2)+
c3*(1-u3)∧2*(1-sqrt(3)/3)*(1/64)*(betaz333+betaz333b)+
c3*(1-u3)∧2*(1+sqrt(3)/3)*(1/64)*(betaz33b3c+betaz33b3);
b12=zeros(3,3);b12(1,2)=-1;
b12=kron(b12,betaz);
b21=zeros(3,3);b21(2,1)=1;
b21=kron(b21,betaz);clear betaz
betay=c1*(1-u1)∧2*(1-sqrt(3)/3)*(1/64)*(betay111+betay111b)+
c1*(1-u1)∧2*(1+sqrt(3)/3)*(1/64)*(betay11b1c+betay11b1)+
c2*(1-u2)∧2*(1-sqrt(3)/3)*(1/64)*(betay222+betay222b)+
c2*(1-u2)∧2*(1+sqrt(3)/3)*(1/64)*(betay22b2c+betay22b2)+
c3*(1-u3)∧2*(1-sqrt(3)/3)*(1/64)*(betay333+betay333b)+
c3*(1-u3)∧2*(1+sqrt(3)/3)*(1/64)*(betay33b3c+betay33b3);
b13=zeros(3,3);b13(1,3)=1;
b13=kron(b13,betay);
b31=zeros(3,3);b31(3,1)=-1;
b31=kron(b31,betay);clear betay
betax=c1*(1-u1)∧2*(1-sqrt(3)/3)*(1/64)*(betax111+betax111b)+
c1*(1-u1)∧2*(1+sqrt(3)/3)*(1/64)*(betax11b1c+betax11b1)+
c2*(1-u2)∧2*(1-sqrt(3)/3)*(1/64)*(betax222+betax222b)+
c2*(1-u2)∧2*(1+sqrt(3)/3)*(1/64)*(betax22b2c+betax22b2)+
c3*(1-u3)∧2*(1-sqrt(3)/3)*(1/64)*(betax333+betax333b)+
c3*(1-u3)∧2*(1+sqrt(3)/3)*(1/64)*(betax33b3c+betax33b3);
b23=zeros(3,3);b23(2,3)=-1;
b23=kron(b23,betax);
b32=zeros(3,3);b32(3,2)=1;
b32=kron(b32,betax);clear betax
beta=b12+b13+b21+b23+b31+b32;clear b12 b21 b13 b31 b23 b32
alpha3zz=JC*dzNjklm’*dzNjklm*(1/6);
alpha3zx=JC*dzNjklm’*dxNjklm*(1/6);
a11=zeros(3,3);a11(1,1)=1;a13=zeros(3,3);a13(1,3)=-1;
alpha32=kron(a11,alpha3zz)+kron(a13,alpha3zx);clear a11 a13
alpha3zy=JC*dzNjklm’*dyNjklm*(1/6);
a22=zeros(3,3);a22(2,2)=-1;a23=zeros(3,3);a23(2,3)=1;
alpha33=kron(a22,alpha3zz)+kron(a23,alpha3zy);clear a22 a23
alpha3xz=JC*dxNjklm’*dzNjklm*(1/6);
alpha3xx=JC*dxNjklm’*dxNjklm*(1/6);
a31=zeros(3,3);a31(3,1)=1;a33=zeros(3,3);a33(3,3)=-1;
alpha35=kron(a31,alpha3xz)+kron(a33,alpha3xx);clear a31 a33
alpha3yz=JC*dyNjklm’*dzNjklm*(1/6);
alpha3yy=JC*dyNjklm’*dyNjklm*(1/6);
a32=zeros(3,3);a32(3,2)=-1;a33=zeros(3,3);a33(3,3)=1;
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alpha36=kron(a32,alpha3yz)+kron(a33,alpha3yy);clear a32 a33
alpha3yx=JC*dyNjklm’*dxNjklm*(1/6);
a11=zeros(3,3);a11(1,1)=-1;a12=zeros(3,3);a12(1,2)=1;
alpha31=kron(a11,alpha3yy)+kron(a12,alpha3yx);clear a11 a12
alpha3xy=JC*dxNjklm’*dyNjklm*(1/6);
a21=zeros(3,3);a21(2,1)=-1;a22=zeros(3,3);a22(2,2)=1;
alpha34=kron(a21,alpha3xy)+kron(a22,alpha3xx);clear a22 a21
alpha3=alpha32-alpha31-alpha33+alpha34-alpha35-alpha36;
clear alpha32 alpha31 alpha33 alpha34 alpha35 alpha36 alpha3zz
alpha3zx alpha3zy alpha3xz alpha3xx alpha3yz alpha3yy alpha3yx alpha3xy
Gijdz=c1*(1-u1)∧2*(1-sqrt(3)/3)*(1/64)*(betaz111+betaz111b)+
c1*(1-u1)∧2*(1+sqrt(3)/3)*(1/64)*(betaz11b1c+betaz11b1)+
c2*(1-u2)∧2*(1-sqrt(3)/3)*(1/64)*(betaz222+betaz222b)+
c2*(1-u2)∧2*(1+sqrt(3)/3)*(1/64)*(betaz22b2c+betaz22b2)+
c3*(1-u3)∧2*(1-sqrt(3)/3)*(1/64)*(betaz333+betaz333b)+
c3*(1-u3)∧2*(1+sqrt(3)/3)*(1/64)*(betaz33b3c+betaz33b3);
Gijdy=c1*(1-u1)∧2*(1-sqrt(3)/3)*(1/64)*(betay111+betay111b)+
c1*(1-u1)∧2*(1+sqrt(3)/3)*(1/64)*(betay11b1c+betay11b1)+
c2*(1-u2)∧2*(1-sqrt(3)/3)*(1/64)*(betay222+betay222b)+
c2*(1-u2)∧2*(1+sqrt(3)/3)*(1/64)*(betay22b2c+betay22b2)+
c3*(1-u3)∧2*(1-sqrt(3)/3)*(1/64)*(betay333+betay333b)+
c3*(1-u3)∧2*(1+sqrt(3)/3)*(1/64)*(betay33b3c+betay33b3);
Gijdx=c1*(1-u1)∧2*(1-sqrt(3)/3)*(1/64)*(betax111+betax111b)+
c1*(1-u1)∧2*(1+sqrt(3)/3)*(1/64)*(betax11b1c+betax11b1)+
c2*(1-u2)∧2*(1-sqrt(3)/3)*(1/64)*(betax222+betax222b)+
c2*(1-u2)∧2*(1+sqrt(3)/3)*(1/64)*(betax22b2c+betax22b2)+
c3*(1-u3)∧2*(1-sqrt(3)/3)*(1/64)*(betax333+betax333b)+
c3*(1-u3)∧2*(1+sqrt(3)/3)*(1/64)*(betax33b3c+betax33b3);
rotAz=zeros(3,3);rotAz(1,2)=-1;rotAz(2,1)=1;rotAz=kron(rotAz,Gijdz);clear Gijdz
rotAy=zeros(3,3);rotAy(1,3)=1;rotAy(3,1)=-1;rotAy=kron(rotAy,Gijdy);clear Gijdy
rotAx=zeros(3,3);rotAx(2,3)=-1;rotAx(3,2)=1;rotAx=kron(rotAx, Gijdx);clear Gijdx
rotA=rotAx+rotAy+rotAz;clear rotAx rotAy rotAz
Gij1=c1*(1-u1)∧2*(1-sqrt(3)/3)*(1/64)*(P111+P111b)+
c1*(1-u1)∧2*(1+sqrt(3)/3)*(1/64)*(P11b1c+P11b1)+
c2*(1-u2)∧2*(1-sqrt(3)/3)*(1/64)*(P222+P222b)+
c2*(1-u2)∧2*(1+sqrt(3)/3)*(1/64)*(P22b2c+P22b2)+
c3*(1-u3)∧2*(1-sqrt(3)/3)*(1/64)*(P333+P333b)+
c3*(1-u3)∧2*(1+sqrt(3)/3)*(1/64)*(P33b3c+P33b3);
clear x y z Xi Eta zzeta JC Nj Nk Nl Nm dxNjklm dyNjklm dzNjklm
rotB=kron(eye(3),Gij1);clear Gij1
gammaS=zeros(3*nd,3*nd);
betaS=zeros(3*nd,3*nd);
alpha3S=zeros(3*nd,3*nd);
rotBS=zeros(3*nd,3*nd);
rotAS=zeros(3*nd,3*nd);
vpru=t(i,:);
for kk=1:1:4
for ll=1:1:4
gammaS(vpru(kk),vpru(ll))=gamma(kk,ll);
gammaS(vpru(kk),vpru(ll)+nd)=gamma(kk,ll+4);
gammaS(vpru(kk),vpru(ll)+2*nd)=gamma(kk,ll+8);
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gammaS(vpru(kk)+nd,vpru(ll))=gamma(kk+4,ll);
gammaS(vpru(kk)+2*nd,vpru(ll))=gamma(kk+8,ll);
gammaS(vpru(kk)+nd,vpru(ll)+nd)=gamma(kk+4,ll+4);
gammaS(vpru(kk)+2*nd,vpru(ll)+2*nd)=gamma(kk+8,ll+8);
gammaS(vpru(kk)+nd,vpru(ll)+2*nd)=gamma(kk+4,ll+8);
gammaS(vpru(kk)+2*nd,vpru(ll)+nd)=gamma(kk+8,ll+4);
betaS(vpru(kk),vpru(ll))=beta(kk,ll);
betaS(vpru(kk),vpru(ll)+nd)=beta(kk,ll+4);
betaS(vpru(kk),vpru(ll)+2*nd)=beta(kk,ll+8);
betaS(vpru(kk)+nd,vpru(ll))=beta(kk+4,ll);
betaS(vpru(kk)+2*nd,vpru(ll))=beta(kk+8,ll);
betaS(vpru(kk)+nd,vpru(ll)+nd)=beta(kk+4,ll+4);
betaS(vpru(kk)+2*nd,vpru(ll)+2*nd)=beta(kk+8,ll+8);
betaS(vpru(kk)+nd,vpru(ll)+2*nd)=beta(kk+4,ll+8);
betaS(vpru(kk)+2*nd,vpru(ll)+nd)=beta(kk+8,ll+4);
alpha3S(vpru(kk),vpru(ll))=alpha3(kk,ll);
alpha3S(vpru(kk),vpru(ll)+nd)=alpha3(kk,ll+4);
alpha3S(vpru(kk),vpru(ll)+2*nd)=alpha3(kk,ll+8);
alpha3S(vpru(kk)+nd,vpru(ll))=alpha3(kk+4,ll);
alpha3S(vpru(kk)+2*nd,vpru(ll))=alpha3(kk+8,ll);
alpha3S(vpru(kk)+nd,vpru(ll)+nd)=alpha3(kk+4,ll+4);
alpha3S(vpru(kk)+2*nd,vpru(ll)+2*nd)=alpha3(kk+8,ll+8);
alpha3S(vpru(kk)+nd,vpru(ll)+2*nd)=alpha3(kk+4,ll+8);
alpha3S(vpru(kk)+2*nd,vpru(ll)+nd)=alpha3(kk+8,ll+4);
rotBS(vpru(kk),vpru(ll))=rotB(kk,ll);
rotBS(vpru(kk),vpru(ll)+nd)=rotB(kk,ll+4);
rotBS(vpru(kk),vpru(ll)+2*nd)=rotB(kk,ll+8);
rotBS(vpru(kk)+nd,vpru(ll))=rotB(kk+4,ll); rotBS(vpru(kk)+2*nd,vpru(ll))=rotB(kk+8,ll);
rotBS(vpru(kk)+nd,vpru(ll)+nd)=rotB(kk+4,ll+4);
rotBS(vpru(kk)+2*nd,vpru(ll)+2*nd)=rotB(kk+8,ll+8);
rotBS(vpru(kk)+nd,vpru(ll)+2*nd)=rotB(kk+4,ll+8);
rotBS(vpru(kk)+2*nd,vpru(ll)+nd)=rotB(kk+8,ll+4);
rotAS(vpru(kk),vpru(ll))=rotA(kk,ll);
rotAS(vpru(kk),vpru(ll)+nd)=rotA(kk,ll+4);
rotAS(vpru(kk),vpru(ll)+2*nd)=rotA(kk,ll+8);
rotAS(vpru(kk)+nd,vpru(ll))=rotA(kk+4,ll);
rotAS(vpru(kk)+2*nd,vpru(ll))=rotA(kk+8,ll);
rotAS(vpru(kk)+nd,vpru(ll)+nd)=rotA(kk+4,ll+4);
rotAS(vpru(kk)+2*nd,vpru(ll)+2*nd)=rotA(kk+8,ll+8);
rotAS(vpru(kk)+nd,vpru(ll)+2*nd)=rotA(kk+4,ll+8);
rotAS(vpru(kk)+2*nd,vpru(ll)+nd)=rotA(kk+8,ll+4);
end
end
clear gamma kk ll vpru beta alpha3 rotA rotB
gammaT=gammaT+gammaS;clear gammaS
betaT=betaT+betaS;clear betaS
alpha3T=alpha3T+alpha3S;clear alpha3S
rotAT=rotAT+rotAS;clear rotAS
rotBT=rotBT+rotBS;clear rotBS
end
clear vc1 i



122 APÉNDICE F. ELECTROFEM 3D.M

%******************************************
%************** alphafdc d*****************
%******************************************
vc1=[1;1;1;1];
[ii,jj]=find(p(:,2)>0.46);clear jj
for i=1:1:lf1
i s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDklm=vpa([vc1 s2]);
MDjlm=vpa([vc1 s2]);
MDjkm=vpa([vc1 s2]);
MDjkl=vpa([vc1 s2]);
Cjklm=det([vc1 s2]);clear s2
%*****Generacion de los Nj(x,y,z)
if max(size(intersect(t(i,:),ii)))>2
tcord=intersect(t(i,:),ii);
pcord2D1=p(tcord(1),:);pcord2D1(2)=[ ];
pcord2D2=p(tcord(2),:);pcord2D2(2)=[ ];
pcord2D3=p(tcord(3),:);pcord2D3(2)=[ ];
Cjkl2D=det([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
if Cjkl2D<0
pcord2D1=p(tcord(2),:);pcord2D1(2)=[ ];
pcord2D2=p(tcord(1),:);pcord2D2(2)=[ ];
Cjkl2D=det([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
else
end
clear tcord
MDkl2D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
MDjl2D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
clear pcord2D1 pcord2D2 pcord2D3
syms x z;
MDkl2D(1,:)=[1,x,z];
Nj2D=det(MDkl2D)/Cjkl2D;
MDjl2D(2,:)=[1,x,z];
Nk2D=det(MDjl2D)/Cjkl2D;
syms Xi2D Eta2D
F=solve(Nj2D-Xi2D,Nk2D-Eta2D,’x’,’z’);
x=F.x
z=F.z
y=0.5;
clear MDkl2D MDjl2D Nj2D Nk2D Cjkl2D F
MDklm(1,:)=[1,x,y,z];
Dklm=det(MDklm);
Nj=Dklm/Cjklm;clear Dklm MDklm
MDjlm(2,:)=[1,x,y,z];
Djlm=det(MDjlm);
Nk=Djlm/Cjklm;clear Djlm MDjlm
MDjkm(3,:)=[1,x,y,z];
Djkm=det(MDjkm);
Nl=Djkm/Cjklm;clear Djkm MDjkm
MDjkl(4,:)=[1,x,y,z];
Djkl=det(MDjkl);
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Nm=Djkl/Cjklm;clear Djkl MDjkl Cjklm
JC=abs(det(jacobian([x;z],[Xi2D, Eta2D])));
alphafdc d{i}=JC*int(int([Nj;Nk;Nl;Nm],Eta2D,0,1-Xi2D),Xi2D,0,1);clear Nj Nk Nl Nm JC
Xi2D Eta2D x y z
else
alphafdc d{i}=zeros(4,1);clear MDklm MDjlm MDjkm MDjkl Cjklm
end
end
clear i vc1 ii
%***************************************
%************ alphafdc c****************
%***************************************
vc1=[1;1;1;1];
[ii,jj]=find(p(:,2)<-0.46);clear jj
for i=1:1:lf1
i s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDklm=vpa([vc1 s2]);
MDjlm=vpa([vc1 s2]);
MDjkm=vpa([vc1 s2]);
MDjkl=vpa([vc1 s2]);
Cjklm=det([vc1 s2]);clear s2
%*****Generacion de los Nj(x,y,z)
if max(size(intersect(t(i,:),ii)))>2
tcord=intersect(t(i,:),ii);
pcord2D1=p(tcord(1),:);pcord2D1(2)=[ ];
pcord2D2=p(tcord(2),:);pcord2D2(2)=[ ];
pcord2D3=p(tcord(3),:);pcord2D3(2)=[ ];
Cjkl2D=det([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
if Cjkl2D<0
pcord2D1=p(tcord(2),:);pcord2D1(2)=[ ];
pcord2D2=p(tcord(1),:);pcord2D2(2)=[ ];
Cjkl2D=det([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
else
end
clear tcord
MDkl2D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
MDjl2D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
clear pcord2D1 pcord2D2 pcord2D3
syms x z;
MDkl2D(1,:)=[1,x,z];
Nj2D=det(MDkl2D)/Cjkl2D;
MDjl2D(2,:)=[1,x,z];
Nk2D=det(MDjl2D)/Cjkl2D;
syms Xi2D Eta2D
F=solve(Nj2D-Xi2D,Nk2D-Eta2D,’x’,’z’);
x=F.x
z=F.z
y=-0.5;
clear MDkl2D MDjl2D Nj2D Nk2D Cjkl2D F
MDklm(1,:)=[1,x,y,z];
Dklm=det(MDklm);
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Nj=Dklm/Cjklm;clear Dklm MDklm
MDjlm(2,:)=[1,x,y,z];
Djlm=det(MDjlm);
Nk=Djlm/Cjklm;clear Djlm MDjlm
MDjkm(3,:)=[1,x,y,z];
Djkm=det(MDjkm);
Nl=Djkm/Cjklm;clear Djkm MDjkm
MDjkl(4,:)=[1,x,y,z];
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl MDjkl Cjklm
JC=abs(det(jacobian([x;z],[Xi2D, Eta2D])));
alphafdc c{i}=JC*int(int([Nj;Nk;Nl;Nm],Eta2D,0,1-Xi2D),Xi2D,0,1);clear Nj Nk Nl Nm JC
Xi2D Eta2D x y z
else
alphafdc c{i}=zeros(4,1);clear MDklm MDjlm MDjkm MDjkl Cjklm
end
end
clear i vc1 ii
for i=1:1:lf1
alphaf1{i}=kron([1;0;0],alphafdc d{i}-alphafdc c{i});
end
clear alphafdc d alphafdc c i
for i=1:1:lf1
alphaf1S{i}=zeros(3*nd,1);
vpru=t(i,:);
for kk=1:1:4
alphaf1S{i}(vpru(kk))=alphaf1{i}(kk);
alphaf1S{i}(vpru(kk)+nd)=alphaf1{i}(kk+4);
alphaf1S{i}(vpru(kk)+2*nd)=alphaf1{i}(kk+8);
end
end
clear alphaf1 kk i vpru
alphaf1T=0;
for i=1:1:lf1
alphaf1T=alphaf1T+alphaf1S{i};
end
clear alphaf1S i
%***************************************
%*********** alphafba b ***************
%***************************************
vc1=[1;1;1;1];
[ii,jj]=find(p(:,1)>0.46);clear jj
for i=1:1:lf1
i s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDklm=vpa([vc1 s2]);
MDjlm=vpa([vc1 s2]);
MDjkm=vpa([vc1 s2]);
MDjkl=vpa([vc1 s2]);
Cjklm=det([vc1 s2]);clear s2
%****Generacion de los Nj(x,y,z)
if max(size(intersect(t(i,:),ii)))>2



125

tcord=intersect(t(i,:),ii);
pcord2D1=p(tcord(1),:);pcord2D1(1)=[ ];
pcord2D2=p(tcord(2),:);pcord2D2(1)=[ ];
pcord2D3=p(tcord(3),:);pcord2D3(1)=[ ];
Cjkl2D=det([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
if Cjkl2D<0
pcord2D1=p(tcord(2),:);pcord2D1(1)=[ ];
pcord2D2=p(tcord(1),:);pcord2D2(1)=[ ];
Cjkl2D=det([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
else
end
clear tcord
MDkl2D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
MDjl2D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
clear pcord2D1 pcord2D2 pcord2D3
syms y z;
MDkl2D(1,:)=[1,y,z];
Nj2D=det(MDkl2D)/Cjkl2D;
MDjl2D(2,:)=[1,y,z];
Nk2D=det(MDjl2D)/Cjkl2D;
syms Xi2D Eta2D
F=solve(Nj2D-Xi2D,Nk2D-Eta2D,’y’,’z’);
y=F.y
z=F.z
x=0.5;
clear MDkl2D MDjl2D Nj2D Nk2D Cjkl2D F
MDklm(1,:)=[1,x,y,z];
Dklm=det(MDklm);
Nj=Dklm/Cjklm;clear Dklm MDklm
MDjlm(2,:)=[1,x,y,z];
Djlm=det(MDjlm);
Nk=Djlm/Cjklm;clear Djlm MDjlm
MDjkm(3,:)=[1,x,y,z];
Djkm=det(MDjkm);
Nl=Djkm/Cjklm;clear Djkm MDjkm
MDjkl(4,:)=[1,x,y,z];
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl MDjkl Cjklm
JC=abs(det(jacobian([y;z],[Xi2D, Eta2D])));
alphafba b{i}=JC*int(int([Nj;Nk;Nl;Nm],Eta2D,0,1-Xi2D),Xi2D,0,1);clear Nj Nk Nl Nm JC
Xi2D Eta2D x y z
else
alphafba b{i}=zeros(4,1);clear MDklm MDjlm MDjkm MDjkl Cjklm
end
end
clear i vc1 ii
%***************************************
%************ alphafba a **************
%***************************************
vc1=[1;1;1;1];
[ii,jj]=find(p(:,1)<-0.46);clear jj



126 APÉNDICE F. ELECTROFEM 3D.M

for i=1:1:lf1
i
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDklm=vpa([vc1 s2]);
MDjlm=vpa([vc1 s2]);
MDjkm=vpa([vc1 s2]);
MDjkl=vpa([vc1 s2]);
Cjklm=det([vc1 s2]);clear s2
%***Generacion de los Nj(x,y,z)
if max(size(intersect(t(i,:),ii)))>2
tcord=intersect(t(i,:),ii);
pcord2D1=p(tcord(1),:);pcord2D1(1)=[ ];
pcord2D2=p(tcord(2),:);pcord2D2(1)=[ ];
pcord2D3=p(tcord(3),:);pcord2D3(1)=[ ];
Cjkl2D=det([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
if Cjkl2D<0
pcord2D1=p(tcord(2),:);pcord2D1(2)=[ ];
pcord2D2=p(tcord(1),:);pcord2D2(2)=[ ];
Cjkl2D=det([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
else
end
clear tcord
MDkl2D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
MDjl2D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
clear pcord2D1 pcord2D2 pcord2D3
syms y z;
MDkl2D(1,:)=[1,y,z];
Nj2D=det(MDkl2D)/Cjkl2D;
MDjl2D(2,:)=[1,y,z];
Nk2D=det(MDjl2D)/Cjkl2D;
syms Xi2D Eta2D
F=solve(Nj2D-Xi2D,Nk2D-Eta2D,’y’,’z’);
y=F.y
z=F.z
x=-0.5;
clear MDkl2D MDjl2D Nj2D Nk2D Cjkl2D F
MDklm(1,:)=[1,x,y,z];
Dklm=det(MDklm);
Nj=Dklm/Cjklm;clear Dklm MDklm
MDjlm(2,:)=[1,x,y,z];
Djlm=det(MDjlm);
Nk=Djlm/Cjklm;clear Djlm MDjlm
MDjkm(3,:)=[1,x,y,z];
Djkm=det(MDjkm);
Nl=Djkm/Cjklm;clear Djkm MDjkm
MDjkl(4,:)=[1,x,y,z];
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl MDjkl Cjklm
JC=abs(det(jacobian([y;z],[Xi2D, Eta2D])));
alphafba a{i}=JC*int(int([Nj;Nk;Nl;Nm],Eta2D,0,1-Xi2D),Xi2D,0,1);clear Nj Nk Nl Nm JC
Xi2D Eta2D x y z
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else
alphafba a{i}=zeros(4,1);clear MDklm MDjlm MDjkm MDjkl Cjklm
end
end
clear i vc1 ii
for i=1:1:lf1
alphaf4{i}=kron([0;1;0],alphafba b{i}-alphafba a{i});
end
clear alphafba b alphafba a i
for i=1:1:lf1
alphaf4S{i}=zeros(3*nd,1);
vpru=t(i,:);
for kk=1:1:4
alphaf4S{i}(vpru(kk))=alphaf4{i}(kk);
alphaf4S{i}(vpru(kk)+nd)=alphaf4{i}(kk+4);
alphaf4S{i}(vpru(kk)+2*nd)=alphaf4{i}(kk+8);
end
end
clear alphaf4 kk i vpru
alphaf4T=0;
for i=1:1:lf1
alphaf4T=alphaf4T+alphaf4S{i};
end
clear alphaf4S i
alphafT=alphaf1T-alphaf4T;clear alphaf1T alphaf4T
%***********************************************************************
%*** CALCULO DEL POTENCIAL MAGNETICO VECTORIAL *************************
%***********************************************************************
clear SA0
for j=1:1:nd
SA0(j,1)=-p(j,2)*(1.472/2);
SA0(j+nd,1)=p(j,1)*(1.472/2);
SA0(j+2*nd,1)=0;
end
clear j
XX1=-Sigma*gammaT-nuFP*alpha3T*Deltat*0.5;
XX2=-Sigma*gammaT+nuFP*alpha3T*Deltat*0.5;
[i1,j1]=find(p(:,1)>0.46);clear j1
[i2,j2]=find(p(:,1)<-0.46);clear j2
nodtapX=union(i1,i2);clear i1 i2
[i1,j1]=find(p(:,2)>0.46);clear j1
[i2,j2]=find(p(:,2)<-0.46);clear j2
nodtapY=union(i1,i2);clear i1 i2
[i1,j1]=find(p(:,3)>0.96);clear j1
[i2,j2]=find(p(:,3)<-0.96);clear j2
nodtapZ=union(i1,i2);clear i1 i2
arist1=intersect(nodtapX,nodtapZ);arist2=intersect(nodtapZ,nodtapY);
aristT=union(arist1,arist2);clear arist1 arist2;
aristT=aristT+2*nd;
nodtapZ=setdiff(nodtapZ,nodtapX);nodtapZ=setdiff(nodtapZ,nodtapY);
colelm=union([nodtapX],[nodtapY+nd]);
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colelm=union(colelm,[nodtapZ+2*nd]);colelm=union(colelm,aristT);
XX1(colelm,:)=[ ];XX1(:,colelm)=[ ];
XX2(colelm,:)=[ ];XX2(:,colelm)=[ ];
SA0(colelm,:)=[ ];
SAi{1}=(1000)*ones(3*nd,1); SAi{1}(colelm,:)=[ ];
Ri{1}=(1000)*ones(3*nd,1);
errSA1=10;
while (errSA1>(1e-13))
XXF1=nuFP*alphafT*Deltat*0.5*(ppval(FS,H0max*cos(2*pi*f*(Deltat)))+
ppval(FS,H0max))-betaT*Deltat*0.5*Ri{1};
XXF1(colelm,:)=[ ];
clear SA
SA{1}=cgs(XX1,XX2*SA0+XXF1,1e-16,100);
errSA1=abs(SA{1}-SAi{1});
errSA1=sum(errSA1)
if (errSA1<(1e-13))
clear SA
SA{1}=SAi{1};
else
clear SAi
SAi{1}=SA{1};
clear j i
j=1;
for i=1:1:3*nd
if (ismember(i,colelm))
SAc{1}(i)=0;
else
SAc{1}(i)=SA{1}(j);
j=j+1;
end
end
clear i j
rot BT2=rotBT;
rot BT2([nodtapZ;nodtapZ+nd;nodtapZ+2*nd;nodtapX;nodtapX+nd;
nodtapX+2*nd;nodtapY;nodtapY+nd;nodtapY+2*nd],:)=[ ];
vp1=(rotAT)*(SAc{1})’;
vp1([nodtapZ;nodtapZ+nd;nodtapZ+2*nd;nodtapX;nodtapX+nd;
nodtapX+2*nd;nodtapY;nodtapY+nd;nodtapY+2*nd],:)=[ ];
for j=1:1:max(size(nodtapZ))
vp1=vp1-rot BT2(:,nodtapZ(j)+2*nd)*(4*pi*(1e-7))*H0max*cos(2*pi*f*(Deltat));
end
for j=1:1:max(size(nodtapX))
vp1=vp1-rot BT2(:,nodtapX(j)+2*nd)*ppval(FS,H0max*cos(2*pi*f*(Deltat)));
end
for j=1:1:max(size(nodtapY))
vp1=vp1-rot BT2(:,nodtapY(j)+2*nd)*ppval(FS,H0max*cos(2*pi*f*(Deltat)));
end
rot BT2(:,[nodtapZ;nodtapZ+nd;nodtapZ+2*nd;nodtapX;nodtapX+nd;
nodtapX+2*nd;nodtapY;nodtapY+nd;nodtapY+2*nd])=[ ];
Bc{1}=cgs(rot BT2,vp1,1e-16,100);
clear i j
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j=1;
for i=1:1:3*nd
if ismember(i,nodtapZ)
B{1}(i)=0;
elseif ismember(i,nodtapZ+nd)
B{1}(i)=0;
elseif ismember(i,nodtapZ+2*nd)
B{1}(i)=(4*pi*(1e-7))*H0max*cos(2*pi*f*(Deltat));
elseif ismember(i,nodtapX)
B{1}(i)=0;
elseif ismember(i,nodtapX+nd)
B{1}(i)=0;
elseif ismember(i,nodtapX+2*nd)
B{1}(i)=ppval(FS,H0max*cos(2*pi*f*(Deltat)));
elseif ismember(i,nodtapY)
B{1}(i)=0;
elseif ismember(i,nodtapY+nd)
B{1}(i)=0;
elseif ismember(i,nodtapY+2*nd)
B{1}(i)=ppval(FS,H0max*cos(2*pi*f*(Deltat)));
else
B{1}(i)=Bc{1}(j);
j=j+1;
end
end
for i=1:1:max(size(B{1}))
if B{1}(i)>1.472
B{1}(i)=1.472;
elseif B{1}(i)<-1.472
B{1}(i)=-1.472;
else
end
end
clear H
H{1}=ppval(FSX,B{1});
clear i
for i=1:1:nd
if ismember(i,nodtapX)
H{1}(i+2*nd)=H0max*cos(2*pi*f*(Deltat));
H{1}(i)=0;
H{1}(i+nd)=0;
elseif ismember(i,nodtapY)
H{1}(i+2*nd)=H0max*cos(2*pi*f*(Deltat));
H{1}(i)=0;
H{1}(i+nd)=0;
elseif ismember(i,nodtapZ)
H{1}(i+2*nd)=ppval(FSX,(4*pi*(1e-7))*H0max*cos(2*pi*f*(Deltat)));
H{1}(i)=0;
H{1}(i+nd)=0;
else
end
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end
clear Ri
Ri{1}=nuFP*B{1}-H{1};Ri{1}=Ri{1}’;
end
end
clear XXF1
for timedis=2:1:timemax
timedis
SAi{timedis}=(1000)*ones(3*nd,1); SAi{timedis}(colelm,:)=[ ];
Ri{timedis}=(1000)*ones(3*nd,1);
errSA=10;
while (errSA>(1e-13))
for ii=0:1:nlonda
if (timedis>=(2*ii*np) && timedis<(2*ii+1)*np )
XXF=nuFP*Deltat*0.5*alphafT*(ppval(FS,H0max*cos(2*pi*f*Deltat*timedis))+
ppval(FS,H0max*cos(2*pi*f*Deltat*(timedis-1))))-Deltat*0.5*betaT*(Ri{timedis}-Ri{timedis-1});
elseif (timedis>=(2*ii+1)*np && timedis<(2*(ii+1)*np))
XXF=nuFP*Deltat*0.5*alphafT*(ppval(FI,H0max*cos(2*pi*f*Deltat*timedis))+
ppval(FI,H0max*cos(2*pi*f*Deltat*(timedis-1))))-Deltat*0.5*betaT*(Ri{timedis}-Ri{timedis-1});
else
end
end
XXF(colelm,:)=[ ];
SA{timedis}=cgs(XX1,XX2*SA{timedis-1}+XXF,1e-16,100);
errSA=abs(SA{timedis}-SAi{timedis});
errSA=sum(errSA)
if (errSA<(1e-13))
SA{timedis}=SAi{timedis};
else
SAi{timedis}=SA{timedis};
clear j i
j=1;
for i=1:1:3*nd
if (ismember(i,colelm))
SAc{timedis}(i)=0;
else
SAc{timedis}(i)=SA{timedis}(j);
j=j+1;
end
end
clear i j
rot BT2=rotBT;
rot BT2([nodtapZ;nodtapZ+nd;nodtapZ+2*nd;nodtapX;nodtapX+nd;
nodtapX+2*nd;nodtapY;nodtapY+nd;nodtapY+2*nd],:)=[ ];
vp1=(rotAT)*(SAc{timedis})’;
vp1([nodtapZ;nodtapZ+nd;nodtapZ+2*nd;nodtapX;nodtapX+nd;nodtapX+2*nd;
nodtapY;nodtapY+nd;nodtapY+2*nd],:)=[ ];
for j=1:1:max(size(nodtapZ))
vp1=vp1-rot BT2(:,nodtapZ(j)+2*nd)*(4*pi*(1e-7))*H0max*cos(2*pi*f*(Deltat)*timedis);
end
for j=1:1:max(size(nodtapX))
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vp1=vp1-rot BT2(:,nodtapX(j)+2*nd)*ppval(FS,H0max*cos(2*pi*f*(Deltat)*timedis));
end
for j=1:1:max(size(nodtapY))
vp1=vp1-rot BT2(:,nodtapY(j)+2*nd)*ppval(FS,H0max*cos(2*pi*f*(Deltat)*timedis));
end
rot BT2(:,[nodtapZ;nodtapZ+nd;nodtapZ+2*nd;nodtapX;nodtapX+nd;
nodtapX+2*nd;nodtapY;nodtapY+nd;nodtapY+2*nd])=[ ];
Bc{timedis}=cgs(rot BT2,vp1,1e-16,100);
clear i j
j=1;
for i=1:1:3*nd
if ismember(i,nodtapZ)
B{timedis}(i,1)=0;
elseif ismember(i,nodtapZ+nd)
B{timedis}(i)=0;
elseif ismember(i,nodtapZ+2*nd)
B{timedis}(i,1)=(4*pi*(1e-7))*H0max*cos(2*pi*f*(Deltat)*timedis);
elseif ismember(i,nodtapX)
B{timedis}(i,1)=0;
elseif ismember(i,nodtapX+nd)
B{timedis}(i,1)=0;
elseif ismember(i,nodtapX+2*nd)
for ii=0:1:nlonda
if (timedis>=(2*ii*np) && timedis<(2*ii+1)*np)
B{timedis}(i,1)=ppval(FS,H0max*cos(2*pi*f*(Deltat)*timedis));
elseif (timedis>=(2*ii+1)*np && timedis<(2*(ii+1)*np))
B{timedis}(i,1)=ppval(FI,H0max*cos(2*pi*f*(Deltat)*timedis));
else
end
end
elseif ismember(i,nodtapY)
B{timedis}(i,1)=0;
elseif ismember(i,nodtapY+nd)
B{timedis}(i,1)=0;
elseif ismember(i,nodtapY+2*nd)
for ii=0:1:nlonda
if (timedis>=(2*ii*np) && timedis<(2*ii+1)*np)
B{timedis}(i,1)=ppval(FS,H0max*cos(2*pi*f*(Deltat)*timedis));
elseif (timedis>=(2*ii+1)*np && timedis<(2*(ii+1)*np))
B{timedis}(i,1)=ppval(FI,H0max*cos(2*pi*f*(Deltat)*timedis));
else
end
end
else
B{timedis}(i,1)=Bc{1}(j);
j=j+1;
end
end
for i=1:1:max(size(B{timedis}))
if B{timedis}(i)>1.472
B{timedis}(i)=1.472;
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elseif B{timedis}(i)<-1.472
B{timedis}(i)=-1.472;
else
end
end
for ii=0:1:nlonda
if (timedis>=(2*ii*np) && timedis<(2*ii+1)*np)
H{timedis}=ppval(FSX,B{timedis});
elseif (timedis>=(2*ii+1)*np && timedis<(2*(ii+1)*np))
H{timedis}=ppval(FIX,B{timedis});
else
end
end
clear i
for i=1:1:nd
if ismember(i,nodtapX)
H{timedis}(i+2*nd,1)=H0max*cos(2*pi*f*(Deltat)*timedis);
H{timedis}(i,1)=0;
H{timedis}(i+nd,1)=0;
elseif ismember(i,nodtapY)
H{timedis}(i+2*nd)=H0max*cos(2*pi*f*(Deltat)*timedis);
H{timedis}(i,1)=0;
H{timedis}(i+nd,1)=0;
elseif ismember(i,nodtapZ)
for ii=0:1:nlonda
if (timedis>=(2*ii*np) && timedis<(2*ii+1)*np)
H{timedis}(i+2*nd,1)=ppval(FSX,(4*pi*(1e-7))*H0max*cos(2*pi*f*(Deltat)*timedis));
elseif (timedis>=(2*ii+1)*np && timedis<(2*(ii+1)*np))
H{timedis}(i+2*nd,1)=ppval(FIX,(4*pi*(1e-7))*H0max*cos(2*pi*f*(Deltat)*timedis));
else
end
end
H{timedis}(i,1)=0;
H{timedis}(i+nd,1)=0;
end
end
Ri{timedis}=nuFP*B{timedis}-H{timedis};
end
end
end
clear SAc SAi Bc Ri ii nodtapY nodtapX nodtapZ XXF XX1 XX2
%*************************************************
%*** Armando el potencial magnetico vectorial ****
%*************************************************
clear A
for rr=1:1:timemax
clear j i
j=1;
for i=1:1:(3*nd)
if (ismember(i,colelm))
A{rr}(i)=0;
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else
A{rr}(i)=SA{rr}(j);
j=j+1;
end
end
end
clear i j SA
%***************************************************
%**** Armando el vector de las corrienmtes *********
%***************************************************
clear J
J{1}=-(Sigma/Deltat)*A{1};
for rr=2:1:timemax
J{rr}=-(Sigma/Deltat)*(A{rr}-A{rr-1});
end
clear A
%***** graficando la magnitud de las corrientes *************
for i=1:1:nd
magJ(i)=sqrt(J{rr}(i)*J{rr}(i)+J{rr}(i+nd)*J{rr}(i+nd)+J{rr}(i+2*nd)*J{rr}(i+2*nd));
end
clear i
figure,trisurf(t,p(:,1),p(:,2),p(:,3),magJ,’facecolor’,’interp’,’edgecolor’,’none’)
%*******************************
%*****ciclos repetitivos********
%*******************************
na=43;
qqw=J{1}(na);
qqw2=J{1}(na+nd);
qqw3=J{1}(na+2*nd);
for i=2:1:2000
qqw=[qqw J{i}(na)];
qqw2=[qqw2 J{i}(na+nd)];
qqw3=[qqw3 J{i}(na+2*nd)];
end
figure,plot(qqw);grid;ylabel(’Jx’)
figure,plot(qqw2);grid;ylabel(’Jy’)
figure,plot(qqw3);grid;ylabel(’Jz’)
clear qqw qqw2 qqw3
%*****************************************************
%***GENERANDO TERMINO DE PERDIDAS POR HYSTERESIS *****
%*****************************************************
for j=1:1:3*nd
Hval=H{1}(j);
for timedis=1:1:300
Hval=[Hval H{timedis}(j)];
end
Hmax(j)=max(Hval);Hmin(j)=min(Hval);
end
for j=1:1:3*nd
qhyst{1}(j)=abs((quad(@(hx)(fls),Hmax(j),H{1}(j)))/Deltat);
end
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for timedis=2:1:timemax
timedis
for ii=0:1:nlonda
if (timedis>=(2*ii*np) && timedis<(2*ii+1)*np)
for j=1:1:nd
Fhyst1=quad(@(hx)(fls),Hmax(j),H{timedis}(j));
Fhyst2=quad(@(hx)(fls),Hmax(j),H{timedis-1}(j));
qhyst{timedis}(j)=abs(double((Fhyst1-Fhyst2)/Deltat));clear Fhyst1 Fhyst2
end
elseif (timedis>=(2*ii+1)*np && timedis<(2*(ii+1)*np))
for j=1:1:nd
Fhyst1=quad(@(hx)(fls),Hmax(j),Hmin(j))+quad(@(hx)(fli),Hmin(j),H{timedis}(j));
Fhyst1=quad(@(hx)(fls),Hmax(j),Hmin(j))+quad(@(hx)(fli),Hmin(j),H{timedis-1}(j));
qhyst{timedis}(j)=abs(double((Fhyst1-Fhyst2)/Deltat));clear Fhyst1 Fhyst2
end
else
end
end
end
clear H
for timedis=1:1:max(size(qhyst))
for j=1:1:nd
qhy{timedis}(j)=sqrt(qhyst{timedis}(j)*qhyst{timedis}(j)+
qhyst{timedis}(j+nd)*qhyst{timedis}(j+nd)+
qhyst{timedis}(j+2*nd)*qhyst{timedis}(j+2*nd));
end
end
clear qhyst
%***************************************************
%*****GENERANDO EL TERMINO DE PERDIDAS OHMICAS******
%***************************************************
clear B
for i=1:1:max(size(J))
q2{i}=(1/Sigma)*J{i}.*J{i};
for j=1:1:nd
qoh{i}(j)=q2{i}(j)+q2{i}(j+nd)+q2{i}(j+2*nd);
end
end
clear q2 i J
%***************************************************************
%***** Suma de perdidas ohmicas y de histéresis ****************
%***************************************************************
for timedis=1:1:timemax
q{timedis}=qoh{timedis}+qhy{timedis};
end
clear qoh qhyst qhy
out q=q;



Apéndice G

ThermalFEM 3D.m

function out T=ThermalFEM 3D(p,t,rho,lambda,c,T0ext,Deltat,q,timeheatmax)
lf1=max(size(t));
nd=max(size(p));
for i=1:1:lf1
nodos{i}=t(i,:);
for j=1:1:4
cord{j}=p(nodos{i}(j),:);
end
cord1{i}=cord;
end
clear nodos cord j i
psiT=0;
thetaT=0;
vc1=[1;1;1;1];
for i=1:1:lf1
i s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDklm=vpa([vc1 s2]);
MDjlm=vpa([vc1 s2]);
MDjkm=vpa([vc1 s2]);
MDjkl=vpa([vc1 s2]);
Cjklm=det([vc1 s2]);clear s2
%****Generacion de los Nj(x,y,z)
syms x y z
MDklm(1,:)=[1,x,y,z];
Dklm=det(MDklm);
Nj=Dklm/Cjklm;clear Dklm MDklm
MDjlm(2,:)=[1,x,y,z];
Djlm=det(MDjlm);
Nk=Djlm/Cjklm;clear Djlm MDjlm
MDjkm(3,:)=[1,x,y,z];
Djkm=det(MDjkm);
Nl=Djkm/Cjklm;clear Djkm MDjkm
MDjkl(4,:)=[1,x,y,z];
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
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dxNjklm=[diff(Nj,’x’),diff(Nk,’x’),diff(Nl,’x’),diff(Nm,’x’)];
dyNjklm=[diff(Nj,’y’),diff(Nk,’y’),diff(Nl,’y’),diff(Nm,’y’)];
dzNjklm=[diff(Nj,’z’),diff(Nk,’z’),diff(Nl,’z’),diff(Nm,’z’)];
syms Xi Eta zzeta
F=solve(Nj-Xi,Nk-Eta,Nl-zzeta,’x’,’y’,’z’);
x=F.x;
y=F.y;
z=F.z;clear F
JC=abs(det(jacobian([x;y;z],[Xi, Eta, zzeta])));
MDjkl(4,:)=[1,x,y,z];
Djkl=det(MDjkl);
Nma=Djkl/Cjklm;clear Djkl
clear x y z;
%******************* Integrales por cuadratura ***********
u1=sqrt(3/5);u2=0;u3=-u1;
c1=(5/9);c2=8/9;c3=c1;
Xi1=0.5*(u1+1);Xi2=0.5*(u2+1);Xi3=0.5*(u3+1);
Eta1=(1-u1)*(1+sqrt(3)/3)*0.25;Eta1b=(1-u1)*(1-sqrt(3)/3)*0.25;
Eta2=(1-u2)*(1+sqrt(3)/3)*0.25;Eta2b=(1-u2)*(1-sqrt(3)/3)*0.25;
Eta3=(1-u3)*(1+sqrt(3)/3)*0.25;Eta3b=(1-u3)*(1-sqrt(3)/3)*0.25;
zzeta1=(1-u1)*(1-sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzeta1b=(1-u1)*(1-sqrt(3)/3)*(1-sqrt(3)/3)*0.125;
zzeta1c=(1-u1)*(1+sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzeta2=(1-u2)*(1-sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzeta2b=(1-u2)*(1-sqrt(3)/3)*(1-sqrt(3)/3)*0.125;
zzeta2c=(1-u2)*(1+sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzeta3=(1-u3)*(1-sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzeta3b=(1-u3)*(1-sqrt(3)/3)*(1-sqrt(3)/3)*0.125;
zzeta3c=(1-u3)*(1+sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
syms x y z
F1=solve(Nj-Xi1,Nk-Eta1,Nl-zzeta1,’x’,’y’,’z’);
x=F1.x;y=F1.y;z=F1.z;clear F1
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P111=JC*[Xi1;Eta1;zzeta1;Nm]*[Xi1;Eta1;zzeta1;Nm]’;
syms x y z
F2=solve(Nj-Xi1,Nk-Eta1,Nl-zzeta1b,’x’,’y’,’z’);
x=F2.x;y=F2.y;z=F2.z;clear F2
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P111b=JC*[Xi1;Eta1;zzeta1b;Nm]*[Xi1;Eta1;zzeta1b;Nm]’;
syms x y z
F3=solve(Nj-Xi1,Nk-Eta1b,Nl-zzeta1c,’x’,’y’,’z’);
x=F3.x;y=F3.y;z=F3.z;clear F3
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P11b1c=JC*[Xi1;Eta1b;zzeta1c;Nm]*[Xi1;Eta1b;zzeta1c;Nm]’;
syms x y z
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F4=solve(Nj-Xi1,Nk-Eta1b,Nl-zzeta1,’x’,’y’,’z’);
x=F4.x;y=F4.y;z=F4.z;clear F4
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P11b1=JC*[Xi1;Eta1b;zzeta1;Nm]*[Xi1;Eta1b;zzeta1;Nm]’;
syms x y z
F5=solve(Nj-Xi2,Nk-Eta2,Nl-zzeta2,’x’,’y’,’z’);
x=F5.x;y=F5.y;z=F5.z;clear F5
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P222=JC*[Xi2;Eta2;zzeta2;Nm]*[Xi2;Eta2;zzeta2;Nm]’;
syms x y z
F6=solve(Nj-Xi2,Nk-Eta2,Nl-zzeta2b,’x’,’y’,’z’);
x=F6.x;y=F6.y;z=F6.z;clear F6
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P222b=JC*[Xi2;Eta2;zzeta2b;Nm]*[Xi2;Eta2;zzeta2b;Nm]’;
syms x y z
F7=solve(Nj-Xi2,Nk-Eta2b,Nl-zzeta2c,’x’,’y’,’z’);
x=F7.x;y=F7.y;z=F7.z;clear F7
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P22b2c=JC*[Xi2;Eta2b;zzeta2c;Nm]*[Xi2;Eta2b;zzeta2c;Nm]’;
syms x y z
F8=solve(Nj-Xi2,Nk-Eta2b,Nl-zzeta2,’x’,’y’,’z’);
x=F8.x;y=F8.y;z=F8.z;clear F8
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P22b2=JC*[Xi2;Eta2b;zzeta2;Nm]*[Xi2;Eta2b;zzeta2;Nm]’;
syms x y z
F9=solve(Nj-Xi3,Nk-Eta3,Nl-zzeta3,’x’,’y’,’z’);
x=F9.x;y=F9.y;z=F9.z;clear F9
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P333=JC*[Xi3;Eta3;zzeta3;Nm]*[Xi3;Eta3;zzeta3;Nm]’;
syms x y z
F10=solve(Nj-Xi3,Nk-Eta3,Nl-zzeta3b,’x’,’y’,’z’);
x=F10.x;y=F10.y;z=F10.z;clear F10
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P333b=JC*[Xi3;Eta3;zzeta3b;Nm]*[Xi3;Eta3;zzeta3b;Nm]’;
syms x y z
F11=solve(Nj-Xi3,Nk-Eta3b,Nl-zzeta3c,’x’,’y’,’z’);
x=F11.x;y=F11.y;z=F11.z;clear F11
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MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P33b3c=JC*[Xi3;Eta3b;zzeta3c;Nm]*[Xi3;Eta3b;zzeta3c;Nm]’;
syms x y z
F12=solve(Nj-Xi3,Nk-Eta3b,Nl-zzeta3,’x’,’y’,’z’);
x=F12.x;y=F12.y;z=F12.z;clear F12
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P33b3=JC*[Xi3;Eta3b;zzeta3;Nm]*[Xi3;Eta3b;zzeta3;Nm]’;
theta=c1*(1-u1)∧2*(1-sqrt(3)/3)*(1/64)*(P111+P111b)+
c1*(1-u1)∧2*(1+sqrt(3)/3)*(1/64)*(P11b1c+P11b1)
+c2*(1-u2)∧2*(1-sqrt(3)/3)*(1/64)*(P222+P222b)+
c2*(1-u2)∧2*(1+sqrt(3)/3)*(1/64)*(P22b2c+P22b2)
+c3*(1-u3)∧2*(1-sqrt(3)/3)*(1/64)*(P333+P333b)+
c3*(1-u3)∧2*(1+sqrt(3)/3)*(1/64)*(P33b3c+P33b3)
psix=JC*dxNjklm’*dxNjklm*(1/6)
psiy=JC*dyNjklm’*dyNjklm*(1/6)
psiz=JC*dzNjklm’*dzNjklm*(1/6)
psi=psix+psiy+psiz;clear psix psiy psiz
psiS=zeros(nd,nd);
thetaS=zeros(nd,nd);
vpru=t(i,:);
for kk=1:1:3
for ll=1:1:3
psiS(vpru(kk),vpru(ll))=psi(kk,ll);
thetaS(vpru(kk),vpru(ll))=theta(kk,ll);
end
end
clear kk ll psi theta vpru
thetaT=thetaS+thetaT;clear thetaS
psiT=psiS+psiT;clear psiS
end
clear vc1 i
p olof=p’;
t olof=t1’;
bound edges=boundedges(p olof,t olof);
bound nodes=unique(bound edges); clear bound edges
%*************************************************
%*************************************************
%** Calculo de la temperatura en el tiempo 1******
bound nodes=unique(surftri(p,t));
XXhn1=rho*c*thetaT+lambda*Deltat*0.5*psiT;
XXhn2=rho*c*thetaT-lambda*Deltat*0.5*psiT;
XXh1=XXhn1;
XXh2=XXhn2;
XXh1(bound nodes,:)=[ ];
vph=XXh2*(T0ext*ones(nd,1))+0.5*Deltat*thetaT*(q{1}’);
vph(bound nodes,:)=[ ];
for j=1:1:max(size(bound nodes))
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vph=vph-XXh1(:,bound nodes(j))*T0ext;
end
XXh1(:,bound nodes)=[ ];
Tc{1}=cgs(XXh1,vph,1e-16,100);
clear i j
j=1;
for i=1:1:nd
if ismember(i,bound nodes)
T{1}(i)=T0ext;
else
T{1}(i)=Tc{1}(j);
j=j+1;
end
end
T{1}=T{1}’;
clear XXh1 vph XXh2 j
for timedis=2:1:timeheatmax
timedis
vphn=XXhn2*T{timedis-1}+Deltat*0.5*thetaT*((q{timedis})’+(q{timedis-1})’);
XXhnt=XXhn1;
XXhnt(bound nodes,:)=[ ];
vphn(bound nodes,:)=[ ];
for j=1:1:max(size(bound nodes))
vphn=vphn-XXhnt(:,bound nodes(j))*T0ext;
end
XXhnt(:,bound nodes)=[ ];
Tc{timedis}=cgs(XXhnt,vphn,1e-16,100);
clear i j
j=1;
for i=1:1:nd
if ismember(i,bound nodes)
T{timedis}(i,1)=T0ext;
else
T{timedis}(i,1)=Tc{timedis}(j);
j=j+1;
end
end
end
clear Tc j XXhnt vphn bound nodes XXhn1 XXhn2
out T=T;
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Apéndice H

ThermalFEMConv 3D.m

function out Tconv=ThermalFEMConv 3D(p,t,rho,lambda,c,T0ext,h,Deltat,Tm,q,timeheatmax)
lf1=max(size(t));
nd=max(size(p));
for i=1:1:lf1
nodos{i}=t(i,:);
for j=1:1:4
cord{j}=p(nodos{i}(j),:);
end
cord1{i}=cord;
end
clear nodos cord j i
psiT=0;
thetaT=0;
vc1=[1;1;1;1];
for i=1:1:lf1
i
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDklm=vpa([vc1 s2]);
MDjlm=vpa([vc1 s2]);
MDjkm=vpa([vc1 s2]);
MDjkl=vpa([vc1 s2]);
Cjklm=det([vc1 s2]);clear s2
%*****Generacion de los Nj(x,y,z)
syms x y z
MDklm(1,:)=[1,x,y,z];
Dklm=det(MDklm);
Nj=Dklm/Cjklm;clear Dklm MDklm
MDjlm(2,:)=[1,x,y,z];
Djlm=det(MDjlm);
Nk=Djlm/Cjklm;clear Djlm MDjlm
MDjkm(3,:)=[1,x,y,z];
Djkm=det(MDjkm);
Nl=Djkm/Cjklm;clear Djkm MDjkm
MDjkl(4,:)=[1,x,y,z];
Djkl=det(MDjkl);
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Nm=Djkl/Cjklm;clear Djkl
dxNjklm=[diff(Nj,’x’),diff(Nk,’x’),diff(Nl,’x’),diff(Nm,’x’)];
dyNjklm=[diff(Nj,’y’),diff(Nk,’y’),diff(Nl,’y’),diff(Nm,’y’)];
dzNjklm=[diff(Nj,’z’),diff(Nk,’z’),diff(Nl,’z’),diff(Nm,’z’)];
syms Xi Eta zzeta
F=solve(Nj-Xi,Nk-Eta,Nl-zzeta,’x’,’y’,’z’);
x=F.x;
y=F.y;
z=F.z;clear F
JC=abs(det(jacobian([x;y;z],[Xi, Eta, zzeta])));
MDjkl(4,:)=[1,x,y,z];
Djkl=det(MDjkl);
Nma=Djkl/Cjklm;clear Djkl
clear x y z;
%***************** Integrales por cuadratura ************
u1=sqrt(3/5);u2=0;u3=-u1;
c1=(5/9);c2=8/9;c3=c1;
Xi1=0.5*(u1+1);Xi2=0.5*(u2+1);Xi3=0.5*(u3+1);
Eta1=(1-u1)*(1+sqrt(3)/3)*0.25;Eta1b=(1-u1)*(1-sqrt(3)/3)*0.25;
Eta2=(1-u2)*(1+sqrt(3)/3)*0.25;Eta2b=(1-u2)*(1-sqrt(3)/3)*0.25;
Eta3=(1-u3)*(1+sqrt(3)/3)*0.25;Eta3b=(1-u3)*(1-sqrt(3)/3)*0.25;
zzeta1=(1-u1)*(1-sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzeta1b=(1-u1)*(1-sqrt(3)/3)*(1-sqrt(3)/3)*0.125;
zzeta1c=(1-u1)*(1+sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzeta2=(1-u2)*(1-sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzeta2b=(1-u2)*(1-sqrt(3)/3)*(1-sqrt(3)/3)*0.125;
zzeta2c=(1-u2)*(1+sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzeta3=(1-u3)*(1-sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzeta3b=(1-u3)*(1-sqrt(3)/3)*(1-sqrt(3)/3)*0.125;
zzeta3c=(1-u3)*(1+sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
syms x y z
F1=solve(Nj-Xi1,Nk-Eta1,Nl-zzeta1,’x’,’y’,’z’);
x=F1.x;y=F1.y;z=F1.z;clear F1
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P111=JC*[Xi1;Eta1;zzeta1;Nm]*[Xi1;Eta1;zzeta1;Nm]’;
syms x y z
F2=solve(Nj-Xi1,Nk-Eta1,Nl-zzeta1b,’x’,’y’,’z’);
x=F2.x;y=F2.y;z=F2.z;clear F2
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P111b=JC*[Xi1;Eta1;zzeta1b;Nm]*[Xi1;Eta1;zzeta1b;Nm]’;
syms x y z
F3=solve(Nj-Xi1,Nk-Eta1b,Nl-zzeta1c,’x’,’y’,’z’);
x=F3.x;y=F3.y;z=F3.z;clear F3
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P11b1c=JC*[Xi1;Eta1b;zzeta1c;Nm]*[Xi1;Eta1b;zzeta1c;Nm]’;
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syms x y z
F4=solve(Nj-Xi1,Nk-Eta1b,Nl-zzeta1,’x’,’y’,’z’);
x=F4.x;y=F4.y;z=F4.z;clear F4
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P11b1=JC*[Xi1;Eta1b;zzeta1;Nm]*[Xi1;Eta1b;zzeta1;Nm]’;
syms x y z
F5=solve(Nj-Xi2,Nk-Eta2,Nl-zzeta2,’x’,’y’,’z’);
x=F5.x;y=F5.y;z=F5.z;clear F5
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P222=JC*[Xi2;Eta2;zzeta2;Nm]*[Xi2;Eta2;zzeta2;Nm]’;
syms x y z
F6=solve(Nj-Xi2,Nk-Eta2,Nl-zzeta2b,’x’,’y’,’z’);
x=F6.x;y=F6.y;z=F6.z;clear F6
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P222b=JC*[Xi2;Eta2;zzeta2b;Nm]*[Xi2;Eta2;zzeta2b;Nm]’;
syms x y z
F7=solve(Nj-Xi2,Nk-Eta2b,Nl-zzeta2c,’x’,’y’,’z’);
x=F7.x;y=F7.y;z=F7.z;clear F7
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P22b2c=JC*[Xi2;Eta2b;zzeta2c;Nm]*[Xi2;Eta2b;zzeta2c;Nm]’;
syms x y z
F8=solve(Nj-Xi2,Nk-Eta2b,Nl-zzeta2,’x’,’y’,’z’);
x=F8.x;y=F8.y;z=F8.z;clear F8
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P22b2=JC*[Xi2;Eta2b;zzeta2;Nm]*[Xi2;Eta2b;zzeta2;Nm]’;
syms x y z
F9=solve(Nj-Xi3,Nk-Eta3,Nl-zzeta3,’x’,’y’,’z’);
x=F9.x;y=F9.y;z=F9.z;clear F9
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P333=JC*[Xi3;Eta3;zzeta3;Nm]*[Xi3;Eta3;zzeta3;Nm]’;
syms x y z
F10=solve(Nj-Xi3,Nk-Eta3,Nl-zzeta3b,’x’,’y’,’z’);
x=F10.x;y=F10.y;z=F10.z;clear F10
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P333b=JC*[Xi3;Eta3;zzeta3b;Nm]*[Xi3;Eta3;zzeta3b;Nm]’;
syms x y z
F11=solve(Nj-Xi3,Nk-Eta3b,Nl-zzeta3c,’x’,’y’,’z’);
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x=F11.x;y=F11.y;z=F11.z;clear F11
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P33b3c=JC*[Xi3;Eta3b;zzeta3c;Nm]*[Xi3;Eta3b;zzeta3c;Nm]’;
syms x y z
F12=solve(Nj-Xi3,Nk-Eta3b,Nl-zzeta3,’x’,’y’,’z’);
x=F12.x;y=F12.y;z=F12.z;clear F12
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P33b3=JC*[Xi3;Eta3b;zzeta3;Nm]*[Xi3;Eta3b;zzeta3;Nm]’;
theta=c1*(1-u1)∧2*(1-sqrt(3)/3)*(1/64)*(P111+P111b)+
c1*(1-u1)∧2*(1+sqrt(3)/3)*(1/64)*(P11b1c+P11b1)+
c2*(1-u2)∧2*(1-sqrt(3)/3)*(1/64)*(P222+P222b)+
c2*(1-u2)∧2*(1+sqrt(3)/3)*(1/64)*(P22b2c+P22b2)+
c3*(1-u3)∧2*(1-sqrt(3)/3)*(1/64)*(P333+P333b)+
c3*(1-u3)∧2*(1+sqrt(3)/3)*(1/64)*(P33b3c+P33b3)
psix=JC*dxNjklm’*dxNjklm*(1/6)
psiy=JC*dyNjklm’*dyNjklm*(1/6)
psiz=JC*dzNjklm’*dzNjklm*(1/6)
psi=psix+psiy+psiz;clear psix psiy psiz
psiS=zeros(nd,nd);
thetaS=zeros(nd,nd);
vpru=t(i,:);
for kk=1:1:3
for ll=1:1:3
psiS(vpru(kk),vpru(ll))=psi(kk,ll);
thetaS(vpru(kk),vpru(ll))=theta(kk,ll);
end
end
clear kk ll psi theta vpru
thetaT=thetaS+thetaT;clear thetaS
psiT=psiS+psiT;clear psiS
end
clear vc1 i
%*****************************************
%*********** alphafdc d *****************
%*****************************************
vc1=[1;1;1;1];
[ii,jj]=find(p(:,2)>0.46);clear jj
for i=1:1:lf1
i
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDklm=vpa([vc1 s2]);
MDjlm=vpa([vc1 s2]);
MDjkm=vpa([vc1 s2]);
MDjkl=vpa([vc1 s2]);
Cjklm=det([vc1 s2]);clear s2
if max(size(intersect(t(i,:),ii)))>2
tcord=intersect(t(i,:),ii);
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pcord2D1=p(tcord(1),:);pcord2D1(2)=[ ];
pcord2D2=p(tcord(2),:);pcord2D2(2)=[ ];
pcord2D3=p(tcord(3),:);pcord2D3(2)=[ ];
Cjkl2D=det([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
if Cjkl2D<0
pcord2D1=p(tcord(2),:);pcord2D1(2)=[ ];
pcord2D2=p(tcord(1),:);pcord2D2(2)=[ ];
Cjkl2D=det([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
else
end
clear tcord
MDkl2D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
MDjl2D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
clear pcord2D1 pcord2D2 pcord2D3
syms x z;
MDkl2D(1,:)=[1,x,z];
Nj2D=det(MDkl2D)/Cjkl2D;
MDjl2D(2,:)=[1,x,z];
Nk2D=det(MDjl2D)/Cjkl2D;
syms Xi2D Eta2D
F=solve(Nj2D-Xi2D,Nk2D-Eta2D,’x’,’z’);
x=F.x
z=F.z
y=0.5;
clear MDkl2D MDjl2D Nj2D Nk2D Cjkl2D F
MDklm(1,:)=[1,x,y,z];
Dklm=det(MDklm);
Nj=Dklm/Cjklm;clear Dklm MDklm
MDjlm(2,:)=[1,x,y,z];
Djlm=det(MDjlm);
Nk=Djlm/Cjklm;clear Djlm MDjlm
MDjkm(3,:)=[1,x,y,z];
Djkm=det(MDjkm);
Nl=Djkm/Cjklm;clear Djkm MDjkm
MDjkl(4,:)=[1,x,y,z];
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl MDjkl Cjklm
JC=abs(det(jacobian([x;z],[Xi2D, Eta2D])));
alphafdc d1{i}=JC*int(int([Nj;Nk;Nl;Nm],Eta2D,0,1-Xi2D),Xi2D,0,1);
alphafdc d2{i}=JC*int(int([Nj;Nk;Nl;Nm]*[Nj,Nk,Nl,Nm],Eta2D,0,1-Xi2D),Xi2D,0,1);clear
Nj Nk Nl Nm JC Eta2D Xi2D x y z
else
alphafdc d1{i}=zeros(4,1);clear MDklm MDjlm MDjkm MDjkl Cjklm
alphafdc d2{i}=zeros(4,4);
end
end
clear i vc1 ii
%****************************************
%*********** alphafdc c*****************
%****************************************
vc1=[1;1;1;1];
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[ii,jj]=find(p(:,2)<-0.46);clear jj
for i=1:1:lf1
i
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDklm=vpa([vc1 s2]);
MDjlm=vpa([vc1 s2]);
MDjkm=vpa([vc1 s2]);
MDjkl=vpa([vc1 s2]);
Cjklm=det([vc1 s2]);clear s2
if max(size(intersect(t(i,:),ii)))>2
tcord=intersect(t(i,:),ii);
pcord2D1=p(tcord(1),:);pcord2D1(2)=[ ];
pcord2D2=p(tcord(2),:);pcord2D2(2)=[ ];
pcord2D3=p(tcord(3),:);pcord2D3(2)=[ ];
Cjkl2D=det([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
if Cjkl2D<0
pcord2D1=p(tcord(2),:);pcord2D1(2)=[ ];
pcord2D2=p(tcord(1),:);pcord2D2(2)=[ ];
Cjkl2D=det([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
else
end
clear tcord
MDkl2D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
MDjl2D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
clear pcord2D1 pcord2D2 pcord2D3
syms x z;
MDkl2D(1,:)=[1,x,z];
Nj2D=det(MDkl2D)/Cjkl2D;
MDjl2D(2,:)=[1,x,z];
Nk2D=det(MDjl2D)/Cjkl2D;
syms Xi2D Eta2D
F=solve(Nj2D-Xi2D,Nk2D-Eta2D,’x’,’z’);
x=F.x
z=F.z
y=-0.5;
clear MDkl2D MDjl2D Nj2D Nk2D Cjkl2D F
MDklm(1,:)=[1,x,y,z];
Dklm=det(MDklm);
Nj=Dklm/Cjklm;clear Dklm MDklm
MDjlm(2,:)=[1,x,y,z];
Djlm=det(MDjlm);
Nk=Djlm/Cjklm;clear Djlm MDjlm
MDjkm(3,:)=[1,x,y,z];
Djkm=det(MDjkm);
Nl=Djkm/Cjklm;clear Djkm MDjkm
MDjkl(4,:)=[1,x,y,z];
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl MDjkl Cjklm
JC=abs(det(jacobian([x;z],[Xi2D, Eta2D])));
alphafdc c1{i}=JC*int(int([Nj;Nk;Nl;Nm],Eta2D,0,1-Xi2D),Xi2D,0,1);
alphafdc c2{i}=JC*int(int([Nj;Nk;Nl;Nm]*[Nj,Nk,Nl,Nm],Eta2D,0,1-Xi2D),Xi2D,0,1);clear
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Nj Nk Nl Nm JC Xi2D Eta2D x y z
else
alphafdc c1{i}=zeros(4,1);clear MDklm MDjlm MDjkm MDjkl Cjklm
alphafdc c2{i}=zeros(4,4);
end
end
clear i vc1 ii
%******************************************
%********** alphafba b *******************
%******************************************
vc1=[1;1;1;1];
[ii,jj]=find(p(:,1)>0.46);clear jj
for i=1:1:lf1
i
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDklm=vpa([vc1 s2]);
MDjlm=vpa([vc1 s2]);
MDjkm=vpa([vc1 s2]);
MDjkl=vpa([vc1 s2]);
Cjklm=det([vc1 s2]);clear s2
if max(size(intersect(t(i,:),ii)))>2
tcord=intersect(t(i,:),ii);
pcord2D1=p(tcord(1),:);pcord2D1(1)=[ ];
pcord2D2=p(tcord(2),:);pcord2D2(1)=[ ];
pcord2D3=p(tcord(3),:);pcord2D3(1)=[ ];
Cjkl2D=det([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
if Cjkl2D<0
pcord2D1=p(tcord(2),:);pcord2D1(1)=[ ];
pcord2D2=p(tcord(1),:);pcord2D2(1)=[ ];
Cjkl2D=det([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
else
end
clear tcord
MDkl2D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
MDjl2D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
clear pcord2D1 pcord2D2 pcord2D3
syms y z;
MDkl2D(1,:)=[1,y,z];
Nj2D=det(MDkl2D)/Cjkl2D;
MDjl2D(2,:)=[1,y,z];
Nk2D=det(MDjl2D)/Cjkl2D;
syms Xi2D Eta2D
F=solve(Nj2D-Xi2D,Nk2D-Eta2D,’y’,’z’);
y=F.y
z=F.z
x=0.5;
clear MDkl2D MDjl2D Nj2D Nk2D Cjkl2D F
MDklm(1,:)=[1,x,y,z];
Dklm=det(MDklm);
Nj=Dklm/Cjklm;clear Dklm MDklm
MDjlm(2,:)=[1,x,y,z];
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Djlm=det(MDjlm);
Nk=Djlm/Cjklm;clear Djlm MDjlm
MDjkm(3,:)=[1,x,y,z];
Djkm=det(MDjkm);
Nl=Djkm/Cjklm;clear Djkm MDjkm
MDjkl(4,:)=[1,x,y,z];
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl MDjkl Cjklm
JC=abs(det(jacobian([y;z],[Xi2D, Eta2D])));
alphafba b1{i}=JC*int(int([Nj;Nk;Nl;Nm],Eta2D,0,1-Xi2D),Xi2D,0,1);
alphafba b2{i}=JC*int(int([Nj;Nk;Nl;Nm]*[Nj,Nk,Nl,Nm],Eta2D,0,1-Xi2D),Xi2D,0,1);clear
Nj Nk Nl Nm JC Xi2D Eta2D x y z
else
alphafba b1{i}=zeros(4,1);clear MDklm MDjlm MDjkm MDjkl Cjklm
alphafba b2{i}=zeros(4,4);
end
end
clear i vc1 ii
%******************************************
%*********** alphafba a *******************
%******************************************
vc1=[1;1;1;1];
[ii,jj]=find(p(:,1)<-0.46);clear jj
for i=1:1:lf1
i
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDklm=vpa([vc1 s2]);
MDjlm=vpa([vc1 s2]);
MDjkm=vpa([vc1 s2]);
MDjkl=vpa([vc1 s2]);
Cjklm=det([vc1 s2]);clear s2
if max(size(intersect(t(i,:),ii)))>2
tcord=intersect(t(i,:),ii);
pcord2D1=p(tcord(1),:);pcord2D1(1)=[ ];
pcord2D2=p(tcord(2),:);pcord2D2(1)=[ ];
pcord2D3=p(tcord(3),:);pcord2D3(1)=[ ];
Cjkl2D=det([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
if Cjkl2D<0
pcord2D1=p(tcord(2),:);pcord2D1(2)=[ ];
pcord2D2=p(tcord(1),:);pcord2D2(2)=[ ];
Cjkl2D=det([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
else
end
clear tcord
MDkl2D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
MDjl2D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
clear pcord2D1 pcord2D2 pcord2D3
syms y z;
MDkl2D(1,:)=[1,y,z];
Nj2D=det(MDkl2D)/Cjkl2D;
MDjl2D(2,:)=[1,y,z];
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Nk2D=det(MDjl2D)/Cjkl2D;
syms Xi2D Eta2D
F=solve(Nj2D-Xi2D,Nk2D-Eta2D,’y’,’z’);
y=F.y
z=F.z
x=-0.5;
clear MDkl2D MDjl2D Nj2D Nk2D Cjkl2D F
MDklm(1,:)=[1,x,y,z];
Dklm=det(MDklm);
Nj=Dklm/Cjklm;clear Dklm MDklm
MDjlm(2,:)=[1,x,y,z];
Djlm=det(MDjlm);
Nk=Djlm/Cjklm;clear Djlm MDjlm
MDjkm(3,:)=[1,x,y,z];
Djkm=det(MDjkm);
Nl=Djkm/Cjklm;clear Djkm MDjkm
MDjkl(4,:)=[1,x,y,z];
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl MDjkl Cjklm
JC=abs(det(jacobian([y;z],[Xi2D, Eta2D])));
alphafba a1{i}=JC*int(int([Nj;Nk;Nl;Nm],Eta2D,0,1-Xi2D),Xi2D,0,1);
alphafba a2{i}=JC*int(int([Nj;Nk;Nl;Nm]*[Nj,Nk,Nl,Nm],Eta2D,0,1-Xi2D),Xi2D,0,1); clear
Nj Nk Nl Nm JC Xi2D Eta2D x y
z else alphafba a1{i}=zeros(4,1);clear MDklm MDjlm MDjkm MDjkl Cjklm
alphafba a2{i}=zeros(4,4);
end
end
clear i vc1 ii
%****************************************
%*********** alphaffe f ****************
%****************************************
vc1=[1;1;1;1];
[ii,jj]=find(p(:,3)>0.96);clear jj
for i=1:1:lf1
i
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDklm=vpa([vc1 s2]);
MDjlm=vpa([vc1 s2]);
MDjkm=vpa([vc1 s2]);
MDjkl=vpa([vc1 s2]);
Cjklm=det([vc1 s2]);clear s2
if max(size(intersect(t(i,:),ii)))>2
tcord=intersect(t(i,:),ii);
pcord2D1=p(tcord(1),:);pcord2D1(3)=[ ];
pcord2D2=p(tcord(2),:);pcord2D2(3)=[ ];
pcord2D3=p(tcord(3),:);pcord2D3(3)=[ ];
Cjkl2D=det([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
if Cjkl2D<0
pcord2D1=p(tcord(2),:);pcord2D1(2)=[ ];
pcord2D2=p(tcord(1),:);pcord2D2(2)=[ ];
Cjkl2D=det([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
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else
end
clear tcord
MDkl2D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
MDjl2D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
clear pcord2D1 pcord2D2 pcord2D3
syms x y;
MDkl2D(1,:)=[1,x,y];
Nj2D=det(MDkl2D)/Cjkl2D;
MDjl2D(2,:)=[1,x,y];
Nk2D=det(MDjl2D)/Cjkl2D;
syms Xi2D Eta2D
F=solve(Nj2D-Xi2D,Nk2D-Eta2D,’x’,’y’);
x=F.x
y=F.y
z=1;
clear MDkl2D MDjl2D Nj2D Nk2D Cjkl2D F
MDklm(1,:)=[1,x,y,z];
Dklm=det(MDklm);
Nj=Dklm/Cjklm;clear Dklm MDklm
MDjlm(2,:)=[1,x,y,z];
Djlm=det(MDjlm);
Nk=Djlm/Cjklm;clear Djlm MDjlm
MDjkm(3,:)=[1,x,y,z];
Djkm=det(MDjkm);
Nl=Djkm/Cjklm;clear Djkm MDjkm
MDjkl(4,:)=[1,x,y,z];
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl MDjkl Cjklm
JC=abs(det(jacobian([x;y],[Xi2D, Eta2D])));
alphaffe f1{i}=JC*int(int([Nj;Nk;Nl;Nm],Eta2D,0,1-Xi2D),Xi2D,0,1);
alphaffe f2{i}=JC*int(int([Nj;Nk;Nl;Nm]*[Nj,Nk,Nl,Nm],Eta2D,0,1-Xi2D),Xi2D,0,1); clear
Nj Nk Nl Nm JC Xi2D Eta2D x y z
else
alphaffe f1{i}=zeros(4,1);clear MDklm MDjlm MDjkm MDjkl Cjklm
alphaffe f2{i}=zeros(4,4);
end
end
clear i vc1 ii %******************************************
%*********** alphaffe f ******************
%******************************************
vc1=[1;1;1;1];
[ii,jj]=find(p(:,3)<-0.96);clear jj
for i=1:1:lf1
i
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDklm=vpa([vc1 s2]);
MDjlm=vpa([vc1 s2]);
MDjkm=vpa([vc1 s2]);
MDjkl=vpa([vc1 s2]);
Cjklm=det([vc1 s2]);clear s2
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if max(size(intersect(t(i,:),ii)))>2
tcord=intersect(t(i,:),ii);
pcord2D1=p(tcord(1),:);pcord2D1(3)=[ ];
pcord2D2=p(tcord(2),:);pcord2D2(3)=[ ];
pcord2D3=p(tcord(3),:);pcord2D3(3)=[ ];
Cjkl2D=det([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
if Cjkl2D<0
pcord2D1=p(tcord(2),:);pcord2D1(2)=[ ];
pcord2D2=p(tcord(1),:);pcord2D2(2)=[ ];
Cjkl2D=det([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
else
end
clear tcord
MDkl2D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
MDjl2D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] ] ]);
clear pcord2D1 pcord2D2 pcord2D3
syms x y;
MDkl2D(1,:)=[1,x,y];
Nj2D=det(MDkl2D)/Cjkl2D;
MDjl2D(2,:)=[1,x,y];
Nk2D=det(MDjl2D)/Cjkl2D;
syms Xi2D Eta2D
F=solve(Nj2D-Xi2D,Nk2D-Eta2D,’x’,’y’);
x=F.x
y=F.y
z=-1;
clear MDkl2D MDjl2D Nj2D Nk2D Cjkl2D F
MDklm(1,:)=[1,x,y,z];
Dklm=det(MDklm);
Nj=Dklm/Cjklm;clear Dklm MDklm
MDjlm(2,:)=[1,x,y,z];
Djlm=det(MDjlm);
Nk=Djlm/Cjklm;clear Djlm MDjlm
MDjkm(3,:)=[1,x,y,z];
Djkm=det(MDjkm);
Nl=Djkm/Cjklm;clear Djkm MDjkm
MDjkl(4,:)=[1,x,y,z];
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl MDjkl Cjklm
JC=abs(det(jacobian([x;y],[Xi2D, Eta2D])));
alphaffe e1{i}=JC*int(int([Nj;Nk;Nl;Nm],Eta2D,0,1-Xi2D),Xi2D,0,1);
alphaffe e2{i}=JC*int(int([Nj;Nk;Nl;Nm]*[Nj,Nk,Nl,Nm],Eta2D,0,1-Xi2D),Xi2D,0,1); clear
Nj Nk Nl Nm JC Xi2D Eta2D x y z
else
alphaffe e1{i}=zeros(4,1);clear MDklm MDjlm MDjkm MDjkl Cjklm
alphaffe e2{i}=zeros(4,4);
end
end
clear i vc1 ii
for i=1:1:lf1
alphaf1{i}=alphafba b1{i}-alphafba a1{i}+alphafdc d1{i}-alphafdc c1{i}+
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alphaffe f1{i}-alphaffe e1{i};
alphaf2{i}=alphafba a2{i}-alphafba b2{i}+alphafdc c2{i}-alphafdc d2{i}+
alphaffe e2{i}-alphaffe f2{i};
end
clear alphafba b1 alphafba a1 alphafdc d1 alphafdc c1 alphaffe f1 alphaffe e1 alphafba a2
alphafba b2 alphafdc c2 alphafdc d2 alphaffe e2 alphaffe f2
alphaf1T=0;
alphaf2T=0;
for i=1:1:lf1
alphaf1S=zeros(nd,1);
alphaf2S=zeros(nd,nd);
vpru=t(i,:);
for kk=1:1:4
for ll=1:1:4
alphaf2S(vpru(kk),vpru(ll))=alphaf2i(kk,ll);
end
alphaf1S(vpru(kk))=alphaf1{i}(kk);
end
alphaf1T=alphaf1T+alphaf1S;
alphaf2T=alphaf2T+alphaf2S;
end
clear alphaf2 alphaf1 alphaf1S alphaf2S
%***************************************************
%* Calculo de la temperatura en el tiempo 1*********
XXhn1=rho*c*thetaT+Deltat*0.5*lambda*((h/lambda)*alphaf2T+psiT);
XXhn2=rho*c*thetaT-Deltat*0.5*lambda*((h/lambda)*alphaf2T+psiT);
XXh1=XXhn1;
XXh2=XXhn2;
vph=XXh2*(T0ext*ones(nd,1))-h*Tm*Deltat*alphaf1T+Deltat*0.5*thetaT*(q{1}’);
T{1}=cgs(XXh1,vph,1e-16,100);
for j=1:1:nd
if T{1}(j)<(T0ext-10)
T{1}(j)=T0ext;
else
end
end
clear XXh1 vph XXh2
for timedis=2:1:timeheatmax
timedis
vphn=XXhn2*T{timedis-1}-h*Tm*Deltat*alphaf1T+Deltat*0.5*thetaT*((q{timedis})’+(q{timedis-1})’);
XXhnt=XXhn1;
T{timedis}=cgs(XXhnt,vphn,1e-16,100);
for j=1:1:nd
if T{timedis}(j)<(T0ext-10)
T{timedis}(j)=T0ext;
else
end
end
end
clear j XXhnt vphn bound nodes XXhn1 XXhn2 q
out Tconv=T;
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function out TN0=ThermalFEMN0 3D(p,t,rho,lambda,c,T0ext,Deltat,q,timeheatmax)
lf1=max(size(t));
nd=max(size(p));
for i=1:1:lf1
nodos{i}=t(i,:);
for j=1:1:4
cord{j}=p(nodos{i}(j),:);
end
cord1{i}=cord;
end
clear nodos cord j i
psiT=0;
thetaT=0;
vc1=[1;1;1;1];
for i=1:1:lf1
i
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDklm=vpa([vc1 s2]);
MDjlm=vpa([vc1 s2]);
MDjkm=vpa([vc1 s2]);
MDjkl=vpa([vc1 s2]);
Cjklm=det([vc1 s2]);clear s2
%****Generacion de los Nj(x,y,z)
syms x y z
MDklm(1,:)=[1,x,y,z];
Dklm=det(MDklm);
Nj=Dklm/Cjklm;clear Dklm MDklm
MDjlm(2,:)=[1,x,y,z];
Djlm=det(MDjlm);
Nk=Djlm/Cjklm;clear Djlm MDjlm
MDjkm(3,:)=[1,x,y,z];
Djkm=det(MDjkm);
Nl=Djkm/Cjklm;clear Djkm MDjkm
MDjkl(4,:)=[1,x,y,z];
Djkl=det(MDjkl);
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154 APÉNDICE I. THERMALFEMN0 3D.M

Nm=Djkl/Cjklm;clear Djkl
dxNjklm=[diff(Nj,’x’),diff(Nk,’x’),diff(Nl,’x’),diff(Nm,’x’)];
dyNjklm=[diff(Nj,’y’),diff(Nk,’y’),diff(Nl,’y’),diff(Nm,’y’)];
dzNjklm=[diff(Nj,’z’),diff(Nk,’z’),diff(Nl,’z’),diff(Nm,’z’)];
syms Xi Eta zzeta
F=solve(Nj-Xi,Nk-Eta,Nl-zzeta,’x’,’y’,’z’);
x=F.x;
y=F.y;
z=F.z;clear F
JC=abs(det(jacobian([x;y;z],[Xi, Eta, zzeta])));
MDjkl(4,:)=[1,x,y,z];
Djkl=det(MDjkl);
Nma=Djkl/Cjklm;clear Djkl
clear x y z;
%****************** Integrales por cuadratura ***********
u1=sqrt(3/5);u2=0;u3=-u1;
c1=(5/9);c2=8/9;c3=c1;
Xi1=0.5*(u1+1);Xi2=0.5*(u2+1);Xi3=0.5*(u3+1);
Eta1=(1-u1)*(1+sqrt(3)/3)*0.25;Eta1b=(1-u1)*(1-sqrt(3)/3)*0.25;
Eta2=(1-u2)*(1+sqrt(3)/3)*0.25;Eta2b=(1-u2)*(1-sqrt(3)/3)*0.25;
Eta3=(1-u3)*(1+sqrt(3)/3)*0.25;Eta3b=(1-u3)*(1-sqrt(3)/3)*0.25;
zzeta1=(1-u1)*(1-sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzeta1b=(1-u1)*(1-sqrt(3)/3)*(1-sqrt(3)/3)*0.125;
zzeta1c=(1-u1)*(1+sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzeta2=(1-u2)*(1-sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzeta2b=(1-u2)*(1-sqrt(3)/3)*(1-sqrt(3)/3)*0.125;
zzeta2c=(1-u2)*(1+sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzeta3=(1-u3)*(1-sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzeta3b=(1-u3)*(1-sqrt(3)/3)*(1-sqrt(3)/3)*0.125;
zzeta3c=(1-u3)*(1+sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
syms x y z
F1=solve(Nj-Xi1,Nk-Eta1,Nl-zzeta1,’x’,’y’,’z’);
x=F1.x;y=F1.y;z=F1.z;clear F1
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P111=JC*[Xi1;Eta1;zzeta1;Nm]*[Xi1;Eta1;zzeta1;Nm]’;
syms x y z
F2=solve(Nj-Xi1,Nk-Eta1,Nl-zzeta1b,’x’,’y’,’z’);
x=F2.x;y=F2.y;z=F2.z;clear F2
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P111b=JC*[Xi1;Eta1;zzeta1b;Nm]*[Xi1;Eta1;zzeta1b;Nm]’;
syms x y z
F3=solve(Nj-Xi1,Nk-Eta1b,Nl-zzeta1c,’x’,’y’,’z’);
x=F3.x;y=F3.y;z=F3.z;clear F3
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P11b1c=JC*[Xi1;Eta1b;zzeta1c;Nm]*[Xi1;Eta1b;zzeta1c;Nm]’;
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syms x y z
F4=solve(Nj-Xi1,Nk-Eta1b,Nl-zzeta1,’x’,’y’,’z’);
x=F4.x;y=F4.y;z=F4.z;clear F4
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P11b1=JC*[Xi1;Eta1b;zzeta1;Nm]*[Xi1;Eta1b;zzeta1;Nm]’;
syms x y z
F5=solve(Nj-Xi2,Nk-Eta2,Nl-zzeta2,’x’,’y’,’z’);
x=F5.x;y=F5.y;z=F5.z;clear F5
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P222=JC*[Xi2;Eta2;zzeta2;Nm]*[Xi2;Eta2;zzeta2;Nm]’;
syms x y z
F6=solve(Nj-Xi2,Nk-Eta2,Nl-zzeta2b,’x’,’y’,’z’);
x=F6.x;y=F6.y;z=F6.z;clear F6
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P222b=JC*[Xi2;Eta2;zzeta2b;Nm]*[Xi2;Eta2;zzeta2b;Nm]’;
syms x y z
F7=solve(Nj-Xi2,Nk-Eta2b,Nl-zzeta2c,’x’,’y’,’z’);
x=F7.x;y=F7.y;z=F7.z;clear F7
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P22b2c=JC*[Xi2;Eta2b;zzeta2c;Nm]*[Xi2;Eta2b;zzeta2c;Nm]’;
syms x y z
F8=solve(Nj-Xi2,Nk-Eta2b,Nl-zzeta2,’x’,’y’,’z’);
x=F8.x;y=F8.y;z=F8.z;clear F8
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P22b2=JC*[Xi2;Eta2b;zzeta2;Nm]*[Xi2;Eta2b;zzeta2;Nm]’;
syms x y z
F9=solve(Nj-Xi3,Nk-Eta3,Nl-zzeta3,’x’,’y’,’z’);
x=F9.x;y=F9.y;z=F9.z;clear F9
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P333=JC*[Xi3;Eta3;zzeta3;Nm]*[Xi3;Eta3;zzeta3;Nm]’;
syms x y z
F10=solve(Nj-Xi3,Nk-Eta3,Nl-zzeta3b,’x’,’y’,’z’);
x=F10.x;y=F10.y;z=F10.z;clear F10
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P333b=JC*[Xi3;Eta3;zzeta3b;Nm]*[Xi3;Eta3;zzeta3b;Nm]’;
syms x y z
F11=solve(Nj-Xi3,Nk-Eta3b,Nl-zzeta3c,’x’,’y’,’z’);
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x=F11.x;y=F11.y;z=F11.z;clear F11
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P33b3c=JC*[Xi3;Eta3b;zzeta3c;Nm]*[Xi3;Eta3b;zzeta3c;Nm]’;
syms x y z
F12=solve(Nj-Xi3,Nk-Eta3b,Nl-zzeta3,’x’,’y’,’z’);
x=F12.x;y=F12.y;z=F12.z;clear F12
MDjkl(4,:)=[1,x,y,z];clear x y z
Djkl=det(MDjkl);
Nm=Djkl/Cjklm;clear Djkl
P33b3=JC*[Xi3;Eta3b;zzeta3;Nm]*[Xi3;Eta3b;zzeta3;Nm]’;
theta=c1*(1-u1)∧2*(1-sqrt(3)/3)*(1/64)*(P111+P111b)+
c1*(1-u1)∧2*(1+sqrt(3)/3)*(1/64)*(P11b1c+P11b1)+
c2*(1-u2)∧2*(1-sqrt(3)/3)*(1/64)*(P222+P222b)+
c2*(1-u2)∧2*(1+sqrt(3)/3)*(1/64)*(P22b2c+P22b2)+
c3*(1-u3)∧2*(1-sqrt(3)/3)*(1/64)*(P333+P333b)+
c3*(1-u3)∧2*(1+sqrt(3)/3)*(1/64)*(P33b3c+P33b3)
psix=JC*dxNjklm’*dxNjklm*(1/6)
psiy=JC*dyNjklm’*dyNjklm*(1/6)
psiz=JC*dzNjklm’*dzNjklm*(1/6)
psi=psix+psiy+psiz;clear psix psiy psiz
psiS=zeros(nd,nd);
thetaS=zeros(nd,nd);
vpru=t(i,:);
for kk=1:1:3
for ll=1:1:3
psiS(vpru(kk),vpru(ll))=psi(kk,ll);
thetaS(vpru(kk),vpru(ll))=theta(kk,ll);
end
end
clear kk ll psi theta vpru
thetaT=thetaS+thetaT;clear thetaS
psiT=psiS+psiT;clear psiS
end
clear vc1 i
%****************************************************
%**Calculo de la temperatura en el tiempo 1**********
XXhn1=rho*c*thetaT+lambda*Deltat*0.5*psiT;
XXhn2=rho*c*thetaT-lambda*Deltat*0.5*psiT;
XXh1=XXhn1;
XXh2=XXhn2;
vph=XXh2*(T0ext*ones(nd,1))+0.5*Deltat*thetaT*(q{1}’);
T{1}=cgs(XXh1,vph,1e-16,100);
for j=1:1:nd
if T{1}(j)<(T0ext-10)
T{1}(j)=T0ext;
else
end
end
clear XXh1 vph XXh2
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for timedis=2:1:timeheatmax
timedis
vphn=XXhn2*T{timedis-1}+Deltat*0.5*thetaT*((q{timedis})’+(q{timedis-1})’);
XXhnt=XXhn1;
T{timedis}=cgs(XXhnt,vphn,1e-16,100);
for j=1:1:nd
if T{timedis}(j)<(T0ext-10)
T{timedis}(j)=T0ext;
else
end
end
end
clear j XXhnt vphn bound nodes XXhn1 XXhn2 q
out TN0=T;
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Apéndice J

Curvas Experimentales de Histéresis.
Trafoperm
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Curvas Experimentales de Histéresis.
Vacofer
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[15] P. Silvester M.V.K Chari. Finite Elements in Electrical and Magnetic Field Problems. Wiley,
1980.

[16] David P. DeWitt Frank P. Incropera. Fundamentos de Transferencia de Calor. Pearson-Prentice
Hall, 1999.

[17] Yunus Cengel. Heat Transfer. McGraw-Hill, 2000.

[18] A. Kameari. Three dimensional eddy current calculation using finite element method with
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MIR-Moscú, 1972.
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miento de prfv. PRFV/composites, 1:1–8, 2005.
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