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RESUMEN

TITULO:
ANALISIS DE LA DISTRIBUCION TERMICA EN HIERRO POR CORRIENTES DE EDDY
UTILIZANDO EL METODO DE ELEMENTOS FINITOY!

AUTOR#$ ALEJANDRO PARADA MAYORGA

PALABRAS CLAVE: Elementos Finitos (FEM), Corrientes de Eddy, calentamiento inductivo,
modelamiento matematico, distribucion de temperatura, histéresis, calentamiento por histéresis,
calentamiento por pérdidas éhmicas.

DESCRIPCION:

En este trabajo se aborda el andlisis del calentamiento por corrientes de Eddy en materiales fe-
rromagnéticos de geometrias clibicas y rectangulares, utilizando anélisis de elementos finitos.

Inicialmente se realiza un estudio de las propiedades electromagnéticas y térmicas de los ma-
teriales a tratar teniendo en cuenta los modelos, sus limitaciones y principales rangos de trabajo.
Asi mismo se analiza el fendmeno de la histéresis y su estrategia de modelado e introduccién dentro
de un planteamiento analitico.

Con un tratamiento detallado del fenémeno de corrientes de Eddy en materiales ferromagnéticos,
se hace una seleccién de las formulaciones a emplear junto con un esquema de introduccién de la
histéresis, teniendo en cuenta el acople entre el fenémeno electromagnético y el térmico definiendo
los términos de generaciéon de calor. Se aplica andlisis de elementos finitos a los planteamientos
analiticos encontrados, y se realiza una implementacion de los esquemas resultantes considerando
eficiencia y costo computacional.

Finalmente se presentan los resultados obtenidos realizando una contrastaciéon con trabajos de
otros autores, considerando ademas el significado fisico de los mismos y la consistencia de las solu-
ciones respecto de los modelos que describen el problema.

'Proyecto de Grado
2Facultad de Ingenierfas Fisico-Mecénicas. Escuela de Ingenierfa Eléctrica, Electrénica y Telecomunicaciones. Di-
rector: MSc. Ernesto Aguilera Bermudez. email: alejandro_parada.m@hotmail.com



SUMMARIZE

TITLE:
ANALYSIS OF THERMAL DISTRIBUTION ON IRON FOR EDDY CURRENTS USING THE
FINITE ELEMENT METHODE|

AUTHOR{] ALEJANDRO PARADA MAYORGA

KEY WORDS: Finite Elements (FEM), Eddy currents, inductive heating, mathematical mode-
ling, thermal distribution, hysteresis, heating for hysteresis, heating for ohmic losses.

DESCRIPTION:

This paper tackles the analysis of the heating by Eddy currents in ferromagnetic materials of
cubic and rectangular geometries using finite element analysis.

Initially a study of thermal and electromagnetic properties of materials to be treated, is done;
taking into account the models, their limitations and ranges of major work. Likewise, an analysis
of hysteresis phenomenon and its modeling strategy is carried out introducing it into an analytical
approach.

With a detailed study and analysis of the phenomenon of Eddy currents in ferromagnetic ma-
terials, a selection choice of formulations to be used together with an outline of the introduction
of hysteresis is done, taking into account the coupling between the electromagnetic and thermal
phenomenon by defining the terms of heat generation. Applies finite element analysis to analytical
approaches found, and is an implementation of the schemes resulting taking into account the effi-
ciency and computational cost.

Finally presents the results obtained by drawing a comparison with works of other authors, taking
into account also the physical meaning of them and the consistency of the solutions to the models
that describe the problem.

3 .

Thesis

4Physics Mechanical Engineering Faculty. Electric, Electronic and Telecommunications School. Director: MSc.
Ernesto Aguilera Bermidez. email: alejandro_parada.m@hotmail.com
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Capitulo 1

Introduccion

Un aspecto inmerso en todas las tendencias de desarrollo de la investigacién cientifica y tecnoldgica
en la electronica, es la comprension y manejo de los distintos fenémenos electrotérmicos secundarios,
ya sea por que los efectos de éstos son indeseables y alteran de manera significativa el comporta-
miento de un sistema; o bien porque su estudio hace parte de un valor agregado en un mundo donde
los requerimientos de disenio son cada vez més exigentes.

Los efectos maés significativos, en cuanto a este tipo de fenémenos, son referidos frecuentemente
a aplicaciones en donde se manejan altos niveles de corriente y los medios involucrados poseen con-
ductividades térmica y eléctrica elevadas. Actualmente en muchos de los modelos que describen el
funcionamiento de sistémas bésicos, se plantea la necesidad de tener en cuenta los efectos secunda-
rios de los campos electromagnéticos.

Teniendo en cuenta el anterior argumento, en este proyecto de grado se plantea el andlisis del
calentamiento por corrientes de Eddy en materiales ferromagnéticos. En este capitulo se presentan
los aspectos principales de este trabajo, asi como las especificaciones que describen el problema a
tratar.

1.1. Motivacion

Las crecientes exigencias a nivel de diseno e implementacién de dispositivos eléctricos y electrénicos,
han impulsado el desarrollo de esquemas para el andlisis y simulacién de diferentes fendémenos elec-
tromagnéticos y térmicos existentes en éstos, a fin de conocer sus efectos cualitativos y cuantitativos.
El continuo mejoramiento en rendimiento de las computadoras, ha permitido que la investigacion
en este campo se desarrolle y que existan varios trabajos realizados por especialistas de diferentes
areas, empleando técnicas numéricas de alto nivel.

En este sentido, aunque se realizan simulaciones numéricas de fenémenos acoplados, sélo uno
de éstos es tratado con rigurosidad la mayor parte de las veces, mientras el otro es manejado por
aproximaciones no completamente satisfactorias ni congruentes con la realidad fisica del problema;
como consecuencia de ésto el software disponible para estos propositos estd destinado a un conjunto
especifico de problemas [I][2]. Actualmente existen algunos paquetes comerciales para ello como
ANSYS y CST, sin embargo con limitaciones enormes para el manejo de caracteristicas no lineales
y de histéresis, ya que no ofrece alternativas para el manejo de estos aspectos, por lo cual obtener
una solucion y realizar una simulacién empleando este recurso, para un problema con estas carac-
teristicas, no es posible.

Por tanto, existe la necesidad de investigar fenémenos acoplados, teniendo en cuenta no linealida-

19



20 CAPITULO 1. INTRODUCCION

des e histéresis a fin de mejorar y hacer mas confiables las estimaciones de los efectos electrotérmicos
en el comportamiento de distintos sistemas.

En este campo el estudio de las corrientes de Eddy y sus efectos juega un papel esencial, ya que
su existencia, inherente a la de campos variantes en el tiempo en materiales conductores, es un
hecho en casi la totalidad de dispositivos eléctricos y electrénicos, y es de considerable influencia en
el comportamiento de un sistema por sus efectos electrotérmicos. La solucion de este problema en
materiales ferromagnéticos es un area con una cantidad reducida de trabajos, muchos de los cuales
son realizados con un nimero excesivo de simplificaciones.

Con este trabajo se busca realizar una contribucién en este campo, calculando los efectos de
calentamiento producido por las corrientes de Eddy en materiales ferromagnéticos de geometrias
cubicas y rectangulares.

Siendo consecuente con este proposito, se usa andlisis de elementos finitos. Existen razones para
emplear esta técnica:

= La calidad y forma de las aproximaciones en cuanto exactitud, que se obtiene en un problema
de tipo electrotérmico, es superior a la obtenida con otros métodos [1].

= FEM posee una sélida fundamentacién mateméatica que permite conocer las caracteristicas de
convergenciaﬂ hacia una posible solucién del problema [3].

» Con FEM las no linealidades se manejan con relativa facilidad [4].

= FEM posee versatilidad para el manejo de geometrias arbitrarias, no necesariamente rectan-
gulares [2].

1.2. Consideraciones Generales

En la simulacién de fenémenos electrotérmicos existen diferentes enfoques, consecuencia del com-
promiso entre exactitud, manejo de la relacién entre escalas de tiempo y tratamiento de las variables
involucradas en el problema. Por esto, es esencial considerar los cambios producidos en los factores
que influyen en la evolucién del fenémend?] Deben definirse las relaciones entre las cantidades de
solucién, con las propiedades en torno a las cuales estan estructurados los modelos que definen el
problema. Esto permite concebir el fenémeno por medio de una interaccién.

En la aplicacién de FEM, se requiere de la obtenciéon de las fomulaciones variacionales de las
ecuaciones diferenciales parciales que representan los modelos descriptivos, y de la selecciéon de un
espacio de elementos finitos que se adecue a los requerimientos de costo computacional, convergencia
y exactitud de la solucién aproximada.

En el tratamiento de las propiedades de los materiales ferromagnéticos, juega un papel esencial
la forma cémo se modela e introduce la histéresis en los planteamientos analiticos, previos a la
implementacion de una técnica numérica de solucién.

1.2.1. El Fenémeno Electromagnético

Para el andlisis de las corrientes de Eddy en materiales ferromagnéticos se requiere de la seleccién
de una formulacién algebraica que se ajuste a los requerimientos de exactitud deseada de la solucion

! Aunque la investigacién actual en FEM es extensa y rigurosa, las condiciones de convergencia estdn plenamente
establecidos para dominios de Lipschitz
2Cambios en las propiedades electromagnéticas y térmicas respecto de las variables descriptivas del problema
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Figura 1.1: Diagrama representativo de la interaccién entre fenémenos térmicos y electromagnéticos

y adaptabilidad a la geometria del problema, en compromiso con la selecciéon de un esquema para
el manejo e introduccién de la histéresis. Se deben considerar los posibles efectos de la temperatura
en las variables electromagnéticas.

1.2.2. El Fenémeno Térmico

El calentamiento por corrientes de Eddy en materiales ferromagnéticos es modelado como un
fenémeno de conduccién térmica, descrito mediante la ecuacién de difusion de calor, donde existe
un término asociado al calor generado internamente en el material, que se relaciona con las péridas
6hmicas y por histéresis referentes a estas corrientes [5][I]. Los cambios de temperatura atribuidos
a un problema de calentamiento tienen influencia en los valores de las propiedades tanto térmicas
como electromagnéticas.

1.2.3. Relacién Entre el Fendmeno Electromagnético y el Fenémeno Térmico

La interaccion entre campos térmicos y electromagnéticos no es de facil descripcion y modelamien-
to. La influencia de un campo en las variables que definen el otro, hacen que la tarea de plantear
el problema matemdaticamente sea compleja. Para el tratamiento de estos topicos deben realizarse
consideraciones que permitan definir cuantitativamente cual es el aporte de un campo en las pro-
piedades del otro, asi como los porcentajes de variaciéon exactos de las variables que describen el
problema, de manera que se puedan establecer criterios de computo para la solucién. En la figura
se presenta un diagrama propuesto por Clemens en [6], donde se describe en forma genérica este
tipo de interaccion.
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Autor Referencia | Ano | Método
V. Ionita 7 1996 | FEM

V. Ionita 8 1998 | FEM

E. Fallah 9 2006 | FEM

O. Bottauscio | [10 2006 | EFGM
A. Manzin 11 2007 | EFGM

Cuadro 1.1: Recopilacién de trabajos recientes sobre Corrientes de Eddy en materiales Ferro-
magnéticos

Autor Referencia | Ano | Método
H.H.J.J Hanssen | |5 1995 | FEM

J. Driesen 1 2000 | FEM
I.R. Ciric 12 2008 | PFPM

Cuadro 1.2: Recopilacién de Trabajos sobre Calentamiento por Corrientes de Eddy en Materiales
Ferromagnéticos

1.2.4. Estado del Arte en el Analisis de Fenémenos Electromagnéticos en Ma-
teriales Ferromagnéticos

Existen varios trabajos realizados, donde se plantean intentos para estimar u obtener equivalencias
en el andlisis de fenémenos electromagnéticos en materiales ferromagnéticos. Sin embargo la litera-
tura en donde se consideran las caracteristicas de histéresis y no linealidad con fidelidad es escasa, y
més ain cuando se intenta describir los campos en el interior del metal. En el cuadro se presenta
una recopilacion de los autores mas recientes que han abordado el problema de las corrientes de
Eddy en materiales ferromagnéticos considerando con rigurosidad la no linealidad y la histéresis, el
mas reciente de éstos emplea una técnica tipo meshless denominada EFGM@ aun en desarrollo.

1.2.5. Estado del Arte en el Analisis de Calentamiento por Corrientes de Eddy
en Materiales Ferromagnéticos

La literatura referente al calentamiento en metales es reducida, y lo es atin més cuando se trata de
abordar el calentamiento en materiales ferromagnéticos. En el cuadro se muestran los autores
que han abordado este problema. En el trabajo mas reciente, perteneciente a Ciric, se emplea
una técnica novedosa denominada PFPM con la que se realizan célculos de los valores méximos,
minimos y promedio de la distribuciéon de temperatura.

1.3. Especificaciones

Las geometrias abordadas en este trabajo son de tipo rectangular y ciibico, por lo cual los sistemas
de coordenadas considerados seran rectangulares, y se hard uso de la nomenclatura clasica corres-

3 Element Free-Galerkin Method
4 Polarization Fized Point Method
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Figura 1.2: Configuraciéon 2D

pondiente a este tipo de sistemasﬂ El esquema rectangular sera considerado como la seccién de una
barra de longitud infinita orientada en la direccién z, sometida a una intensidad de campo magnéti-
co variable en el tiempo, que estd en la direccién de la barra (direccién z); de manera tal que las
corrientes que se inducen sélo tienen componentes en las direcciones zy [I3][14][15], y la distribucién
de temperatura es dependiente inicamente de estas mismas coordenadas [16][17]. Existen razones
para emplear estas consideraciones:

= En muchas aplicaciones, las dimensiones de la seccién rectangular de una geometria sometida
a un campo variante en el tiempo, son demasido pequenas comparadas con la longitud, de
manera que la concepcion del problema puede aproximarse satisfactoriamente como el caso
de una seccién de una barra de longitud infinita [15].

= Las piezas de tipo laminalﬁ se pueden modelar satisfactoriamente bajo estas consideraciones

18] [19]

Esta seccién rectangular se encontrard descrita como se muestra en la figura [I.2] representando
con a,b los limites inferior y superior respectivamente, en el eje z y con ¢, d los limites inferior y
superior, en el eje y.

El esquema ctbico serd considerado como una barra de seccién rectangular, orientada en la
direccién z. Esta consideracion se basa en el hecho de que en ésta geometria se pueden estudiar los
efectos tridimensionales de las corrientes en distintos materiales, sin pérdida de generalidacﬂ En la
figura se aprecia esta configuracién; donde a, b, ¢, d, e, f representan los limites del volumen en
el sistema coordenado.

®La nomenclatura serd zyz

5En donde los efectos de las corrientes de Eddy son indeseados y de considerable influencia, los materiales se
laminan para reducir las pérdidas y el calentamiento

"Como se vers al final de este trabajo los cédigos empleados para resolver el problema en 3D son ficilmente
adaptables a distintas dimensiones de la barra
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s

e

Figura 1.3: Configuracion 3D

1.3.1. Naturaleza de las Condiciones de Frontera

Los alcances de este trabajo estan ligados al estudio de materiales especificos, de los cuales se tiene
informacién experimental para exitaciones de tipo cosenoidal. Esta viene dada para intensidades de

campo magnético del tipo:
H(t) = Homaz cos(2m ft)[A/m]

es decir exitaciones cosenoidales a una frecuencia de f Hz con amplitudes entre —Hymar ¥ Homaz
amperes sobre metro. Por lo cual las condiciones de frontera empleadas estan referidas a esta forma.

En el problema térmico se emplearan los tres tipos basicos de condiciones de frontera a partir
de los cuales se describen todos los demas posibles, éstos son:

» Condicién de frontera tipo Dirichlet (Valor conocido de temperatura en la frontera).

» Condicién de frontera tipo Newmann (Conocimiento de las derivadas de la temperatura en la
frontera).

» Condicién de frontera tipo Robin (Conocimiento de la relacién entre derivadas y valores de la
temperatura en la frontera).

1.4. Organizacién del Documento

En este trabajo se realiza el analisis del calentemiento por corrientes de Eddy utilizando el método
de elementos finitos. Con el presente documento, se da informe de los pasos seguidos durante el
desarrollo de la investigacién. Para dar una ubicacion al lector sobre el contenido y alcances del
libro, a continuacién se da una breve descripcién de los principales aspectos del contenido.

En el capitulo 2 se analizan las propiedades del material ferromagnético involucradas en los mo-
delos que describen el fenémeno en estudio, y su relacién con las variables que se desea calcular.
Posteriormente se determina por medio de un andlisis cuales son los modelos mas adecuados para
representar las caracteriticas del material.
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Las corrientes de Eddy son abordadas en el capitulo 3. En donde se analiza su descripcién cuantita-
tiva, para seleccionar la representacion mas adecuada en términos de aproximacion y adaptabilidad
a la geometria. Asi mismo, se selecciona el esquema de introduccién de la histéresis y se verifica la
unicidad de la solucién del problema para descartar fallas de convergencia en la aplicaciéon de FEM.

En el capitulo 4 se considera el problema térmico, describiendo los modelos en torno a los cuales
estd estructurado el fendmeno y especificando cual es la forma de los términos de generacién de
calor con relacién a las cantidades electromagnéticas.

El capitulo 5 expone la aplicacién de elementos finitos a los planteamientos analiticos determi-
nados en los capitulos precedentes. Se realiza una selecién del tipo de espacio de elementos finitos
y se demuestra que las relaciones obtenidas son estables en cuanto su discretizacion en el tiempo,
encontrandose que la constante que da la medida de la estabilidad para variaciones temporales es,
dependiente de las caracteristicas de las matrices principales de geometria obtenidas para el proble-
ma espacial.

Los aspectos principales de implementaciéon son descritos en el capitulo 6, en donde se realiza
una seleccion de las herramientas mas adecuadas para la implementacion en Matlab de los plante-
amientos resultantes del capitulo 5.

El capitulo 7 exhibe los resultados alcanzados, presentando en primera instancia las simulaciones
de dos materiales ferromagnéticos, realizandose una descripcién de los datos obtenidos, para enfocar
alrededor de éstos una discusién en torno a su significado fisico y su relacién con los trabajos de
otros autores.
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Capitulo 2

Propiedades del Hierro en Presencia
de Campos Electromagnéticos

El hierro es un material ferromagnético, posee una alta densidad y conductividades térmica y eléctri-
ca elevadas. Es extensivamente usado en aplicaciones donde se requieren excelentes conductores y
medios de gran permeabilidad magnética [20][21].

En la fabricacién de la mayor parte de motores, transformadores y generadores se emplean ma-
teriales de este tipo en grandes proporciones [20][21], hecho que implica una notable influencia de
los efectos de las corrientes de Eddy en el comportamiento de estos sistemas.

La forma funcional de la permeabilidad magnética aunque conocida, presenta una enorme di-
ficultad a la hora de realizar estudios cuantitativos debido a la no linealidad y la histéresis. En
este capitulo se hace un andlisis de las propiedades del hierro involucradas en el fenémeno fisico de
calentamiento por corrientes de Eddy, teniendo en cuenta los principales modelos que las describen,
sus limitaciones, y principales rangos de trabajo.

2.1. Propiedades Electromagnéticas

2.1.1. Conductividad Eléctrica

La conductividad eléctrica se cuantifica como el inverso de la resistividad. Esta ultima se modela
en materiales conductores en forma polinémica [I] comoﬂ

PE = PEr (1 + OépErAT + ﬂpE'r' (AT)2 + VpEr (AT)?) +.. ) (21)

con AT =T — Ty, donde T;..s es la temperatura de referencia y T' la temperatura del cuerpo.
En materiales ferromagnéticos el término dominante es a,p.AT cuyo valor estd alrededor de
4,5 x 1073 AT con una temperatura de referencia de 293,15 K[I].
En sistemas como motores, transformadores, generadores y en donde la existencia de las corrientes
de Eddy es indeseable, la magnitud de los cambios de temperatura AT, permite usar satisfactoria-

1pET», 0pEr, son los valores registrados en la temperatura de referencia T..r, generalmente ésta tltima se asocia a
la temperatura ambiente.
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A

B

fis Jui 7

Figura 2.1: Relacién B-H en un material ferromagnético

mente el modelo de conductividad eléctrica [1]:

Oref
=" 2.2
7 T 14 a,pAT (2.2)

Clemens y Gjonaj han mostrado en [22], que los cambios de las propiedades electromagnéticas y
térmicas, no son significativos en todos los intervalos de temperatura, ya que existen intervalos AT,
en los cuales éstas son débilmente dependientes de la iltima. Esto permite realizar actualizaciones de
las propiedades, por alteraciones térmicas, sélo cuando haya cambios significativos, lo cual se define
observando el porcentaje de variacién de las cantidades involucradas, y el grado de aproximacion
que se deseea en el tiempo en el que se realiza el estudio.

En este trabajo se consideraran intervalos AT donde o en cambie en menos de un 10 %. Por
lo cual no se requieren actualizaciones de la conductividad eléctrica del material respecto a cambios
en la temperatura.

2.1.2. Permeabilidad: Relacién B-H

Uno de los principales retos para modelar campos electromagnéticos en materiales ferromagnéticos,
es la modelizacién y manejo de la histéresis en la relaciéon B-H.

Algunos autores como Naidu en [23], han propuesto modelos matemadticos para simular este
fenémeno a fin de introducirlo en algunos esquemas numeéricos, sacrificando exactitud y precisién
a cambio de un manejo y costo computacional aceptables. En otros enfoques, se han empleado
estrictamente las caracteriticas experimentales de la curva B-H, y se han diseniado esquemas cada
vez mas eficientes adaptados a esta consideracion [9][7][]].

Para el uso de las caracteristicas experimentales del material se requiere de un proceso de mo-
delado de los lazos de histéresis a partir de los datos obtenidos por medicién. Asi, para introducir
estos modelos en un esquema es necesario que las curvas obtenidas cumplan algunos criterios para
garantizar convergencia [7][8].

En un mismo problema pueden emplearse varios modelos de histéresis con propdsitos diferentes
[24]. Es frecuente modelar los lazos de histéresis con curvas por interpolacién polinémica fragmen-
tada para calcular los campos evolucionando en el tiempo, y emplear otro modelo més simplificado
para calcular las pérdidas. Existen razones de peso para hacer esto:
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= La interpolacién polindémica fragmentada permite excelentes aproximaciones para el modela-
miento de los datos, con condiciones de diferenciabilidad e integrabilidad [25], de tal manera
que se obtiene una fiel representacién del fenémeno B-H.

» Los requerimientos de regularidad (integrabilidad y diferenciabilidad) que son necesarios en
un modelo para el calculo de campos, son innecesarios para el célculo de pérdidas ya que se
require a lo més queﬂ fs € COUQNLYQ) [26].

= El modelo del cédlculo de pérdidas debe ser lo suficientemente sencillo como para que la integral
| fsdH sea manejable en términos de implementacién y costo computacional.

Por ello, en este trabajo se hara uso de estas ideas. El modelo principal se seleccionara de forma
tal que las curvas obtenidas son modeladas mediante interpolacién por trazadores ctibicos, y sean
funciones de Lipschitzﬂ en su dominio de definicién. Para garantizar esto se realiza un tratamiento
de los datos experimentales (ver capitulo 6), y se asegura el hecho de que las funciones de lazo
obtenidas deben ser no decrecientes.

Entonces, sea $) el modelo que representa la histéresis para el cdlculo de campos, éste se define
como

G = { Jis _Si ti <t <tiyr/2 (2.3)

Ji st tiyrye <t <tiyr
donde fis, fi; son los lazos superior e inferior de la curva de histéresis, t; representa el tiempo inicial
de la exitacién en forma cosenoidal, ¢; 7/ €l tiempo correspondiente a medio periodo de la exitacion

y tit7 el tiempo de un periodo, durante un ciclo. Las funciones de lazo superior e inferior f(ver
figura [2.1)) poseen las siguientes caracterfstica.ﬂ:

f es un polinomio cibico, representado f; en el intervalo [H;, Hj41] paracadaj =0,1,...,n—
1.

f(HJ) :BjVjZO,l,...,n.
fiv1i(Hjp1) = fj(Hj41)Vi=0,1,...,n = 2.

!

fi(Hja) = fj(Hj)¥j =0,1,...,n —2.

fj+1(Hj+1) = fj (Hj"rl)vj =0,1,...,n—2.

f”(Hﬂ”ﬂ'n) = f”(Hmaa:) =0

Con Hj, Bj los datos experimentales de las curvas de histéresis.
Pfister en [26] realiza una propuesta para calcular las pérdidas por histéresis empleando un modelo
de funcién analitico. En este trabajo se seguird este enfoque emplenado una funcién del tip

fs = k14 koTan'(H + H..)

debido a su semejanza y cercania a los datos experimentales del material. Las razones para seguir esta
metodologia, estan definidas por los excelentes resultados que obtuvo Pfister respecto de mediciones
realizadas.

2, representa la relacién B-H, como una funcién de la intensidad de campo magnético. C"(X) n = 0,1,...
representa el conjunto de funciones n-diferenciables en el dominio X. LI(X) es el conjunto de funciones integrables
en el dominio X

3Para definicién ver [27][28]

4H;, B, representan los datos experimentales ya con un tratamiento de adecuacién

5k1, k2 son constantes que se ajustan de acuerdo al comportamiento de los datos. H, es el valor de campo coercitivo
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2.1.3. Propiedades Térmicas

Conductividad Térmica, Densidad y Calor Especifico

Al igual que la resitividad eléctrica, la conductividad térmica y el producto densidad-calor especifi-
co se modelan como en la ecuacién [11[29]. Frecuentemente, estas propiedades son consideradas
como constantes dentro de un intervalo adecuado de temperatura [1]. El término dominante para
éstas es del orden de 1 x 107*AT [1][29]. Asi, una seleccién de AT de la misma magnitud que
en la conductividad eléctrica serd suficiente para garantizar que una actualizacion por cambio de
temperatura no sea necesaria y que la dependencia de ésta sea débil.

Ter Maten y Melissen en [30], Janssen en [5], Gong en [31] y Ciric en [I2] han realizado calculos
y simulaciones de calentamiento por corrientes de Eddy, teniendo en cuenta los aspectos considera-
dos anteriormente en materiales lineales y ferromagnéticos, obteniendo resultados satisfactorios en
cuanto a exactitud y precision respecto de los datos obtenidos por medicién.



Capitulo 3

Corrientes de Eddy

Consecuencia de las leyes basicas del electromagnetismo, es el hecho de que a partir de un campo
magnético variante en el tiempo pueda obtenerse una tensién inducida en un material sometido a
éste. Cuando el medio es conductor se forman en él corrientes , denominadas de Eddy, cuya existencia
afecta a la mayor parte de dispositivos eléctricos y electronicos. El presente capitulo estd destinado
al estudio de las corrientes de Eddy, y sus principales formas de descripcién, asi como a un andlisis
de sus formulaciones analiticas.

3.1. Descripcion Cuantitativa

Como todo fenémeno electromagnético, el fenémeno de Corrientes de Eddy puede describirse a
partir de las ecuaciones de Maxwell:

. . OB
F=_2 1
V x 5 (3.1)
. - - 0D
VxH=J+ (3.2)
V-D=p, (3.3)
V-B=0 (3.4)

Sin embargo los efectos mas significativos de las corrientes de Eddy, se aprecian a menudo en
sistemas con exitaciones de baja frecuencia (50-60 Hz), en cuyo caso la descripcién de éstas se
realiza empleando la aproximacién cuasiestatica de las ecuaciones [32][33]

> o oB

VXE=—-——
T
VxH=] (3.5)
V-D=p,
V-B=0

cuya validez requiere
max | — | < max |J
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o en forma equivalente
we
— <1
o

donde w es la frecuencia angular maxima registrada, € la permitividad y ¢ la conductividad eléctri-
ca. Para metales como el hierro la corriente de desplazamiento es despreciable comparada con la
corriente de conduccién hasta frecuencias del orden de 101°Hz [32][14].

Adicional a esto, es necesario el conocimiento de la relacion entre intensidad de campo magnético
H y la densidad de flujo magnético E, asi como la relacién entre el campo eléctrico y la densidad
de corriente; junto con unas condiciones iniciales y de frontera asociadas a la regién de solucién

134] [14] [35] [15].

3.2. Formulaciones de Corrientes de Eddy

Para la solucién de las ecuaciones [3.5| existen diferentes planteamientos conocidos como formula-
ciones en los que se introducen nuevas variables, que permiten lograr una forma equivalente de pro-
blema, adecuada a requerimientos de implementacién de una técnica numérica de solucién [34][36].

Las formulaciones diferenciales son particularmente adaptables a técnicas como FEM, mientras
que las fomulaciones integrales lo son a métodos de elemento de frontera (BEM)[I4][4]. Sin em-
bargo, la formulacion variacional, un caso particular de formulacién integral, se realiza a partir de
formulaciones diferenciales y es necesaria en un planteamineto donde se use FEM; por estas ra-
zones se discutirdn en este capitulo las formulaciones diferenciales, y la formulacién variacional se
discutira en el capitulo 5.

3.2.1. Formulaciones Diferenciales

Sea (2. una regiéon conductora ferromagnética, simplemente conexa y acotada. {25 una regién de
conductividad eléctrica nula circundante a Q. (ver figura , en donde puede haber exitaciones
generadoras de campo magnético. 2 = Q.2 es en general la regién de solucién de un problema
de corrientes de Eddy. Para la soluciéon de cualquier planteamiento se requiere:

Un conjunto de ecuaciones descriptivas del problema (EDP).

Condiciones iniciales y de frontera.

Condiciones de interfaz en 0€).s; para asegurar la continuidad de algunas cantidades.

El conocimiento de la relacién B-H en .

Condiciones de calibracién, impuestas para garantizar la unicidad de la solucién.

La forma de las EDP depende del esquema empleado para la introduccién y representacion de la
relacion B-H en las ecuaciones, asi como de las condiciones de calibracién y la geometria del problema
[34]. La presentacion de dicho esquema se realizard en secciones subsecuentes, a continuacién se
presentaran las caracteristicas esenciales de cada formulacién necesarias para llegar a las EDP.
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Figura 3.1: Esquema bésico de las corrientes de Eddy

Formulacién A — ¢

Se definen & € C2(2)C'(0,¢5) y ¢ € C2(Q) N C(0, t;) tales qud]]

VxA=B en Q=0Q.JQ

- A - 3.6
]E:f%ngZ) en (3.6)

Con estas ecuaciones, el conjunto de ecuaciones y la relacién B-H se obtiene una ecuaciéon
diferencial parcial vectorial en donde A y ¢ son las incégnitas. En la regién €2, habrian dos incégnitas

Ay ¢, mientras que en €2, s6lo A. Las condiciones de frontera son impuestas en 9€)¢ sobre A, asi como
las condiciones de interfaz en 0, [34].

Formulacién A — ¢,

En esta formulacién, conocida como de potencial escalar reducido [37][38], se definen A € C2(€,) () C1(0,¢ )5
¢ € C*(Q)NCHO,t5) y ¥ € C*(Qs) N CH(0, ) tales que

VxA=B
. oA -
]E_’— —E —_»qu en QC (37)
H=H,;—- V¢

V x IF]IS = J_; en g

relacionando con y el conocimiento de la relacién B-H se obtiene una EDP donde &, ¢, son
las incégnitas. Este planteamiento implica en términos de implementacion de una técnica numérica
de solucién, un menor costo computacional, comparativamente con la formulacién A— ¢ [34]. Las
condiciones de frontera son impuestas sobre ¥ en 025, mientras las condiciones de interfaz se
imponen sobre A y 1 en 9, [14].

c2(Q) = {F = Fya;|F; € C? (Q)}, y ty el limite superior de tiempo sobre el que se analiza el fenémeno
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— ~

Formulacién T — O

De forma andloga a la introduccién de un potencial magnético vectorial ,&, puede introducir-
se un potencial eléctrico vectorial T € C?*(Q)(C'(0,tf) y un potencial magnético escalar O €
C2(Q) N CH0,ts) [39[14], tales que :

J=VxT

—

= ~ 3.8
H=T-VO en Q=Q.UQs (38)

El uso de esta formulacién es menos frecuente que las de tipo potencial magnético vectorial, sin
embargo los resultados obtenidos en algunos estudios y experimentos realizados por Nakata en [36],
muestran que tiene ventajas frente a algunas de este tipo. Las condiciones de frontera y de interfaz

son impuestas sobre T y O [39].

—

Formulacién R —

Sea R € C2(Q)(NC'(0,tf) y ¢ € C2(2) N C1(0, ;) tales que:
H=R-V¢ en Q (3.9)

A diferencia de la formulacién T — O las condiciones de frontera son impuestas tinicamente sobre
1, asi como las condiciones de interfaz. Otra diferencia entre este tipo de planteamiento y otras
formulaciones es que en las EDP obtenidas no se involucran derivadas espaciales de la conductividad
eléctrica.

—

Formulacién H — E

Sin ningin tipo de adecuacion algebraica, la formulacién del problema de las corrientes de Eddy
puede realizarse en términos de las cantidades primarias de las ecuaciones de Maxwell, empleando

Hy E como variables de estado [40]. Las condiciones de calibracién en un planteamiento de este
tipo pueden no ser necesarias, y la interpretacion fisica de la solucién es directa.

3.3. Seleccion de la Formulacion

En la solucién numérica de un problema electromagnético hay un compromiso entre exactitud y
costo computacional. Los objetivos de este trabajo estan enfocados hacia el primer aspecto, y dentro
de este ambito hay puntos fundamentales para considerar en la seleccién de una formulacién:

3.3.1. Grado de Aproximacion

Nakata y Fujiwara han realizado en [36], un estudio comparativo entre formulaciones diferenciales
en el andlisis de corrientes de Eddy, en geometrias que incluyen cibicas y rectangulares, usando
FEM. Como resultado de éste se concluye que las mejores aproximaciones a la solucion se obtienen

con la formulacién A — ¢, .
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3.3.2. Introduccién de un Esquema para el manejo de la Histéresis

Ionita en [7][8] y Fallah en [9] han propuesto independientemente, un esquema de tipo iterativo para
el manejo e introducciéon de la histéresis, computacionalmente eﬁcientﬂ empleando el potencial
magnético vectorial, obteniendo excelentes resultados respecto de mediciones realizadas. En este
esquema se define una variable de actualizacién de datos dada por:

— —

R=vppB—H con vpp=cte

donde B y H estdn dados por el modelo empleado para representar los datos experimentales de
la curva de histéresis, y vpp es seleccionada entre el maximo y minimo valor del inverso de la

permeabilidad [8][7][9]. Con R se actualizan las propiedades del material respecto a cambios en el
tiempo, ya que se usa paralelamente con las EDP obtenidas de la formulacién seleccionada.

3.3.3. Dominio de Solucion

En problemas donde sdlo se consideran los efectos de las corrientes de Eddy en el material conduc-

tor, como en este trabajo, se adapta particularmente la formulacion A— ¢, ya que A y ¢ estan
definidas sélo en §2. y 1 que representa la informacién externa sélo en €);.

Teniendo en cuenta estas consideraciones, se selecciona la formulacion A — ¢, junto con el es-
quema de manejo de la histéresis propuesto por Ionita y Fallah.

3.4. Planteamiento del Problema Electromagnético

Con la seleccion de la formulacion y el esquema de manejo de la histéresis, se obtienen las EDP del
problema electromagnético:

oA | = 9 Al
U((%+v¢):yFPVx(VxA)VxR en €. (3.10)

ﬁ:VFPﬁ—é en Qc (3.11)
donde A € C2(Q.)NC(0,tf), ¢ € C2Q)NCH(0,tf) v R € C2().

3.4.1. Condiciones de Frontera

Las condiciones de frontera empleadas en diversas investigaciones donde sélo se realizan cédlculos
en la regién conductora, obedecen a la continuidad de la componente tangencial de la intensidad
de campo magnético y de la componente normal de la densidad de flujo magnético en la frontera.

2En la literatura existen pocos esquemas disefiados para introducir la histéresis en forma eficiente teniendo en
cuenta la informacién experimental. Los trabajos de Ionita y Fallah representaron la tnica alternativa eficiente donde
se contemplan los datos experimentales con fidelidad. Es mas, a partir de los estudios de estos dos autores se realiza
actualmente investigacién sobre materiales ferromagnéticos empleando otras técnicas numéricas atin en desarrollo
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Esto se expresa com H x n. = H s X Moy B- n, = Es - M., lo cual implica en términos algebraicos
un conocimiento directo y/o indirecto de una intensidad de campo magnético en 0. [13][41][42].
Teniendo en cuenta esto, las condiciones de frontera para el problema electromagnético consideradas
en este trabajo tienen las caracteristicas siguientes

= En el caso de la seccion rectangular, la intensidad de campo magnético total es conocida en
la frontera, es decir:

H:‘]Haﬂc = ﬁo(t) = (ﬁ X ‘&> |8QC = EOCUTUS

donde ﬁo(t) es una funcién conocida, gOcur'ue =9 <ﬁ0(t)> en 00, $ es el modelo de la

histéresis.

= En el caso de la barra de longitud finita, se tendrd conocimiento de la densidad de flujo
magnético en 01, y la intensidad de campo magnético en 0.y, donde 0, 2, son dos
subconjuntos del conjunto de frontera, disjuntos entre si y que cubren completamente a 9€)..:

@bgzcb = go(t) - (ﬁ X &) ’anb = go(t)
Htmaﬂch = ﬁO(t) == (6 X ‘&> |aﬂch = gOcurve

Esto se puede sintetizar para la representacion de los dos casos, como el conocimiento ya sea de una
funcién de intensidad de campo magnético, o el de una funcién de densidad de flujo magnético en
la frontera.

3.4.2. Condiciéon Inicial

En el instante inicial ¢t = 0 se considerara el material saturado. Esto se realiza teniendo en cuenta
la poca contribucién en términos cuantitativos para el calentamiento, correspondiente a la curva de
magnetizacion, comparativamente con la correspondiente a los lazos superior e inferior de la curva
de histéresis [5]; por lo cual:

B(t = 0) = Bagfis en €2

donde By, es la densidad de flujo magnético correspondiente a la saturacién, 3 es el vector unitario
en la misma direccién de la orientacién del paralelepipedo o recténgul(ﬁ considerado en un sistema
cartesiano (i, dg, ii3). Para satisfacer esta condicién en términos de A, se selecciona Ay = A(t = 0)
como:

Bsat

Ay = 5

(—x201 + x102) en Qg (3.12)

de forma tal que en t=0, se obtenga V x ffo = Bsqtl3.

3H, es la intensidad de campo magnético en el medio circundante al metal. En los problemas donde se analiza
solamente la regién conductora, es considerado como una funcién conocida [I3][I8]. fi. es el vector normal a Q..
4Segiin las especificaciones dadas en el capitulo 1, ésta corresponderia a la direccién z
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3.4.3. Condiciones de Calibracion

Para garantizar la unicidad del potencial magnético vectorial &, no basta con las condiciones de
frontera, es necesario agregar unas condiciones denominadas de calibracién [35][15][34], asi como
la especificaciéon de algunas condiciones implicitas en la naturaleza del fenémeno [34][14]. Para
solucionar problemas de corrientes de Eddy se emplea la condicién de calibracién de Coulomb
[34] [35] [15]:

V-A=0 (3.13)
Adicional a ello, se especifican méas condicionamientos, los cuales son derivados de la fisica del
problema. Asi de :

v j =0 en . : Q¢ libre de fuentes y sumideros de corriente
J-n.=0 en 099, :la corriente no tiene componentes salientes a 2.
se obtienen ~
- oA =
V-0<+V¢> =0 en

ot
(3.14)

0A -
" el = Q
n.-o (875 +V¢) 0 en 09,

3.4.4. El significado fisico de V¢

En regiones donde la conductividad eléctrica no tiene variaciones espaciales, no se generan superfi-
cies de carga, con lo que se puede asegurar que V¢ = 0 [43][44] [45]. Los materiales considerados en

este trabajo no poseen variaciones espaciales de la conductividad, por lo cual el término ﬁgb desa-
parece de las EDP del planteamiento. Por otra parte, el hecho de que esta condicién se verifique,
garantiza que el cumplimniento de la condicién de calibracién de Coulomb se encuentre implicito
en la ecuacién que define el planteamiento [34][39] P

3.4.5. Unicidad de la Solucién

Sea (). una region ferromagnética conductora; teniendo en cuenta todas las considerciones anteriores
el planteamiento de corrientes de Eddy es:

) -~V xR (3.15)

junto con las condiciones

e e Bsa ~ ~
A(t = 0) = 0= _2 t (—x2u1 —+ l‘lUQ) (3 16)
V-A=0 en Q. '
aa—A -n.=0 en 0.
ot

SEsto se ve al tomar la divergencia de[3.10] y teniendo en cuenta que el potencial magnético vectorial es dependiente
del tiempo
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Y sean Ay, Ay € C2(Q) (N CH0, ¢ #) dos soluciones de con las condiciones Se construye A
tal que A0 = &1 — &2. Teniendo en cuenta las ecuaciones anteriores se tiene

n. - AO =0 en 00,
VxAO =0
V-AO =0 en Q.

de la relacién de rotacional se implica A = 6u, para algin u € C%(€,). Adicionalmente teniendo
en cuenta las dos relaciones restantes se obtiene

Viu=0 en Q.

g—Z:O en 0f).

lo cual implica que u = cte en Q. [46][AT]. Entonces Vu = 0 = A; = Ay, con lo que se garantiza
la unicidad de la solucién.

En este trabajo se consideraran geometrias cibicas y rectangulares, por lo cual 1i. no estara estric-
tamente definido en todo 0f).. Sin embargo estas geometrias son dominios acotados de Lipschitzﬁ
y el conjunto de puntos para los cuales no se define 1. es de medida cero [49], lo que permite
garantizar unicidad en casi todo punto [50].

Para detalles de este término ver [4S]



Capitulo 4

Calentamiento por Corrientes de Eddy

El fenémeno de corrientes de Eddy es caracterizado en algunos sistemas por sus efectos de calenta-
miento [5][29]. En materiales ferromagnéticos éste es consecuencia principalmente del efecto Joule y
la histéresis. En la mayor parte de las situaciones estos efectos son indeseables, debido a que no son
contemplados en los analisis de diseno y en muchos otros casos son sélo estimados. Este capitulo
estd destinado a tratar la relacién cuantitativa existente entre las corrientes de Eddy y el fenémeno
de calentamiento consecuencia de éstas.

4.1. Planteamiento del Problema Térmico

El calentamiento por corrientes de Eddy en una regién ferromagnética €). es descrito como un
problema de conduccién térmica [5][30], cuya EDP es:

pcaa—jtj:§'()\ﬁT)+q en

donde p es la densidad de masa, ¢ el calor especifico y A la conductividad térmica. El término ¢ es
asociado a la generacion de calor, y T es la temperatura del cuerpo. Para los materiales tratados en
este trabajo, donde la conductividad térmica es homogénea (ver capitulo 2) la EDP se reduce a [5]:

or
P = AWV2T 4+q en Q. (4.1)

para solucionar esta ecuacién se requiere de condiciones de frontera, asi como de una condicién
inicial asociada.

4.1.1. Términos de Generacion de Calor

La circulacién de corriente en un material ferromagnético estd asociada directamente a un ca-
lentamiento descrito mediante el efecto Joule. Por otra parte, el rozamiento entre los dominios
ferromagnéticos cuando existe una intensidad de campo magnético de exitacion, tiene como conse-
cuencia un aumento de temperatura considerable. Este tltimo es frecuentemente calculado por ciclo
de exitacién [26] [51][52][53], sin embargo en el andlisis transitorio del fenémeno esto no es admisible
ya que se requiere del conocimiento de los términos de calor en cada instante.

39
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El término g en de generacion de calor puede expresarse como la suma de un término asociado
a las pérdidas 6hmicas g, y otro asociado las pérdidas por histéresis gp, [1][5]:

4 = Goh t qhy (4.2)
doh = j : I@ (43)
o H(t) ,
Ahy = E /H BdH (4.4)

en donde la densidad de flujo magnético se considera por medio del modelo empleado para repre-
sentar la histéresis, y se realiza la integracion entre una intensidad de campo inicial y otro final
referente al instante en el que se calculan las pérdidas. En problemas donde las intensidades de
campo posean dos o tres componentes, habra un término de pérdidas asociado a cada una de ellas,
de manera que las pérdidas totales asignadas a ese punto se calculan como:

_ 2 2 2
Ghy = \/ Uhy(z) T Dhy(y) T Thy(z)

4.1.2. Condiciones Iniciales y de Frontera

Para el manejo del problema térmico no se requieren condiciones de calibracién, ya que las condicio-
nes de frontera y la condicién inicial garantizan unicidad [16][5][30]. En este trabajo se consideraran
tres tipos de condiciones de frontera:

n T(082) = Tymp (Condicién tipo Dirichlet). Este condicionamiento resulta adecuado para mo-
delar el efecto de un flujo refrigerante sobre el cuerpo en calentamiento, de manera tal que la
temperatura en las fronteras permanece constante.

or
» —A—|aq. = h(Tm — T)|oqa. (Condicién tipo Robin). Con ésta se modelan los efectos convec-

tivos en 0f).. Representa una transferencia neta de calor entre el metal en calentamiento y el
medio circundante.

or C .
" lag. = 0 (Condicién tipo Newmann). Cuando no hay transferencia de calor entre el cuerpo
n
en calentamiento y el medio circundante, se emplea esta condicién, denominada de aislamiento
térmico.

La condicién inicial considerada es T'(t = 0) = Tymp, €s decir la temperatura inicial es la temperatura
ambiente.



Capitulo 5

Analisis de Elementos Finitos

Para el andlisis de fenémenos electromagnéticos y térmicos, hay diversos métodos y técnicas, entre
los cuales sobresalen FEM, BEM y FDTDH Driesen en [I] muestra que FEM resulta ser el método
mas adecuado para el andlisis de fendmenos electromagnéticos acoplados a fenémenos térmicos,
teniendo en cuenta exactitud y aspectos de implementacién. Algunos estudios y experimentos han
sido realizados empleando FEM para solucionar problemas referentes a las corrientes de Eddy,
obteniéndose excelentes resultados en cuanto a aproximacién e implementaciéon, como por ejemplo
en [34][18][9][54] [55][38][56]. Igualmente se ha empleado FEM para solucionar numéricamente el
problema de calentamiento producido por éstas corrientes, y los resultados obtenidos son superiores
a los obtenidos por otros métodos en cuanto a exactitud [I][30][5]. En el presente capitulo se realiza
la aplicaciéon de elementos finitos a los planteamientos analiticos obtenidos en los dos capitulos
anteriores, y la implementacion de un esquema de discretizacién en el tiempo a fin de obtener las
ecuaciones matriciales que deben resolverse.

5.1. Formulacion Variacional

5.1.1. Problema Electromagnético

La formulacion variacional se realiza a partir de las EDP, teniendo en cuenta las condiciones de
frontera empleando el método de Galerkin [3][2][]. Sea &@ € H'(Q. P} Multiplicando la ecuacién
3.15h por ¥ con el producto punto de R™ e integrando en el dominio de solucién, se obtiene

OA N e o I
—/ z7-adQc=/ ﬁ-VFpVX<V><A>dQC—/ TV x RdQ, YieHY Q)  (5.1)
Qe ot Qe Qe

Esta ecuacién puede llevarse por medio de integracién por partes e identidades Vectorialesﬂ a una
donde sélo existan términos con primeras derivadas sobre A [34][3][50]. Para las geometrias tratadas
en este trabajo (cibicas y rectangulares) se tienen las siguientes ecuaciones, realizadas teniendo en
cuenta las condiciones de frontera descritas en el capitulo 3 y los esquemas de las especificaciones

C2AM3t

! Finite Difference Time Domain

2HY(Q.) = {F|F; € H'(Q.)} esto es, el conjunto de vectores cuyas componentes pertenecen al espacio de sobolev
H(Q.) S 6]

SPara las principales identidades vectoriales véase [57]
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Caso 2D

& — — — — — — —
—/ 02240, = vpp </ (v X AV x 17) Q. —f (v X A) X 7 ﬁc> —/ TN xRAQ, VE € HY(QL)
ot . 991 c
(5.2)

_ iQCT (6 X &) X TN, = /ab Bocurve(t) (v (y = d) — vz (y = ¢)) dx—l—/cd Bocurve () (vy(z = b) — vy(x = a)) dy
Caso 3D

—

A - — - = — — —
—/ 5022 40, = vp </ (v X AV x 77) Q. —f (v x A) X 7 (—ﬁc)> —/ TV xRAQ. V7€ HY(Q0)
Q Ot . 29, Q,

donde 1, estd dirigido de adentro de 2. hacia afuera, y

_ jgﬂc (ﬁ X &) XU (—1i,) = /ef /ab Bocurve (v2(y = d) —vy(y = c))d:vdz—/ef /cd (vy(z = b) —vy(x = a)) dydz

La solucién de y posee menos diferenciabilidad que la solucién de En y
se requiere de la existencia de derivadas débilesﬂ ya que en el procedimeinto se usa integracién
de Lebesgu[?)] [2], y condiciones de integrabilidad sobre A, R,$ . Existen razones para emplear
integracion de Lebesgue en la obtencion de éste planteamiento:

= Para obtener resultados de[5.3]y 5.2 no se requiere de la diferenciabilidad en todo punto, sino
en casi todo puntoﬂ [B][50], seleccionando un espacio de elementos finitos con funciones base
lineales a trozos y de soporte compacto.

= Laintegral de Lebesgue coincide con la integral de Riemman, para el caso de funciones Rieman-
Integrables. [49][58].

= En los principales resultados y teoremas relacionados con la convergencia, se emplea este tipo
de integracion [3].

En este trabajo se hard uso de los rudimentos principales de la integracién de Lebesgue, sin entrar
en las rigurosidades de esta extensa y formal teoria, sélo en el planteamiento de la formulacion
variacional, ya que en los aspectos de implementacion las integrales consideradas por integracion de
Lebesgue son Riemman-Integrables. [3][50].

4Derivadas generalizadas
SPara ver los principales aspectos de esta teorfa ver[49][58]
SEsto quiere decir que el conunto de puntos en los cuales la derivada usual no estd definida es de medida cero
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5.1.2. Problema Térmico
sea v € H ﬂ Multiplicando [4.1| por este término e integrando sobre €2,

/ pcv%t dsd. —/Q )\UVQTdQC—i—/Q vqd§2, VUGH(I)D(QC) (5.4)

al igual que en la ecuacién [5.1], puede llevarse por medio de integracién por partes a una ecuacién
donde sdlo existen términos con primeras derivadas sobre T'.

Caso 2D
» Condicién T(09¢) = Tomp-

/ u%tda X[ VT-VvdQ. + / vqdQ, Yo € HE () (5.5)
Qe

(&

T
= Condicién —)\g—\agc = h(Ty, — T)loq.-

/ pcva Q. _)\< VT - VodQ. + / NT.ﬁC> + / vqdQe. Yo € H'(Q.) (5.6)
o Ot Q. 9921 .

. —h ([ _ b
/ m.ﬁc:(/ (T =) 2y + [0 (- T) 2 ddx)
0T A c a

T
= Condicién 8—\390 =0
on

donde

/ va—dQc_ —/\/ ﬁT-ﬁdec—i—/ vqdQ. Vv e HY(Q.) (5.7)
at Q Qc

Caso 3D
» Condicién T(09¢) = Tomp-

/ vaa—tdﬂ =-X[ VT VuvdQ, +/ vqdQ. Vv € Hi(Q) (5.8)
QC c

T
» Condicién —)\gn\agc = T — T)lo.

T = — —
/ pcva—dﬂc =A— [ VT -VvdQ.+ / oVT -1, +/ vgdQ, Yve HY(Q.) (5.9)
o Ot Q. 29, .

donde

/mfu” -*—_h<// dydz—i—// ydda;dz—l-//

"Es decir el espacio de sobolev puede ser Hg o bien H' dependiendo del tipo de condiciones de frontera

T):Z fdxdy
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» Condicién 8—T\BQE =0
on

T L
/ pcva—dﬂC = —/\/ VT - VudS). +/ vgdQ. Vv e H'(Q.) (5.10)
o Ot Q. Q.

5.2. Seleccion de un Espacio de Elementos Finitos

Para tratar el problema de las corrientes de Eddy en materiales ferromagnéticos usando FEM se han
realizado diversos trabajos empleando elementos de primer orden triangulares para 2D y tetrahedri-
cos para 3D [9][7][8][54], obteniéndose excelentes resultados en cuanto a exactitud y precisién. Por
otra parte, existen razones que justifican el uso de elementos triangulares para 2D y tetrahedricos
para 3D de primer orden:

» Con elementos triangulares (tetrahedricos para 3D) se obtienen excelentes aproximaciones,
sin necesidad de elevar el costo computacional para el manejo de un espacio de funciones de
mayor orden asociado a otros elementos como rectangulares o elementos ex6ticos [7][9][2)].

= La introducciéon de nodos dado un elemento, es un procedimiento que se realiza por conve-
niencia a problemas especificos [2], y por lo tanto no es necesario para llegar a resultados més
exactos.

Para el problema térmico se consideraran los mismos elementos asociados al problema electro-
magnético, ya que esto permite asociar directamente las cantidades involucradas en los dos fenéme-
nos [5]. Ter Maten en [30] ha empleado este esquema para determinar calentamiento por corrientes
de Eddy obteniendo resultados satisfactorios.

Sea K C R"™ una region acotada no vacia. Se denominard con V el espacio de dimensién fi-
nita de funciones de forma definidas sobre K, y N = {Ny,..., N;} una base de %8 (el conjunto de
variables nodales, es el espacio dual a V') [3]. Se define el elemento finito

(K,V,N)

la base {¢1,...,¢r} de V es la base nodal de V. Entonces el interpolante sobre este elemento finito
de una funcién v : Q. — R tal que N;Vi estd definido, puede escribirse como

k
Igv =) Ni(v)¢s
=1

5.2.1. Caso 2D

Sea €. C R? un dominio rectangular acotado. Se considera una triangulaci(’)n[ﬂ de Q.. El elemento
finito para este tipo de subdivisién se particulariza como

( K© v N(e))

8Para definicién ver [59] pagina 113
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(zj,95) (Tks yr)

Figura 5.1: Elemento triangular de primer orden con su respectiva asignaciéon de nodos

donde K(© es el e-ésimo tridngulo de la subdivisién, V(€ el espacio de funciones asociado cuya base
es {61, ¢2, 3} v N(@una base de V(©' que es {N1, N, N3}. Sean j, k,! los nodos del tridngulo (e)
(ver figura , entonces:

O (@) = =5 kA AL (5.11)
Clk
donde
1 mg-e) y§e) 1 =z Y
ci={ 1 ) o | D =| 1 4 o
1 ml(e) yle) 1 n”

5.2.2. Caso 3D

Sea . C R? una regién acotada en forma de paralelepipedo. Se considera una divisién de €. en
tetrahedros. El elemento finito para este caso es

( K© v, N(e))

donde K(© es el e-ésimo tetrahedro de la subdivisién, V(€ el espacio de funciones asociadas cuya
base es {$1, P2, @3, ¢4 }. Sean j, k, I, m los nodos del tetraherdo (e) (ver figura [5.2)), entonces:

DY) (@, y.2)

(e) _
J,k,lm
donde
Loy o
(e) (e _(e) 1 e € e
e 1 =z z (e) Ty Y z
C() = k 4 y D Z, = e e e
3.klm 1 ml(e) y?@) z;fe) k,lm( Y) 1 xz() y:f) z?)
IRORNOING 1oy g 2
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(T, Yms Zm)

(@1, 41, 21)

J
(5,95, %

(Th, Yk 2)

Figura 5.2: Elemento tetrahedrico de primer orden con su respectiva asignaciéon de nodos

5.3. Discretizacion en el Dominio del Tiempo

La aplicacién de elementos finitos al problema espacial teniendo en cuenta la variacién temporal de
las cantidades involucradas, es una técnica frecuente en el andlisis numérico de ecuaciones diferen-
ciales parciales [2]. El uso de esta técnica en este trabajo, es consecuencia del esquema empleado
para introducir la histéresis ya que permite concebir la aproximacién espacial con un espacio de
elementos finitos asociado a un enmallado fijo, pero con los valores asignados a los nodos variando
en el tiempo.

Una gran variedad de métodos pueden aplicarse para la discretizacién temporal en la obtencién
de una aproximacion de las ecuaciones en cuanto a las variaciones temporales. Las relaciones resul-
tantes son esquemas de ecuaciones en diferencias que deben tener tres caracteristicas basicas para
que puedan considerarse como aproximaciones valederas al modelamiento del problema:

= Consistencia. Las relaciones resultantes deben ser una buena aproximacién de la ecuacién
original del problemal’l

= Convergencia. La solucién del sistema discreto debe ser una buena aproximacién de la
solucién de la ecuacién diferencial.

= Estabilidad. La solucion del sistema discreto no debe ser alterada facilmente por perturba-
ciones en los datos.

Fallah en [9] y Ionita en [7][8] han empleado para el problema de las corrientes de Eddy en ma-
teriales ferromagnéticos, una discretizacion temporal basada en integracion numérica por trapecios
como un medio para interelacionar las cantidades en el tiempo, empleando el esquema de manejo
de histéresis usado en este trabajﬂ La representacién de esta aproximacion para un término se
expresa com

/tf w(t)dt ~ % (w(t + At) + w(t))

0

9Aqui y en los demés incisos se hace referencia a las ecuaciones en cuanto a variaciones temporales.
Tonita y Fallah, son independientemente los creadores de este esquema
1At es el tamaiio de paso empleado para la integracién
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Ionita muestra en [7] que el esquema de ecuacién en diferencias obtenido es convergente siempre
y cuando haya consistencia y las curvas que modelan la hystértesis sean funciones de Lipschitz. La
consistencia depende de At y su relacion con las condiciones de frontera. Tomando un At dentro
de un rango adecuadﬂ de tal manera que estén descritas las caracteristicas principales de las
funciones que definen estas condiciones, se obtiene consistencia [7][9]. En el caso particular de este
trabajo las senales asocidas a las fronteras son funciones cosenoidales de f [Hz].

Teniendo en cuenta estos dos aspectos (consistencia y convergencia) y los espacios de elementos
finitos seleccionados, el problema nuérico se describe con las ecuaciones presentadas en la siguiente
seccién. Al final de ésta se demostrara que los esquemas de ecuaciones en diferencias obtenidos son
estables.

Sea [A] = [Aiz ... ApyzAy1 ... Ay dy]T el vector de valores asignados a los nodos del espacio de ele-

mentos finitos seleccionado en el caso bidimensional, y [A] = [A1, ... ApzAy1 ... ApgyAiz ... Ay dz]T
el vector de valores de los nodos en el caso de tres dimensiones. Se representara de esta manera al po-
tencial magnético vectorial en las ecuaciones matriciales que se presentan en la siguiente seccién. De
manera analoga y consistente con las dimensiones de las matrices, se definen los vectores correspon-
dientes a las funciones de pruebaH de la formulacién variacional como [v] = [vig ... Unga¥yt - - . Unyyl
Y V] = [Vig - UngaUyt - - - Unygy Utz - - .vndz]T para dos y tres dimensiones respectivamente.

5.3.1. Problema Electromagnético
Caso 2D

El planteamiento por elemento se escribe como

ver {5 (BoE8he + Bl Wllof] + 5 W3] (AT + (A1) } - W) 5!
~olv]in) (A1~ (A1) V]

donde

XL | [ [ON;/0y], 5 —[ON;/0x],, 5 | dQ

|
o)
)
P

3x1

51 = [ Nl 0N /00l 00y 11921 = [ (Nl O;/0],, 40
e) ey

b= [ Wil Wil
()

12Con el At seleccionado se debe describir los aspectos principales de la sefial de frontera, en el sentido de contemplar
crecimiento y decreciemto en todos los intervalos, ademas de maximos y minimos

13S0n las funciones con las que se multiplicaron las ecuaciones diferenciales antes de realizarse el proceso de inte-
gracién en el dominio de solucién
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[Oéf]_] = f;lQ [Nj]?)xl |Zzgd$ si MR (Q(e) ﬂﬁQc) 7é 0
0 si MR (Q(e) ﬂan) =0

[af2] = 2 [Nl [520dy st pm (Qe) N09) # 0

MLa expresién del problema ensamblado es

XX (A = (XX2] [A) +32] 50 (R4 [RIY) —vip 5 (B2 + Bleuree) lofr] (514

2 Ocurve

con

[XX]_] = I/Fp% [043'1*] + 0o [’YT] , [XX2] = VFP% [043'1‘] -0 [’yT]

Caso 3D

El planteamiento por elemento es

At +AE At t
v{-o el bars - {; M+VZP a3 5 Al + -
v {verof] 5 (Bt + Biuune) - 1915 (RIS 4 RY) | v

donde
7] =Isxs ® [y1], [y1] = /Q [Nj]3><1 [Njhxs dQ(e)
(e)

0 —[pz] [By]
(8] = |: [B2] 0 - [8x] ] , [By] :/ [Nilgs1 [ON;/Ouly, 5 de) w=z,y,2
—[By] [6x] 0 e

[a3] = [@32] — [a31] — [a33] + [a34] — [a35] — [a36]

! [a3zz] 0 — [a32zx] ] ! 0 0 0 ] { 0 0
[a32] = 0 0 0 , [a33]=1] 0 —[a3zz] [a3zy] |, [a35]= 0 0
0 0 0 0 0 0 [

1% es la medida de lebesgue en R, es una medida de longitud.
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[ 0 0 0 ] [@3yy] [a3yx] 0 ] { 0 0 0 ]
[36] = | O 0 0 , [a31] = 0 0 0], [a34]=| —[a3xy] [a3xx] O
0 —[a3yz] [a3yy] 0 0 0 0 0 0

con

[a3uw] —/ {8%} [ON;/Ow],, 5 dQey w,w=2,y,2
Qe) du [,

[af] = [afl] — [af2], [afl] =

[afdc] = ff f laxy ddzdz i pge (R N 00e) # 0
0 si pge (QeNQ) =0

[afba] = ff f il3x1 bdydz si pge (Q(e) ﬂan) #0
0 si pgre2 (Qe)N02) =0

La expresién del problema ensamblado es

XX (A4 = (XX2] (A + 5] 5 (R4 (R —vp 50 (BESS, + Bl ) lofr] (5.16)

2 Ocurve

con

[XX]_] = VFP% [043T] +o ['YT] , [XX2] = VFP% [043'1‘] -0 [')’T]

5.3.2. Problema Térmico
Caso 2D

La siguiente expresién, por elemento, describe tanto el fenémeno con condicién de Dirichlet como
el de aislamiento térmico (véase capitulo 4).

At

(vl pe 6] {[T)F5 = [T]'} = [v] (=) [¢] 5

donde

0= [, Dk Wit 0=160416) (= [ |G0] oMo =y

15,22 es la medida de lebesgue en R?, es una medida de &rea



50 CAPITULO 5. ANALISIS DE ELEMENTOS FINITOS

la versién ensamblada de este planteamiento es

XX ()45 = (XX () + (o) 5 {0 + (o]} (5.18)

donde
[XX1] = pclfr] + A[¢r], [XX2] = pelfr] — A[(T]

Para el problema convectivo se tiene que la version ensamblada del planteamiento es:

[XX1] [T]"T2 = [XX2] [T]' — AthT,, [ofly] + [07] % {[q]t+At + [q]t} (5.19)
donde
X1 = peltr] + 7% (§ laf2al +lcal) - [XX2] = pelor] -5 (§ fat2al + 6]
ofl] — [abay] — [abaa1] + [adegr] — [odea]  si pr (R N OQ:) # 0
lof1] = { 0 si pur (Q(e) NQ:) =0
af2] = { [abaga] — [abayy] + [adeo] — [adegs]  si pr (Qee) Q) # 0
0 si MR (Q(e) ﬂaQC) =0
d d
abars) = [ Vo lomrdy, fabars] = [ (Nl Nyl dy 7 =a.b
b b
ladey] = / Ny lordz,  [aders] = / (Nl Nila)|_ dz 7= c,d
Caso 3D

La siguiente expresiéon, por elemento, describe tanto el fenémeno con condicién de Dirichlet como
de aislamiento térmico.

V1 pel0] { T4 = [T} = V] (M) [¥] 5

donde

ON,

- | Wil Wil Sk, 9] = Wbl (0] = i . [&LLXI[aNﬂ‘/a“hde@ u=1y,



5.4. DEMOSTRACION DE ESTABILIDAD o1

la versién ensamblada de este problema es

XX () = (xX2) [T + (0] 5 {0 + [a'} (5.21)

[XX1] = pelOr] + A[yr],  [XX2] = pefr] — A[¢r]
Para el problema convectivo se tiene que la versién ensamblada del planteamiento es:

XX (T4 = [XX2] ()~ AthTy, ofte] + (0] 5 {[a " + o} (5.22)

[af1] = [abay] — [abaa] + [adeq] — [adea] + [afep1] — [afeer]  si pge (Qe) N0Q) # 0
0 si HR2 (Q(e) ﬂE)QC) =0

af2] = [abagz] — [abayy] + [adees] — [adegs] + [afeca] — [afepa] si ppe (Qey N0Q) # 0
0 si HR2 (Q(e) ﬂa@c) =0

[abas1] = / / i3y lo=rdydz, |abays] = / / g | ]1X3)] dydz r=a,b
lofen] = / / ilaxi le=rdady, lafer] = / / ilaxa | ]1><3)‘ dmdy r=e,f

5.4. Demostracion de Estabilidad

En esta seccién se presenta una demostracion de que las relaciones resultantes a la aplicacién de
elementos finitos, forman un conjunto estable de ecuaciones de evolucién del fenémeno, por lo cual
los efectos de las perturbaciones por redondeo y malos condicionamientos estan acotados, haciendo
aun mas confiables los resultados que se obtengan de la simulacion.

Considérese las ecuaciones del problema [5.14] ﬁ °b sustituyendo ¢ + At por n+ 1 y ¢ por WE

Sea [A] la representacién de los datos asociados a un problema sin perturbaciones y [A] los datos

6 Esta demostracién se plantea seguiendo las ecuaciones electromagnéticas, sin embargo debe tenerse en cuenta que
las ecuaciones del problema térmico resultante tienen la misma forma, por lo cual con esta demostracion se verifica
la estabilidad tanto en el problema térmico como en el electromagnético

1"Esta notacién es equivalente, ya que se estd describiendo la relacién entre cantidades discretas; con la primera
notacién sélo se anade el hecho de saber en qué tiempo real se da esa relacién
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asociados a un problema con éstas. Se define 6" = [A]" — [A]n Se dice que un esquema de ecuaciones
en diferencias es estable si 3C' > 0, independiente de At, tal qud™|

I8 < & 8°)]

cuandon — oo, At — 0yt <t ﬂ Empleando con datos perturbados y no pertur-
bados, resultan dos ecuaciones, de cuya resta se obtiene

[(XX1] 6" = [XX1]0" = |[[XX1] 5" || = || [XX1] 6" = [[[XX1]] [[o™ ]| = [[XX1]]| []8"]]

[[XX2]||

+1 _
= [|0"| < C[|6"|Vn con C = 13X

entonceﬂ
6" < C ™ < ... <C"H||&|| = 3C >0 tal que [|6"] < C 6% vn

este C' es independiente de At y la relaciéon se mantiene cuando n — oo, dentro de los limites de
tiempo impuestos para la simulacién del fenémeno. Esto garantiza que el esquema es estable, lo cual
coincide con los resultados experimentales obtenidos por Ionita en [7] y Fallah en [9]. Por otra parte
debe prestarse especial atencion al hecho de que la constante que da la medida de la estabilidad C, es
dependiente de las caracteriticas de geometria del problema espacial, evidencidandose una conexion
en los dos tipos de planteamiento.

18Esta definicién de estabilidad es propuesta por Flaherty en 2]

19¢+ es el tiempo final de simulacién

*0Fn la demostracién || - || representa la norma de las matrices y los vectores de datos. La norma empleada para la
demostracién puede ser I o bien lo [25]



Capitulo 6

Aspectos de Implementacion

La implementacién de un algoritmo de solucién numérica de un problema dado, requiere de la
seleccién adecuada de las técnicas para la obtencién y realizacion de operaciones bésicas como la
integracion, la derivacién y los ensambles. En la herramienta de simulacién Matlab se cuenta con
varias funciones destinadas para satisfacer en parte éstos propdsitos, lo que permite hacer mas
sistematico y compacto un cédigo disenado para éstos problemas. En este capitulo se presentan los
aspectos de implementacién considerados para llevar a cabo los algoritmos de solucién, seleccionando
las herramientas mas adecuadas y eficientes de acuerdo a las necesidades involucradas en cada
seccién del problema.

6.1. Algoritmo de Solucién

El algoritmo de solucién en la parte electromagnética estd ligado al esquema empleado para intro-
ducir la histéresis. Es la sistematizacion del problema en torno a este esquema. Por otra parte, el
algoritmo para el problema térmico es un planteamiento directo ya que no se requieren procesos
iterativos.

6.1.1. Adecuacién y Modelado de los datos Experimentales de la relacién B-H

Antes de emplear los procesos para resolver el problema de las corrientes de Eddy es necesario
adecuar los datos experimentales y obtener los modelos de la curva de histéresis del material.
Asi el conjunto de pares ordenados (experimentales) asociados acada lazo debe tener las siguientes
caracteristicas

» Dada una pareja ordenada de datos (Hj, Bj) no existe otra (Hy, By) tal que H; = Hj o
B; = By.

= Los datos tienen un comportamiento no decreciente entre los valores maximo y minimo de la
intensidad de campo magnético considerada.

con el cumplimiento de estos requerimientos se aplican las lineas de codigos descritas a continuacion
para modelado de las curvas.

93
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Implementacion en Matlab

Sea Hinf ,Binf la representacion de los datos correspondientes al lazo inferior y Hsup,Bsup los del

lazo superior.

FI=spline(Hinf,Binf);

FIX=spline(Binf,Hinf);

[i,j]=find (Binf==min(abs(Binf)));clear i

Hci=Hinf (j(1));clear j
fl=fittype(’ai*atan(x-ni)+bi’, ’problem’,’ni’);
[cli,gli]=fit (Hinf’,Binf’,fl, ’problem’ ,Hci);clear f1l
ai=cli.ai;bi=cli.bi;ni=cli.ni;clear cli gli;syms hx
f1i=0@(hx) (ai*atan(hx-ni)+bi) ;clear ai ni bi
FS=spline (Hsup,Bsup);

FSX=spline(Bsup,Hsup);

[i,j]=find (Bsup==min(abs(Bsup)));clear i
Hcs=Hsup(j(1));clear j
fl=fittype(’as*atan(x-ns)+bs’,’problem’,’ns’);
[cls,gls]=fit (Hsup’,Bsup’,fl, ’problem’ ,Hcs);clear fl
as=cls.as;bs=cls.bs;ns=cls.ns;clear cls;syms hx
fls=0(hx) (as*atan(hx-ns)+bs) ;clear as bs ns

6.1.2. Algoritmo: Problema Electromagnético

» Cémputo de las Matrices de Geometria: Se computan las matrices [y], [5], [@3], [¢].

integrales de frotera tales como [af].

Aplicacién de las condicones iniciales en [A]"= y [R]'

Inicializacién de [A]EZ1 y [R]le.

Cémputo de [A] fi .

=0

Coémputo de las Matrices de frontera: Se computan las matrices en las que se involucran

e Si Z(e) [A]'T] [A]ZZI‘ < A || entonces se da paso al siguiente item, si no:

i+1

e Se realiza [A]'=! = [A]'T] , se calcula el rotacional de [A]fi para obtener [B]Z} y con

i+

7

ello del modelo de la histéresis [H]fﬂ, se calcula [R}fﬂ = vpp [B]

t=1 t=1
i+l [H]z‘+17 y se hace

[R]=! = [R]!7]. Con lo que finalmente se vuelve al inciso principal (calcular el valor del

7 i+1°

potencial magnético vectorial para la primera muestra).

= Inicializar [A]} y[R]}.

= Cémputo [AEH Y[R]Z#r

° Si HA]EJrl - [Am < A, entonces se da paso al siguiente item, si no:

LA, es el maximo error absoluto aceptado, tomado sobre la suma de los errores absolutos correspondientes a cada

nodo.
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e Se realiza [A]} = [A]’ 41 » se cdlcula el rotacional de (Al 41 bara obtener [B]; 41y con
ello del modelo de la histéresis [H];, ;; se calcula [R]},; = vpp B, — [H]! ,, y se hace

R]! = [R]! +1- Con lo que finalmente se vuelve al inciso principal (calcular el valor del

potencial magnético vectorial para la muestra t).

= Si ya se cumple el méximo tiempo de simulacién se finaliza el proceso (continuando en el
siguiente item), si no se hace t = At 4+t y se regresa al proceso de inicializacién en t.

= Computo del vector de densidad de corriente a partir de los valores de potencial magnético
vectorial obtenido.

» Cémputo de las pérdidas Shmicas y por histéresis para la obtencién de [q]

6.1.3. Algoritmo: Problema Térmico

» Cémputo de las matrices de geometria: Se computan las matrices [6], [¢].

s Cémputo de las matrices de frontera: Se computan las matrices en las que se involucran
integrales de frontera tales como [af].

» Aplicacién de las condiciones iniciales en [T]*=°.

= Cémputo de los valores restantes de temperatura, si el tiempo de simulacién no ha finalizado;
de lo contrario se finaliza el proceso

6.2. Coémputo de operaciones basicas

En la realizacién de un planteamiento numérico por FEM es necesario emplear e implementar
operaciones de derivacion e integracion. En el primer caso es frecuente usar herramientas de tipo
simbdlico cuando las funciones asociadas a los nodos son lineales de primer orden, como las que
se emplean en este trabajo; mientras que en el segundo hay tendencias a implementaciones por
cuadratura Gaussiana [2]. Las integrales se hacen sobre todos los elementos del dominio para el
caso de las matrices principales de geometria y sobre los elementos tales que ) 09, # () para
las matrices de frontera. Hay razones que hacen mas adecuada y conveniente la integracién por
cuadratura gaussiana para las matrices principales de geometria e integracién simbélica para los
elementos de frontera:

= Dado que las funciones base asociadas a los nodos son funciones polinomiales lineales de
primer orden, se puede obtener el valor exactoﬂ de una integral que involucre éstos términos
empleando un numero adecuado de puntos usando cuadratura Gaussiana [25]. Ademds el
tiempo de cémputo se reduce considerablemente respecto del uso de integracién simbdlica, u
otros tipos de integracion.

s El cémputo de las integrales de frontera se realiza sobre un numero de elementos mucho
menor al total empleado en la regién de solucién, por ello emplear integracién numérica en
para este caso, no reduce significativamente el costo computacional. Adicionalmente el uso
de integracién simbdlica permite hacer el cddigo correspondiente al computo de elementos de
frontera mas compacto y manejable.

2Esto es consecuancia de las ortogonalidad de los polinomios de Legendre en [—1,1] [25]
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Figura 6.1: Transformacién de un elemento en el plano fisico a un elemento canénico en un plano
computacional (caso 2D)

6.2.1. Transformacién a Planos Computacionales

Antes de implementar cualquier técnica numérica de integracién es conveniente realizar una trans-
formacién a un plano computacional, en donde la regién de integracién tenga una forma més sencilla
en términos analiticos [2]. Esto permite definir exactamente los limites de integracién sin necesidad
de ningin tipo de aproximaciones [2]. Las transformaciones realizadas son para el caso 2D-mensional
de un tridngulo arbitrario en el plano xy a un tridngulo candnico de lado unitario en el plano &n
con sus lados coincidentes con los ejes £ y n (ver figura . Para el caso 3D-mensional se realiza
una transformacién de un tetrahedro arbitrario a un tetrahedro candnico de arista unitaria en el
espacio £nC con sus vértices coincidentes con los ejes €, n y ¢ . Las ecuaciones que definen estas
transformaciones son:

s Caso 2D-mensional
£ =6 (xy), n=0% (,y) (6.1)

= Caso 3D-mensional
¢ =0 (2y.2), n=0(@y.2), (=0 (zy,2) (6.2)

de manera que las integrales se transforman de la formaEI:

d(z,y)
a(&,m)

Flaiy — [ f(g(&n),h(f,n))‘ 'dsdn (6.3

Qe

f(SC,y,Z)dQ(e) — f(g(fﬂ% <)7h(€7naC)’k(£aT]’ C)) d&dnd¢ (64)

' Az, y,z)
Q(e) Qo

(&, n,Q)

las funciones g, h, k definen el valor de las variables x,y, 2z en térmninos de las nuevas variables
definidas a partir de las transformaciones

oz, y,z)
9(&,1,¢)

3 es el jacobiano de la transformacién
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6.2.2. Implementacién en Matlab

= Integracién simbdlica:
int(f(x),’x’,a,b);

» Integracién por Cuadrattura Gaussiana:(como ejemplo se mostrard la generacién de la matriz
[7] por elemento en el caso 2D)
Yox*xx* Integrales por Cuadratura x¥kikkix*
ul=sqrt(3)/3;u2=-sqrt(3)/3;
Xil=(ul+1)*0.5;Etal1=0.25*(1-ul) *(1+sqrt(3)/3) ;Etalb=0.25%(1-ul) *(1-sqrt(3)/3);
Xi2=(u2+1)*0.5;Eta2=0.25*(1-u2) *(1+sqrt(3)/3) ;Eta2b=0.25*(1-u2) * (1-sqrt (3)/3);
syms X y
Fil=solve(Nj-Xil,Nk-Etal,’x’,’y’);
x=F1.x;
y=F1l.y;clear F1
MDjk(3,:)=[1,x,y];clear y x
Djk=det (MDjk) ;
N1=Djk/Cjkl;clear Djk
P11=JC*[Xil;Etal;N1]*[Xil;Etal;N1]’;
Syms x y
F2=solve(Nj-Xil,Nk-Etalb,’x’,’y’);
x=F2.x;
y=F2.y;clear F2
MDjk(3,:)=[1,x,y];clear y x
Djk=det (MDjk) ;
N1=Djk/Cjkl;clear Djk
P11b=JC*[Xil;Etalb;N1]*[Xil;Etalb;N1]’;
syms X y
F3=solve(Nj-Xi2,Nk-Eta2,’x’,’y’);
x=F3.x;
y=F3.y;clear F3
MDjk(3,:)=[1,x,y];clear y x
Djk=det (MDjk) ;
N1=Djk/Cjkl;clear Djk
P22=JC* [Xi2;Eta2;N1]*[Xi2;Eta2;N1]’;
Syms x y
F4=solve (Nj-Xi2,Nk-Eta2b,’x’,’y’);
x=F4.x;
y=F4.y;clear F4
MDjk(3,:)=[1,x,y];clear y x
Djk=det (MDjk) ;
N1=Djk/Cjkl;clear Djk MDjk
P22b=JC* [Xi2;Eta2b;N1]*[Xi2;Eta2b;N1]’;
gamma=kron(eye(2),0.1256%(1-ul) * (P11+P11b)+0.125% (1-u2)* (P22+P22b) ) ;

6.3. Proceso de Ensamble de Matrices

Existen diferentes enfoques para la realizacién de un proceso de ensamble de los elementos que
constituyen el problema [4][2]. En este trabajo se aplicard el método propuesto por Flaherty en
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[2], ya que su costo computacional es menor respecto del propuesto por Johnson en [4]. El método
consiste basicamente en generar a partir de las matrices dadas por elemento, unas matrices asociadas
de las mismas dimensiones de la matriz total ensamblada, tal que ésta ultima se expresa como una
sumatoria de las primeras. a continuacién se muestra la aplicacién de este proceso de ensamble.

6.3.1. Implementacion en Matlab

alpha3S=zeros(2+*nd,2*nd) ;
gammaS=zeros (2*nd, 2*nd) ;

betaS=zeros(2*nd,nd) ;

rotAS=zeros(nd,2*nd) ;

rotBS=zeros(nd,nd);

vpru=t1(:,i);

for kk=1:1:3

for 11=1:1:3

alpha3S (vpru(kk) ,vpru(ll))=alpha3(kk,11);
alpha3S(vpru(kk) ,vpru(ll)+nd)=alpha3(kk,11+3);
alpha3S(vpru(kk)+nd,vpru(ll))=alpha3(kk+3,11);
alpha3S (vpru(kk)+nd,vpru(ll)+nd)=alpha3(kk+3,11+3);
gammasS (vpru(kk) ,vpru(ll))=gamma(kk,11) ;

gamma$ (vpru(kk) ,vpru(1l)+nd)=gamma (kk,11+3) ;
gamma$ (vpru(kk)+nd,vpru(1ll) ) =gamma (kk+3,11) ;
gammas (vpru(kk)+nd, vpru(1l)+nd) =gamma (kk+3,11+3) ;
betaS (vpru(kk) ,vpru(ll))=beta(kk,11);

betaS (vpru(kk)+nd,vpru(ll))=beta(kk+3,11);
rotAS (vpru(kk) ,vpru(1l))=rotA(kk,11);

rotAS (vpru(kk) ,vpru(ll)+nd)=rotA(kk,11+3);
rotBS (vpru(kk) ,vpru(1l))=rotB(kk,11);

end

end

clear rotB rotA beta gamma alpha3 kk 11 vpru
alpha3T=alpha3S+alpha3T;clear alpha3S
gammaT=gammaS+gammaT;clear gammaS
betaT=betaS+betaT;clear betaS
rotAT=rotAS+rotAT;clear rotAS
rotBT=rotBS+rotBT;clear rotBS

6.4. Ajuste de Valores de la Frontera

En la obtencién de los planteamientos variacionales de los problemas acoplados (térmico y electro-
magnético), se ven implicitas en las ecuaciones resultantes algunas condiciones de frontera; tal es
el caso de las condiciones tipo Newmann y Robin. Sin embargo en el caso de las ecuaciones con
condiciones de Dirichlet esto no sucede, de hecho la ecuacién variacional asociada a un problema de
éste tipo y uno de condicién homégenea tipo Newmann es la misma. Por ello es necesario ajustar los
valores conocidos de frontera en el planteamiento. Esto se realiza asignando los valores conocidos a
los nodos que se encuentran en la frontera, empleando las funciones que definen estas condiciones:

N ](e) (go(t)) = 9(()? (t) donde j esun nodo perteneciente a la frontera
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go(t) es la funcién que define la condicién de frontera. Esta asignacién influye en los datos obte-
nidos para los demés nodos del enmallado y es lo que define la diferencia entre los resultados para
un problema de frontera aislada y uno de temperatura constante en el borde en lo que a resultados
numéricos se refiere.

6.5. Solucién de los Sistemas Matriciales

La seleccién de los métodos empleados para resolver las ecuaciones matriciales, esté estrechamente
relacionada con las caractéristicas de las matrices que constituyen el planteamiento. En los problemas
donde se emplea FEM, éstas son matrices esparcidas, es decir poseen un gran numero de elementos
nulos y poseen un gran tamano, tipicamente son arreglos de més de 10000 elementoﬂ Para este tipo
de arreglos, resultan mucho mas convenientes los métodos iterativos por ser mas eficientes tanto en
almacenamiento de computaodra como en el tiempo empleado de cémputo [25][2].

Uno de los métodos iterativos preferidos es el de Gradiente conjugado, ya que para matrices
esparcidas de gran tamafnio puede llegar a la solucién en aproximadamente pasos, lo que lo
hace preferible sobre la eliminacién gaussiana y los métodods iterativos de Gauss-Seidel, Jacobi,
SQR, Stein-Rosenberg y Ostrowoski-Reich?] [25] [50].

6.5.1. Implementacion en Matlab

En Matlab se cuenta con las funciones de gradiente conjugado cgs y pcg. Estas dos funciones se
emplean indistintamente en el caso 2D, sin embargo en el caso 3D se emplea la primera debido a
su ventaja en el manejo de valores numéricos grandes en comparacién con pcg. A continuacién se
presentan dos ejemplos donde se muestra el empleo de éstas:
SAtimedis=pcg(XX1,XX2*SAtimedis-1+XXF,1e-16,100);

Ttimedis=cgs (XXhnt,vphn,le-16,100);

6.5.2. Solucién de sistemas cuando hay valores conocidos en la frontera

En problemas con condiciones tipo Dirichlet, la asignacién de valores en los nodos se traduce en
efectos directos sobre las ecuaciones matriciales que describen el problema, ya que al haber valores
conocidos las dimensiones de las matrices se reducen [2]. Considérese la siguiente ecuacién matricial

[ p11 P1j pin | [ a1 ] [ f1 ]
pjr .-+ DPjj -+ DPjn Cj = fj
L Pnl Dnj Pnn ] L Cn | L fn J

4Las matrices generadas en este trabajo alcanzan incluso mds de 1 x 10° elementos ya que en los problemas
vectoriales hay varias incégnitas por nodo

n es el tamaifio de la matriz cuadrada generada

5Una discusién sobre las vantajas del gradiente conjugado sobre estos métodos estd completamente detallada en
25]
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en donde ¢; = «; es un valor conocido, entonces el problema para resolver las deméds incégnitas es

[ pu Plj—1  Dij+1 pin | [ a ] [ fi— Py
Pj—1,1 -+ Pj-14-1 Pj-1j+1 --- DPj—1n G-1 | _ | Ji-1 = Ppj-17
Pj+11 oo Pj+1,5-1 Pj+1,5+1 .-+ Pj+in Cj+1 fj+1 — Pj+1,57;

L Pni Pn,j—1 Pn,j+1 Pan 1 L Cn | L fn — Pn,j7j |

6.6. Calculo del Rotacional

Un aspecto esencial en el desarrollo del algoritmo que permite resolver el problema electromagnético,
es el calculo del rotacional realizado sobre los valores del potencial magnético vectorial. La realizacion
en un esquema numeérico se puede lograr empleando elementos finitos sobre la ecuacién que describe
la operacién, aprovechando todos los desarrollos realizados hasta ahora con éste. Entonces se plantea
la formulacién variacional como

/ﬁﬁx&d@c:/ 7 - BdQ,

(&

de manera tal que, teniendo en cuenta las consideraciones realizadas en el capitulo 5, se obtienen
las relaciones matricialed’]

6.6.1. Caso 2D

La versién por elemento es

6.6.2. caso 3D

La versién por elemento es

6.7. Ajuste y Control de los Datos

En la solucién de problemas numéricos es necesario contemplar la influencia de los errores de
redondeo, los efectos del empleo de matrices mal condicionadas y la posibilidad de que se obtengan
datos erroneos que no muestren seguir la tendencia de los datos restantes. Una concepcion cualitativa
del fenémeno simulado es de considerable importancia ya que permite establecer criterios sobre los
datos, para descartar aquellos que carezcan de significado fisico.

"Las matrices [3], [7], [y1], son las mismas que se definieron en el capftulo 5
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6.7.1. Ajustes en el Problema Electromagnético

Estimar el comportamiento de las variables electromagnéticas no es una tarea trivial, y no esta al
alcance de la intuicién fisica. Sin embargo si es posible realizar ajustes de valores cuando estan fuera
del rango de operacion en el que se estan considerando las variables del fenémeno. Los dominios y
codominios de las funciones de lazo de con las que se modela la histéresis representan los rangos
para las cantidades magnéticas, asi un valor de densidad deflujo magnético que no se encuentre en el
intervalo [Byin, Bmaz] debe ser rectificado dentro de éste de acuerdo a la tendencia que se observe.

Implementacion en Matlab

for i=1:1:max(size(B{timedis}))
if B{timedis}(i)>1.48
B{timedis}(i)=1.48;

elseif B{timedis}(i)<-1.474
B{timedis}(i)=-1.474;

else

end

end

6.7.2. Ajustes en el Problema Térmico

Si se considera un cuerpo ferromagnético en calentamiento con una temperatura inicial Tp, es de es-
perar que en la evolucién del problema las temperaturas aumenten, ya sea considerando condiciones
de Dirichlet y/o de Newmann. Asi, de registrarse en algin paso del esquema de ecuacién en diferen-
cias un valor significativamente menor a éste, debe ajustarse de acuerdo a la tendencia que se observa
con la informacién mayoritaria. Este ajuste de los datos se aplica observando el comportamiento
de la simulacién, puede darse el caso de no ser necesario. La idea de realizar este procedimiento es
mantener las tendencias y no estimar cuantitativamente un valor para determinadas regiones.

Implementaciéon en Matlab

for j=1:1:nd

if T{timedis}(j)<(TOext-10)
T{timedis}(j)=TOext;

else

end

end

6.8. Resultados Finales de Implementacién

El resultado de la realizacion de las implementaciones, con los aspectos considerados en éste capitu-
lo y todo el anélisis y estudio realizado a lo largo del texto se plasma en cédigos configurados como
funciones de Matlab:
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6.8.1. Simulacion del Fenémeno Electromagnético

Las funciones implementadas para la simulacién del fenémeno de corrientes de Eddy en dos y
tres dimensiones son ElectroFEM 2D.m y ElectroFEM_3D.m respectivamente. Con éstos cédigos se
simula el problema electromagnético, de manera que se obtiene como variable de salida un término
que contiene los datos correspondientes al calentamiento por histéresis y efecto Joule, y que es una
de la variables de entrada en el proceso de simulacién térmico. En la ejecucién de las funciones se
muestra el comportamiento de los datos, por ejemplo las tendencias en magnitud y direccion de las
corrientes. Los pormenores de estos codigos se encuentran en los apéndices B y

6.8.2. Simulacién del Fenémeno Térmico

Las funciones implementadas para la simulacién del problema de calentamiento por corrientes de
Eddy son ThermalFEM 2D.m, ThermalFEMConv_2D.m, ThermalFEMNO_2D.m para el caso de dos di-
mensiones y ThermalFEM 3D.m, Thermal FEMConv_3D.m, Thermal FEMNO_3D.m para tres dimensiones.
La primera funcién permite tratar el problema con condiciéon de Dirichlet, la segunda con condicién
convectiva y la tercera con condicién de aislamiento térmico. La variable de salida en la ejecucion
de las funciones es la distribucién de temperatura en el cuerpo. Asi mismo se muestran graficamen-
te cuales son las tendencias de los datos. Los detalles de estos cdédigos pueden encontrarse en los
apéndices C, D, E, G, H e I respectivamente.

8En el apéndice A se describen los principales aspectos en el manejo de los cédigos



Capitulo 7

Resultados

En este capitulo se presentan los resultados obtenidos de las simulaciones realizadas teniendo en
cuenta los desarrollos y planteamientos hechos en los capitulos precedentes. Estas fueron implemen-
tadas en la herramienta de simulacién Matlab. Se consideran dos materiales ferromagnéticos para
mostrar los datos resultantes, acero-silicio 2,5 %E], y hierro de alta pureza (purén)ﬂ En primer lugar
se considera el caso de la seccién rectangular de la barra infinita, mostrando en primera instancia
los comportamientos de los datos del problema electromagnético por medio de figuras en las que se
observan las principales caracteristicas del vector densidad de corriente. Seguidamente se plasman
los resultados de los problemas térmico para condiciones de tipo Dirichlet y Newmann.

La presentacion de los resultados para el porblema de la barra de longitud finita es andloga al
caso de dos dimensiones, con la diferencia de que los resultados del problema térmico se dan para
condiciones convectiva y de aislamiento térmico. El tamafio de paso en el tiempo para todas las
simulaciones es de 0.002 segundos.

7.1. Seccién Rectangular de Barra Infinita

En esta configuracién la condicién de frontera empleada para el problema electromagnético es
H(02.) = 500 cos(1007t)k[A/m]. Las propiedades del material empleado son:

» Propiedades Electromagnéticas: o = 2,5 x 10%[S/m], para los datos referentes a la relacién
B-H ver [21] y el apéndice J.

= Propiedades Térmicas :p = 7,65 x 103[Kg/m?], A = 31[W/m - K|, ¢ = 434[J/Kg - K|, T;, =
298,15[K].

En la grafica[7.1]se presenta el dominio estudiado con una triangulacién asignada de 1328 tridngulos
y 707 nodos. Este enmallado es generado con el pdetool de Matlab. No existen perturbaciones
de triangulacién en la fronteraP} Las figuras hasta la muestran el comportamiento de las
corrientes, tanto en magnitud (izquierda), como en forma de campo vectorial (derecha) en diferentes

'Denominado Trafoperm [21]
?Denominado Vacofer [21]
3Es decir los nodos exteriores estdn ubicados exactamente en 9.

63
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Figura 7.1: Enmallado para dominio 2D rectangular. Dimensiones en metros [m)].

tiempos. Y en las figuras hasta [7.6] se aprecia el comportamiento de las componentes del vector
densidad de corriente en el material en nodos especificos. El propdsito de presentar los resultados en
cuanto a la parte electromagnética, es verificar los datos electromagnéticos, para su posterior empleo
en el analisis del fenémeno térmico. Por medio de ésto es posible realizar un estudio y mantener un
control mas riguroso y minucioso de los cédlculos.

La magnitud del vector densidad de corriente es pronunciada hacia las fronteras de la seccién, y
las direcciones del campo vectorial que define las corrientes, son arremolinadas. El comportamiento
de las componentes de J respecto al tiempo evidencia caracteristicas oscilatorias consecuente con
las funciones empleadas para definir las condiciones de frontera.

7.1.1. Significado Fisico de los Resultados y Contrastacién con Otros Traba-
jos: Problema FElectromagnético

En las figuras hasta [7.3| se aprecian las caracteristicas del vector densidad de corriente en el
material. Un andlisis cualitativo del fendmeno permite concluir que este comportamiento en cuanto
a las tendencias de la magnitud observada es el esperado, como consecuencia del efecto piel. Esto
es coincidente con los resultados obtenidos por Sawicki en [60] en la simulacién de campos electro-
magnéticos y corrientes de Eddy en implantes ferromagnéticos rectangulares y con las simulaciones
realizadas por Botauscio en [I0] y Manzin en [I1] para secciones rectangulares de cuerpos ferro-
magnéticos.

Las direcciones de la corrientes en los diferentes tiempos permiten asegurar que hay arremo-
linamientos de corrientes, hecho totalmente coherente con la naturaleza del fenémeno estudiadd]
quedando claro que hay una tendencia en los datos que obedce a las condicones fisicas del probelma;
mostrandose consistencia con los modelos empleados y coherencia con el trabajo de Zhang, Misaki y
Kameari en [I3][42][18] respectivamente, en donde se simulan las corrientes de Eddy en un material
conductor con permeabilidad constante.

En las figuras hasta [7.6| se aprecia la descripcién de las componentes de las corrientes en el

4E] término de corrientes de Eddy se ha empleado en lengua inlgesa respetando una nomenclatura ampliamente
usada, sin embargo esto traduce literalmente: corrientes de remolino
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Figura 7.2: Magnitud y direcciones del vector densidad de corriente en la muestra 1000 (2 segundos).
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Figura 7.3: Magnitud y direcciones del vector densidad de corriente en la muestra 1005 (2.01 segun-
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Figura 7.4: Componentes del vector densidad de corriente en el nodo 43 de coordenadas (0.3775e-3,
0.3854e-3)[m]. Unidades de Jxy en [A/m?], y eje de abscisas en muestras
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Figura 7.5: Componentes del vector densidad de corriente en el nodo 156 de coordenadas (0.0604,
0.0001)[m]. Unidades de Jxy en [A/m?], y eje de abscisas en muestras
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Figura 7.6: Componentes del vector densidad de corriente en el nodo 112 de coordenadas (0.0803,
-0.0051)[m]. Unidades de Jxy en [A/m?], y eje de abscisas en muestras

tiempo. Se verifica por medio de éstas el comportamiento oscilatorio, consecuencia de la condicion
de frontera empleada. El efecto piel es confirmado observando que las componentes de la corriente
en el interior del material son de menor amplitud que en zonas més externas, y se obtienen formas
periédicas con 110mP] muestras de periodo. Es natural la existencia de arménicos consecuencia de
la no linealidad y de la histéresis.

7.1.2. Resultados problema Térmico con condicién de temperatura constante
en la frontera

En las figuras hasta se aprecian los resultados del problema térmico con condiciones tipo
Dirichlet. Se consideran varios tiempos para describir la evolucién del comportamiento térmico del
cuerpo en calentamiento, empleando figuras con mapas de color que hacen alusién al incremento
de temperatura, asi como representaciones en 3D de los resultados sobre el enmallado empleado. A
medida que transcurre el tiempo de simulacién se evidencia una concentracién de temperatura hacia
la zona céntrica de la geometria, en donde funcionalmente se aprecia la formacién de un méaximo
absoluto dentro del dominio.

7.1.3. Resultados problema Térmico con condicién de aislamiento térmico

En las figuras[7.11] hasta [7.14], se decribe el calentamiento con condicién homogénea tipo Newmann.
Se muestran los datos obtenidos en el tiempo, representando con mapas de color y funciones 3D
los valores de temperatura. Se observa en la evolucién de los datos de simulaciéon un incremento
de temperatura hacia la frontera del cuerpo, registrandose los mayores valores en las esquinas. En
la zona central se observan los valores minimos con una clara tendencia hacia un minimo absoluto
dentro del dominio.

5m es un entero positivo
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Figura 7.7: Distribucién de temperatura en la muestra 5000 (10 segundos), para el problema con
condicién de frontera tipo Dirichlet. Unidades de temperatura en [K]
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Figura 7.8: Distribucién de temperatura en la muestra 20000 (40 segundos), para el problema con
condicién de frontera tipo Dirichlet. Unidades de temperatura en [K]
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Figura 7.11: Distribucién de temperatura en la muestra 10000 (20 segundos) del problema con
condicién de aislamiento térmico. Unidades de temperatura en [K]
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Figura 7.15: Gréfica de las Temperaturas maxima (rojo), promedio (azul) y minima (verde) del
calentamiento en la seccion rectangular ferromagnética. Eje de abscisas en muestras.

7.1.4. Significado Fisico de los Resultados y Contrastacién con Otros Traba-
jo:Problema Térmaico

Los resultados del problema térmico para las distintas condiciones de frontera que se aprecian
en las figuras hasta [7.14] permiten describir la evolucién en el tiempo de la temperatura. Las
soluciones obtenidas para este problema estan dentro del tipo de curvas tipicas de solucién para
la ecuacién de difusién del calor [46][47], es decir los resultados son consistentes con los modelos
que describen el problema. Por otra parte en la grafica [7.15] se puede observar el comportamiento
de las temperaturas maxima, promedio y minima obtenidas a lo largo del proceso de simulacion
para condicién de frontera de Newmann. Este resultado es coherente, consistente y semejante al
obtenido por Ciric en [I2] para un material ferromagnético teniendo en cuenta la dependencia de la
permeabilidad respecto de la temperaturaﬂ

SEn este trabajo esta consideracién estd implicita al considerar los datos experimentales del material
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Figura 7.16: Enmallado para dominio 3D. Dimensiones en metros [m].

7.2. Barra Finita de Seccién Rectangular

En esta configuracién la condicién de frontera empleada para el problema electromagnético es

H = 500 cos(1007t)k[A/m] en las tapas laterales de la barra, y B = 1500 cos(1007t)k [T] en las
tapas superior e inferior de la misma. Las propiedades del material empleado son:

» Propiedades Electromagnéticas: o = 1 x 107[S/m)], para los datos referentes a la relacién B-H
ver [21] y el apéndice K.

» Propiedades Térmicas :p = 7,87 x 103[Kg/m?], A = 72[W/m - K|, c = 447[J/Kg - K|, T;,, =
298,15[K], h = 1[W/m?*K].

En la figura[7.16]se presenta la discretizacién de la barra en 1700 tetrahedros y 440 nodos. Las figuras
y permiten apreciar el comportamiento en magnitud del vector densidad de corriente en
diferentes muestras, se evidencia que los maximos valores se concentran hacia el exterior, evadiendo
las aristas paralelas al eje z. En las figuras hasta [7.21] se describe el comportamiento de las
componentes de éste vector en diferentes puntos de la barra, en términos de las muestras.

7.2.1. Significado Fisico de los Resultados y Contrastaciéon con otros Traba-
jos: Problema FElectromagnético

Como se aprecia en las figuras y se evidencia la tendecia en la magnitud de la corriente a
ser pronunciada hacia el exterior de la barra, lo cual es esperado como consecuencia del efecto piel.
Se observa que las corrientes estdn nuevamente arremolinadas, por ello la magnitud de J es reducida
incluso en las tapas superior e inferior de la barra hacia la zona céntrica. Con las figuras hasta
[7.21] se pueden confirmar estos comportamientos, y se destaca la existencia de una componente en
la direccién z que es diferente de cero en pequenos intervalos de muestras; ademéas se comprueba
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Figura 7.17: Magnitud del vector densidad de corriente en las muestras 3 y 8 (0.006 y 0.016 segun-
dos). Unidades de J en [A/m?]. Maximo de corriente en la muestra 3: 1.5279¢3 [A/m?]. Méximo de
corriente en la muestra 8: 1.2452e3 [A /m?]

Figura 7.18: Magnitud del vector densidad de corriente en las muestras 1000 y 1005 (2 y 2.016
segundos). Unidades de J en [A/m?]. Méximo de corriente en la muestra 1000: 8.2655e3 [A/m?].
Méximo de corriente en la muestra 1005: 9.1165e3 [A /m?]
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Figura 7.19: Componentes del vector densidad de corriente en el nodo 100 de componentes (-0.3312,
0.1683, -0.6424)[m]. Unidades de Jxyz en [A/m?] y eje de abscisas en muestras
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Figura 7.20: Componentes del vector densidad de corriente en el nodo 100 de componentes (-0.1647,
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Figura 7.21: Componentes del vector densidad de corriente en el nodo 140 de componentes (0.5,
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Figura 7.22: Distribucién de temperatura en la muestra 800 (1.6 segundos) para el problema de
condicién convectiva. Unidades de Temperatura en [K]. Médximo y minimo de temperatura: 500.7629
K] y 298.5794 [K]

la naturaleza oscilatoria de las corrientes, con una periodicidad cada 110m|ﬂ Estos resultados estan
totalmente en acuerdo y semejanza con los obtenidos por Kameari, Tsuboi, Misaki y Enokizono en
[18][41]]42][19] respectivamente, en donde se hallan datos con las mismas tendencias en materiales
de permeabilidad constante.

7.2.2. Resultados del problema térmico con condiciéon convectiva

En las figuras hasta se aprecia la distribucién de temperatura obtenida para el problema
de condicén convectiva a manera de un mapa de color sobre la geometria, junto a otro realizado
sobre las aristas de los tetrahedros de tal manera que se puede apreciar el comportamiento de la
temperatura en el interior del metal. Los valores mas altos de temperatura se dan en los exteriores de
la barra, mientras que en el interior se conforma un minimo absoluto, considerando la temperatura
como una funcién de tres variables.

7.2.3. Resultados del problema térmico con condiciéon de aislamiento térmico

En las figuras hasta se aprecia el comportamiento de la temperatura para el problema
térmico con condicién de aislamiento. Igualmente se hace uso de una visualizacion por medio de
mapas de color, con los que se muestra tanto el exterior como las tendencias en el interior de la
barra. Los mayores valores de temperatura estan hacia los exteriores de la ésta, de manera que hacia
el interior se conforma un minimo absoluto, considerando la temperatura como una funcién de tres
variables.

“m es un entero positivo
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Figura 7.23: Distribucién de temperatura en la muestra 2000 (4 segundos) para el problema de
condicién convectiva. Unidades de Temperatura en [K]. Méximo y minimo de temperatura: 503.9126
K] y 299.3663 [K]

Figura 7.24: Distribucién de temperatura en la muestra 5000 (10 segundos) para el problema de
condicién convectiva. Unidades de Temperatura en [K]. Maximo y minimo de temperatura: 509.6181
K] y 299.3854 [K]
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Figura 7.25: Distribucién de temperatura en la muestra 10000 (20 segundos) para el problema de
condicién convectiva. Unidades de Temperatura en [K]. Médximo y minimo de temperatura: 513.3403
K] y 299.6148 [K]

Figura 7.26: Distribucién de temperatura en la muestra 800 (1.6 segundos) para el problema con
condicién de aislamiento térmico. Unidades de Temperatura en [K]. Maximo y minimo de tempe-
ratura: 501.2447 [K] y 300.2321 [K]
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Figura 7.27: Distribucién de temperatura en la muestra 2000 (4 segundos) para el problema con con-
dicién de aislamiento térmico. Unidades de Temperatura en [K]. Méximo y minimo de temperatura:
505.2017 [K] y 300.4948 [K]

Figura 7.28: Distribucién de temperatura en la muestra 5000 (10 segundos) para el problema con
condicién de aislamiento térmico. Unidades de Temperatura en [K]. Maximo y minimo de tempe-
ratura: 513.2868 [K] y 300,5610 [K]
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Figura 7.29: Distribucién de temperatura en la muestra 10000 (20 segundos) para el problema
con condicién de aislamiento térmico. Unidades de Temperatura en [K]. Méximo y minimo de
temperatura: 521.7331 [K] y 300.6225 [K]

7.2.4. Significado Fisico de los Resultados y Contrastacién con otros Trabajos:
Problema Térmico

En las figuras[7.22] hasta[7.29] se aprecia la evolucién del calentamiento en una barra ferromagnética,
con una tendencia semejante al problema bidimensional en el caso convectivo y de aislamiento
térmico; se muestran valores elevados hacia el exterior, y las tendencias hacia un minimo se dan en
la zona interior de la barra, de manera que estas soluciones son acordes con el tipo de soluciones
tipicas para la ecuacién de calor en este tipo de geometrias con esas condiciones [46][47], por lo cual
hay consistencia con los modelos base. Estos resultados son semejantes y coherentes a los presentados
en [61] , donde se calientan, por medio de dispositivos de induccién, materiales ferromagnéticos de
diferentes geometrias. Por otra parte, la tendencia mostrada por la temperatura es semejante a la
que se evidencia en [62][63], en donde se realiza una simulacién de calentamiento por induccién en
geometrias cilindricas.

7.3. Conclusiones

Como un aspecto esencial en una gran cantidad de sistemas, la descripciéon de la temperatura en
el calentamiento por corrientes de Eddy representa actualmente tanto una necesidad, como una
ventaja competitiva en términos de diseno e implementacién en diversas aplicaciones. Teniendo en
cuenta lo anterior, en este trabajo se logré determinar la distribucién de temperatura en cuerpos
ferromagnéticos de dos y tres dimensiones calentados por estas corrientes, cumpliéndose los objetivos
propuestos y obteniéndose resultados confiables en sus significados fisico y analitico, y coherentes
con los de otros trabajos realizados. En este aspecto se realiza una contribucién a la investigacion en
la simulacién de éstos fenémenos por medio de un estudio detallado y riguroso de las corrientes de
Eddy y sus efectos, asi como del andlisis de elementos finitos aplicado a lo solucién de planteamientos
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electrotérmicos. Los beneficios de emplear esta técnica son representativos, teniendo en cuenta que
los materiales abordados son ferromagnéticos y los esquemas disenados para manejar este tipo de
caracteriticas, es escaso y estdn referidos en su mayoria a éste método.

Considerando los anteriores argumentos, debe resaltarse que los codigos resultantes del proceso de
investigacion, permiten realizar simulaciones del calentamiento por corrientes de Eddy en cualquier
tipo de hierro, siempre y cuando se especifiquen los datos experimentales del material. De esta
manera se logran rebasar los alcances planteados en la propuesta de éste trabajo, en donde se
planteaban cédigos disenados para cuatro tipos de hierro.

7.4. Observaciones y Recomendaciones para Trabajos Futuros

Aunque se plantearan estrategias en las que se consideraban totalmente desacoplados los problemas
espacial y temporal, en la demostracién de la seccién 5.4 se encontré que la constante que da la
medida de la estabilidad en cuanto discretizacion en el tiempo, depende directamente de la norma
de las matrices principales de geometria que se obtienen para la solucién del problema espacial por
elementos finitos.

Los tiempos de ejecucion de los codigos en donde se implementan los algoritmos de solucion, juegan
un papel secundario en la obtencién de los resultados. Sin embargo pueden significar una ventaja
para el investigador dedicado al anélisis de éstos fendmenos. A partir de esto se recomienda la
realizaciéon de un proyecto de grado dedicado exclusivamente al estudio y obtencién de técnicas
para el mejoramiento en eficiencia de la ejecucién de cddigos de este tipo, y asi reducir tiempos en
la obtencién de los datos.

La escasez de la literatura destinada al andlisis de corrientes de Eddy en metales ferromagnéticos,
y més aun al calentamiento por corrientes de Eddy en estos materiales, representé un gran reto en
el proceso de investigacién. Asi mismo, la falta de informacién detallada respecto al planteamiento,
implementacién y cémputo de las simulaciones en estos trabajos, se tradujo en una cantidad per-
manente de obstaculos en la realizacion y ejecucion de este proyecto. Por esto, aspectos sencillos
pero esenciales, dilataron los tiempos de ejecucion en cuanto a los pormenores de implementacion.

Los resultados obtenidos son contrastados en la literatura con otras técnicas recientes, conocidas
como meshless, las cuales aun se encuentran en estudio y desarrollo. Estas consisten basicamente en
el empleo de nodos asociados al dominio de andlisis, de forma tal que a cada uno de ellos se asigna
una funcién de interpolacién, pero no existe ninguna relacién geométrica entre nodos por medio de
alguna entidad, y asi mismo el comportamiento de las funciones es independiente entre si.

Las geometrias abordadas en este trabajo, son dominios de Lipschitz. Esto permite garantizar que
el planteamiento realizado con FEM converge a la solucién, y que un enmallado més fino asegura
una mejor aproximacién de la solucién [3]. En este sentido se propone la realizacién de un proyecto
de grado abordando el estudio del calentamiento en geometrias que hagan parte de dispositivos
especificos y sean dominios de Lipschitz.

Las herramientas de visualizacién que posee MATLAB jugaron un papel esencial en el anélisis
de los datos obtenidos a lo largo de la realizacién de este trabajo, sin embargo las existentes en
este software para visualizacién sobre enmallados no rectangulares tridimensionales, poseen serias
limitaciones. Por esto se propone la realizacién de un proyecto de grado destinado al desarrollo
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de herramientas para la visualizacién en tres dimensiones de resultados obtenidos por medio del
método de elementos finitos.

En la realizacién de los experiméntos numeéricos, se registré un comportamiento periédico en el
término de generacion de calor, correspondiente a pm muestras, con m un entero positivo y p un
valor entero dependiente de At. El ntimero m varia de acuerdo al punto que se estd analizando en la
geometria. Este hecho permite reducir el niimero de muestras necesarias para simular el problema
electromagnético, ya que se pueden generar tantas como se quieran hasta la desaparicién de los
transitorios, y a partir de alli se realiza un desplazamiento de los valores obtenidos hasta el limite
de tiempo de simulacién del fenémeno térmico.

Con un estudio riguroso del calentamiento en el hierro, el material de mas complejo tratamiento
entre los de uso frecuente en la ingenieria electrénica, llevado a cabo en éste trabajo; se propone la
realizacién de un proyecto de grado en donde se analize el calentamiento por corrientes de Eddy en
configuraciones que posean ademads de hierro otros materiales como cobre o aluminio.

Biro en [34], encuentra experimentalmente que algunas de las formulaciones de tipo potencial
magnético vectorial, resultan inadecuadas para simular el problema de las corrientes de Eddy utili-
zando elementos finitos a frecuencias cercanas a los 0 Hz. Con ese estudio, se obtuvieron resultados
que no mostraron tener una tendencia y carecian de significado fisico. En este proyecto de grado
se verificé ese comportamiento, simulando las corrientes de Eddy en un material de permeabilidad
unitaria sometido a una exitacion de frecuencias menores a los 10 Hz. Los resultados obtenidos no
eran coherentes con la fisica del problema. Teniendo en cuenta el anterior argumento, se propone la
realizacion de un proyecto de grado destinado a la obtencion, ya sea por experimentacion o anélisis,
de una estrategia para superar esta limitacién. Para ello, se sugiere seguir el trabajo propuesto
por Zhang en [I3], donde se simulan las corrientes de Eddy en un material de seccién rectangular
con permeabilidad constante, para exitaciones de frecuencias cercanas al valor cero, empleando una
formulacion de tipo potencial magnético vectorial pero haciendo uso de una técnica novedosa de
tipo meshless, con la que se obtuvieron resultados satisfactorios en cuanto a exactitud con relacion
a la solucién analitica del problema.



Apéndice A

Parametros Principales en el Manejo
de los Cédigos

Para la aplicacion de los codigos se requiere tener en cuenta algunos aspectos referentes a los
parametros empleados, asi como la interelacién entre éstos considerando las variables de salida. En
este apéndice se presentan algunas generalidades sobre el uso de los cédigos, asi como el significado
de las variables que se introducen para obtener la simulacién.

A.1. Parametros de Geometria

La geometria del problema debe describirse, para el caso 2-dimensional por medio de las matrices
p.e,t, donde p es la matriz de nodos del enmallado, t la matriz de tridngulos y e la matriz de
aristas. Siendo consecuente con la implementacién de los algoritmos en Matlab, este tipo de datos
puede obtenerse mediante el pdetool. Para el caso de tres dimensiones la geometria se describe
Unicamente mediante p,t, una matriz de nodos y tetrahedros respectivamente, las cuales pueden
generarse con el toolbox distmesh disenado para usar en Matlab, propiedad intelectual de Per
Olof Persson y de libre uso para investigacién. Si los enmallados son creados por otros medios, los
resultados deben adecuarse para presentarse como se obtienen mediante el uso de las anteriores
herramientas.

A.2. Parametros del Problema Electromagnético

A.2.1. Parametros de histéresis

En la seccion 6.1.1 se aprecia el proceso de modelado de las curvas de histéresis en el material,
de donde se obtienen los parametros FS, FSX, FI, FIX, fls, fli. Con FS, FI, FSX, FIX se
maneja la evolucion de los campos mientras que con fls, fli se realiza el calculo de las pérdidas.
La obtencién de éstos, debe realizarse por medio del procedimiento indicado en esa seccion.
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A.2.2. Otros parametros

El tiempo méaximo de simulacién se define en muestras mediante el parametro timemax. Es decir que
el tiempo real de simulacién seria Deltat*timemax, donde Deltat es el tamano de paso seleccionado
para la discretizacién en el dominio del tiempo. Con f se representa la frecuencia de la funcién de
onda de exitacién y HOmax el valor méximo de la misma. Con Sigma se asigna la conductividad
eléctrica. Con np se indica el niimero de muestras que se obtiene con el Deltat seleccionado en
media longitud de onda de la senal de exitacién, y en relaciéon con este parametro nlonda que
indica el nimero de intervalos con media longitud de onda de extensién que se van a tratar en
el problema. Este tltimo puede estimarse como timemax/(2*np). El valor seleccionado puede ser
mayor o igual a esta estimacién siendo un valor entero[ﬂ Y nuFP representa el coeficiente del esquema
de introduccién de la histéresis, es un ntimero que se puede seleccionar entre los valores maximo y
minimo del inverso de la permeabilidad.

A.3. Problema Térmico

Con rho, lambda, c y h se representan la densidad, la conductividad térmica, el calor especifi-
co y el coeficiente de conveccién respectivamente. TOext=TnE] es la temperatura inicial y externa
del cuerpo en el fenémeno, q representa los valores numéricos del término de generacion de calor
resultantes del calculo de las corrientes. Mientras timeheatmax representa el tiempo méaximo de
simulacion para el problema térmico.

A.4. Algunos Aspectos para Tener en Cuenta

El proceso de aplicacién de los cdédigos se describe mediante los siguientes pasos

1. Obtener los modelos de la histéresis.
2. Especificar los pardmetros restantes de simulacion.

3. Emplear la funcién de calculo del problema electromagnético : ElectroFEM 2D.m o bien
ElectroFEM_3D.m. La variable de salida de ésta funciones es el término de generacién de
calor g, que hace parte de las variables de entrada del problema térmico.

4. Introducir las variables de simulacién del problema térmico, dependiendo de cual es el tipo de
condicion de frontera deseado.

'siempre y cuando el valor seleccionado cumpla estos condicionamientos se garantiza que los resultados seran los
mismos

2Una misma, variable se representé de dos formas en algunos de los cédigos para una mayor facilidad de implemen-
tacién y seguimiento de funcionamiento.
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ElectroFEM 2D.m

function out_g=ElectroFEM 2D(p,e,t,nuFP,Sigma,Deltat,f,HOmax,timemax,np,nlonda,FS,FSX,
FI,FIX,fls,fli)
1fi=max(size(t));

nd=max (size(p));

tl=t;

t1(4,:)=[ |;

for i=1:1:1f1

nodos{i}=t1(:,i);

a=nodos{i};

for j=1:1:3

cord{j}=p(:,a(j))’*;

end

cordli=cord;

end

clear nodos cord a j i
vel=[1;1;1];

alpha3T=0;

gammaT=0;

betaT=0;

rot_AT=0;

rot_BT=0;

for i=1:1:1f1

i % Indicador de ciclo
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3}];
MDkl=vpa([vcl s2]);

MDjl=vpa([vcl s2]);

MDjk=vpa([vcl s2]);

Cjkl=det([vcl s2]);clear s2
Yoxx**xx*xx** FORMANDO LOS NMjkl para calcular las integrales en la integrales en la frontera
Tox*xkxkxkkkk %k NMjkld

clear y x

syms X

y=max(p(2,:)); MDk1l(1,:)=[1,x,y];
Dkl=det (MDk1) ;

Nj=Dk1l/Cjkl;clear Dkl
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MDj1(2,:)=[1,x,y];

Djl=det (MDj1) ;

Nk=Dj1/Cjkl;clear Djl

MDjk (3, :)=[1,x,y];

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk
NMjk1d{i}=[Nj;Nk;N1];clear Nj Nk N1
clear y

Dok skok s sk sk ok sk ok ok ook ok ok K ok ok
Toxxxkkrkkkxkkrrkrkkkx NMjklc
y=min(p(2,:)); % y=c el valor de y
MDk1(1,:)=[1,x,y];

Dkl=det (MDk1) ;

Nj=Dk1/Cjkl;clear Dkl
MDj1(2,:)=[1,x,y];

Djl=det (MDj1);

Nk=Dj1/Cjkl;clear Djl

MDjk (3, :)=[1,x,y];

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk
NMjklc{i}=[Nj;Nk;N1];clear Nj Nk N1
clear y x

syms y

Dok skok sk sk ok Kok ok ook ok ok Kok ok

Q0% sk ok sk sk ok ok sk ok ok ok ok ok ok ok ok NMjklb
x=max(p(1,:)); % x=b el valor de x
MDk1(1,:)=[1,x,y];

Dkl=det (MDk1) ;

Nj=Dk1/Cjkl;clear Dkl
MDj1(2,:)=[1,x,y];

Djl=det (MDj1);

Nk=Dj1/Cjkl;clear Djl
MDjk(3,:)=[1,x,y];

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk
NMjk1b{i}=[Nj;Nk;N1];clear Nj Nk N1
clear x

O ksk sk ke sk sk ok sk ok e ok sk ok ok sk ok ok ok ok
Toxkrokskrkskrckrkkrkkkx NMjkla
x=min(p(1,:)); % x=a el valor de x
MDk1(1,:)=[1,x,y];

Dkl=det (MDk1) ;

Nj=Dk1/Cjkl;clear Dkl
MDj1(2,:)=[1,x,y];

Djl=det (MDjl1);

Nk=Dj1/Cjkl;clear Djl
MDjk(3,:)=[1,x,y];

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk
NMjkla{i}=[Nj;Nk;N1];clear Nj Nk N1
clear y x



syms y X
Dok 5k s ok ok kok Kok ok K Kok K K

OF stk s ok sk ok o ks o o sk ok sk o sk sk o o sk o sk o koo o sk o sk o ok ok ok

%Generacién de los Nj(x,y) MDk1l(1,:)=[1,x,y];

Dkl=det (MDk1) ;

Nj=Dk1/Cjkl;clear Dkl MDkl

MDj1(2,:)=[1,x,y];

Djl=det (MDj1);

Nk=Dj1/Cjkl;clear Djl MDjl

MDjk (3, :)=[1,x,y];

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk

dyNjkl=[diff (Nj,’y’), diff(Nk,’y’), diff(N1,’y’)]; %derivadas en y de los Nj
dejkl=[diff(Nj,’X’), diff (Nk,’x’), diff(Nl,’X’)]; %derivadas en x de los Nj
syms Xi Eta

F=solve(Nj-Xi,Nk-Eta,’x’,’y’);

x=F.x;y=F.y;JC=abs(det (jacobian([x;y],[Xi, Eta])));clear F

clear x y;

Tokxxxxkxkkkkkkxkkxk% Integrales por Cuadratura kkkkkkkkkskkkkkskkkkk
ul=sqrt(3)/3;u2=-sqrt(3)/3;

Xil=(ul+1)*0.5;Etal=0.25*%(1-ul)*(1+sqrt(3)/3) ;Etalb=0.25*(1-ul)*(1-sqrt(3)/3);
Xi2=(u2+1)*0.5;Eta2=0.25*%(1-u2) *(1+sqrt(3)/3) ; Eta2b=0.25*(1-u2) *(1-sqrt (3)/3) ;
syms X y

Fil=solve(Nj-Xi1,Nk-Etal,’x’,’y’);

x=F1.x;

y=F1l.y;clear F1

MDjk(3,:)=[1,x,y];clear y x

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk

Pll=JC*Ril;Eta1;NlhﬂXil;Etal;le;

Q11=[JC*[Xil1; Etal; N1]*dyNjkl JC*[Xil; Etal; N1]*dxNjk1];

S11=[JC*[Xil; Etal; N1]*dyNjkl; -JC*[Xil; Etal; N1]*dxNjkl];

T11=[-JCx[Xil; Etal; N1|*dyNjkl JC*[Xil; Etal; N1]*dxNjkl|;clear N1 Etal

syms X y

F2=solve (Nj-Xil,Nk-Etalb, ’x’,’y’);

x=F2.x;

y=F2.y;clear F2

MDjk(3,:)=[1,x,y];clear y x

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk

P11b=JC[Xi1;Etalb;N1]*[Xi1;Etalb;N1]’;

Q11b=[JC*[Xil; Etalb; N1|*dyNjkl JC*[Xil; Etalb; N1]*dxNjkl];

S11b=[JC*[Xil; Etalb; N1]*dyNjkl; -JC*[Xil; Etalb; N1]*dxNjkl];

T11b=[-JC*[Xil; Etalb; N1]*dyNjkl JC*[Xil; Etalb; N1]*dxNjkl];clear N1 Xil Etalb
syms X y

F3=solve(Nj-Xi2,Nk-Eta2,’x’,’y’);

x=F3.x;

y=F3.y;clear F3

MDjk(3,:)=[1,x,y];clear y x

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk
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P22=JC*[Xi2;Eta2;N1|*[Xi2;Eta2;N1]’;

Q22=[JC*[Xi2; Eta2; N1|*dyNjkl JC*[Xi2; Eta2; N1|*dxNjkl];
S22=[JC*[Xi2; Eta2; N1|*dyNjkl; -JCx[Xi2; Eta2; N1]*dxNjkl];
T22=[-JC*[Xi2; Eta2; N1]*dyNjkl JC*[Xi2; Eta2; N1]*dxNjkl];clear Eta2 N1
syms X y

F4=solve(Nj-Xi2,Nk-Eta2b,’x’,’y’);

x=F4.x;

y=F4.y;clear F4

MDjk(3,:)=[1,x,y];clear y x

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk MDjk
P22b=JC*[Xi2;Eta2b;N1|*[Xi2;Eta2b;N1]’;

Q22b=[JC*[Xi2; Eta2b; N1]*dyNjkl JCx[Xi2; Eta2b; N1]*dxNjkl];
S22b=[JC*[Xi2; Eta2b; N1|*dyNjkl; -JC*[Xi2; Eta2b; N1]*dxNjkl];
T22b=[—JC*[Xi2; Eta2b; Nl]*dyNjkl JC*[XiQ; Eta2b; Nl}*dejkl];clear N1 Xi2 Eta2b
alpha3=[dyNjkl’;-dxNjkl’]*[dyNjkl,-dxNjkl]*(Cjk1*0.5) ;
gamma=kron (eye(2),0.125%(1-ul) *(P11+P11b)+0.125* (1-u2) * (P22+P22b)) ;
beta=(0.125%(1-ul)*(S11+S11b)+0.125* (1-u2) *(S22+522b)) ;
rot_A=0.125*%(1-ul) *(T11+T11b)+0.125% (1-u2) *(T22+T22b) ;
rot_B=0.125%(1-ul)*(P11+P11b)+0.125% (1-u2) * (P22+P22b) ;
clear Xi Eta x y Nj Nk N1 JC dyNjkl dxNjkl P11 P22 Q11 Q22 P11b P22b Q11b Q22b S11 S22
S11b S22b

alpha3S=zeros(2*nd,2*nd) ;

gammaS=zeros (2*nd, 2*nd) ;

betaS=zeros(2*nd,nd) ;

rot_AS=zeros(nd,2+*nd) ;

rot_BS=zeros(nd,nd) ;

vpru=t1(:,i);

for kk=1:1:3

for 11=1:1:3

alpha3S (vpru(kk) ,vpru(ll))=alpha3(kk,11);

alpha3S (vpru(kk) ,vpru(ll)+nd)=alpha3(kk,11+3);
alpha3S(vpru(kk)+nd,vpru(ll))=alpha3(kk+3,11);
alpha3S(vpru(kk)+nd,vpru(ll)+nd)=alpha3(kk+3,11+3);

gamma$ (vpru(kk) ,vpru(1ll) ) =gamma (kk,11);

gammasS (vpru(kk) ,vpru(1ll)+nd)=gamma (kk,11+3) ;

gammasS (vpru (kk) +nd , vpru(11) ) =gamma (kk+3,11) ;

gammas (vpru(kk)+nd, vpru(1l)+nd) =gamma (kk+3,11+3) ;

betaS (vpru(kk) ,vpru(ll))=beta(kk,11);

betaS (vpru(kk)+nd,vpru(1ll))=beta(kk+3,11);

rot_AS(vpru(kk) ,vpru(ll))=rot_A(kk,11);

rot_AS (vpru(kk) ,vpru(ll)+nd)=rot_A(kk,11+3);

rot BS (vpru(kk) ,vpru(ll))=rot_B(kk,11);

end

end

clear rot B rot_A beta gamma alpha3 kk 11 vpru
alpha3T=alpha3S+alpha3T;clear alpha3S
gammaT=gammaS+gammaT;clear gammaS

betaT=betaS+betaT;clear betaS

rot_AT=rot_AS+rot_AT;clear rot_AS

rot_BT=rot_BS+rot_BT;clear rot_BS
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end

clear i vcl

% Encontrando los nodos que se encuentran

% en la frontera

p-olof=p’;

t_olof=t1’; %Adecuacion de las matrices para usar programa de olof Persson
bound_edges=boundedges (p_olof,t_olof);

bound nodes=unique (bound edges); clear bound edges % Son los nodos que estan en la frontera
Toxxxxxxxxxxxxx MATRIZ [alphaf]| sskxkskskkkkkkk

O ks ok o ok sk ok sk ok o o sk ok o ok sk ok o K ok ok o sk ok ok o sk ok ok ok ok ok o K ok o

Toxxxxx*xx*x Matriz [alphafld] skxkkkkxkk

[iid, jjd]=find(p==max(p(2,:)));clear iid

for 11=1:1:max(size(jjd))

[iid2, jjd2]=find (t1==jjd(11));clear iid2
bord{11}=jjd2;clear jjd2

end

clear 11 jjd

ccbord=bord{1};

for kk=2:1:max(size(bord))

ccbord=[ccbord; bordkk];

end

clear bord kk

for ww=1:1:max(size(ccbord))

[11d3, jjd3]=find (ccbord==ccbord(ww)) ;clear jjd3
iid3=max(size(iid3));

if (1id3)<(2)

ccbord_unid (ww)=ccbord (ww) ;

else

ccbord_unid(ww)=0;

end

end

clear ww 1id3
ccbord_unid=setdiff (ccbord, ccbord_unid) ;clear ccbord
for rr=1:1:max(size(ccbord_unid)) ggd=t1(:,ccbord unid(rr));
ggd=intersect (ggd,bound nodes) ;

if p(1,ggd(1)) < p(1,ggd(2))

alphafidccbord unid(rr)=int (NMjkldccbord unid(rr),’x’,p(1,ggd (1)) ,p(1,ggd(2)));
else

alphafidccbord unid(rr)=int (NMjkldccbord unid(rr),’x’,p(1,ggd(2)),p(1,ggd(1)));
end

end

clear ggd rr NMjkld

%0 sk sk e ks ok e sk sk ok o sk ok o ok sk ok o sk sk sk sk sk sk ok sk sk e ok sk ok o ok ok ok

%ox*x* Matriz [alphaflc| #kxkkkkkkx
[iic,jjc]=find(p==min(p(2,:)));clear iic

for 11=1:1:max(size(jjc))
[iic2,jjc2]=find(t1==jjc(11));clear iic2
bordc{ll}=jjc2;clear jj2

end

clear 11 jjc

ccbordc=bordc{1};
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for kk=2:1:max(size(bordc))
ccbordc=[ccbordc;bordc{kk}|;

end

clear kk bordc

for ww=1:1:max(size(ccbordc))

[iic3,jjc3]=find (ccbordc==ccbordc(ww));clear jjc3
iic3=size(iic3);

iic3=iic3(1,1);

if (iic3) < (2)

ccbord_unic (ww)=ccbordc (ww) ;

else

ccbord_unic(ww)=0;

end

end

clear ww iic3

ccbord_unic=setdiff (ccbordc,ccbord_unic) ;clear ccbordc
for rr=1:1:max(size(ccbord_unic))
ggc=t1(:,ccbord unic(rr));

ggc=intersect (ggc,bound nodes) ;

if p(1,ggc(1)) < p(1l,ggc(2))

alphaficccbord unic(rr)=int (NMjklc{ccbord unic(rr)},’x’,p(1,ggc(1)),p(1l,ggc(2)));
else

alphafic{ccbord unic(rr) }=int (N\Mjklc{ccbord unic(rr)},’x’,p(1,ggc(2)),p(1,ggc(1)));
end

end

clear rr ggc NMjklc

Otk sk ok ok ok ok ok ok o o o o o o o ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk ok sk ok ok ok ok ok ok ok ok o
Tokxx*xx*x*x Matriz [alphaf2b] skxkkkkxkk

[iib, jjb]=find (p==max(p(1,:)));clear iib

for 11=1:1:max(size(jjb))

[1ib2,jjb2)=find (t1==jjb(11));clear iib2
bordb{11l}=jjb2;clear jjb2

end

clear 11 jjb

ccbordb=bordb{1};

for kk=2:1:max(size(bordb))
ccbordb=[ccbordb;bordb{kk}];

end

clear kk bordb

for ww=1:1:max(size(ccbordb))

[iib3, jjb3]=find (ccbordb==ccbordb(ww)) ;clear jjb3
iib3=size(iib3);

iib3=1ib3(1,1);

if (iib3) < (2)

ccbord_unib (ww)=ccbordb(ww) ;

else

ccbord_unib (ww)=0;

end

end

clear ww iib3

ccbord_unib=setdiff (ccbordb,ccbord_unib) ;clear ccbordb
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for rr=1:1:max(size(ccbord_unib))

ggb=t1(:,ccbord unib(rr));

ggb=intersect (ggb,bound nodes) ;

if p(2,ggb(1)) < p(2,ggb(2))

alphaf2b{ccbord unib(rr) }=int (NMjklb{ccbord unib(rr)},’y’,p(2,ggb(1)),p(2,ggb(2)));
else

alphaf2b{ccbord unib(rr) }=int (NMjk1lb{ccbord unib(rr)},’y’,p(2,ggb(2)),p(2,ggb(1)));
end

end

clear ggb rr NMjklb

Qoo sk ks ok ok ok sk ok ko ok ok oK ok Kok K ook Kok K ook K ok

Yox***xxx* Matriz [alphafla] *kxxx*
[iia,jja]=find(p==min(p(1,:)));clear iia

for 11=1:1:max(size(jja))
[iia2,jja2]=find(t1==jja(1ll));clear iia2
borda{ll}=jja2;clear jja2

end

clear 11 jja

ccborda=borda{1};

for kk=2:1:max(size(borda))
ccborda=[ccborda;borda{kk}];

end

clear kk borda

for ww=1:1:max(size(ccborda))

[iia3, jja3]=find(ccborda==ccborda(ww));clear jja3
iia3=size(iia3);

iia3=iia3(1,1);

if (iia3) < (2)

ccbord_unia(ww)=ccborda(ww) ;

else

ccbord_unia(ww)=0;

end

end

clear ww iia3

ccbord_unia=setdiff (ccborda,ccbord_unia) ;clear ccborda
for rr=1:1:max(size(ccbord_unia))

gga=t1(:,ccbord unia(rr));

gga=intersect (gga,bound nodes) ;

if p(2,gga(l)) < p(2,gga(2))

alphaf2a{ccbord unia(rr) }=int (NMjkla{ccbord unia(rr)},’y’,p(2,gga(1)),p(2,gga(2)));
else

alphaf2a{ccbord unia(rr) }=int (NMjkla{ccbord unia(rr)},’y’,p(2,gga(2)),p(2,gga(1)));
end

end

clear gga NMjkla

Y%xxx*** armando la [alphaf| completa
encalphald=setdiff ((1:1:1f1),ccbord unid) ;clear ccbord unid
for rr=1:1:max(size(encalphald))
alphafid{encalphald(rr) }=[0;0;0];

end

clear rr encalphald
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encalphalc=setdiff ((1:1:1f1),ccbord unic) ;clear ccbord_unic
for rr=1:1:max(size(encalphalic))
alphafic{encalphalc(rr)}=[0;0;0];

end

clear rr encalphalc

encalpha2b=setdiff ((1:1:1f1),ccbord unib) ;clear ccbord unib
for rr=1:1:max(size(encalpha2b))

alphaf2b{encalpha2b(rr) }=[0;0;0];

end

clear rr encalpha2?b

encalpha2a=setdiff ((1:1:1f1),ccbord unia) ;clear ccbord unia
for rr=1:1:max(size(encalpha2a))

alphaf2a{encalpha2a(rr) }=[0;0;0];

end

clear rr encalpha2a

for rr=1:1:1f1
alphaf{rr}=[alphafid{rr}-alphafic{rr};-(alphaf2b{rr}-alphaf2a{rr})];
end

clear rr alphafld alphafic alphaf2b alphaf2a jjc2 p_olof t_olof
for rr=1:1:1f1

alphafS{rr}=zeros(2+*nd,1);

vpru=t1(:,rr);

for kk=1:1:3

alphafS{rr}(vpru(kk))=alphaf{rr}(kk) ;
alphafS{rr}(vpru(kk)+nd)=alphaf{rr} (kk+3);

end

end

clear alphaf kk rr vpru

alphafT=0;

for rr=1:1:1f1

alphafT=alphafS{rr}+alphafT;

end

clear rr alphafS

gk ok ok ok ok ok o sk ok ok oK oKk oK KK oK ook K ok Kok Kok Kok K ok K ok K ok ok ok ok ok ok K ok ok ok ok ok ok Kok ok
Ok ok ok sk sk ok o sk ok ok ok ok oK ok oK ook oK ook ok ok ok Kok K ok K ok K ok K ok K ok K ok ok K ok K ok ok K ok ok Kok Kok Kok KoKk Kok ok
Yok **xxk*x*x*k*k*x*x CALCULO DEL POTENCIAL MAGNETICO VECTORIAL skkskkskokskokskokskokskokskokk
clear SAO

for j=1:1:nd

SA0(],1)=-p(2,j)*(1.472/2);

SAO(j+nd,1)=p(1,3)*(1.472/2);

end

clear j

XX1=(nuFP) * (Deltat)*0.5*alpha3T+Sigma*xgammaT;
XX2=Sigma*gammaT- (nuFP)*(Deltat)*0.5%alpha3T;
bnd=size(bound_nodes) ;

bnd=max (bnd) ;

cvert=zeros(bnd,1);

chorz=zeros(bnd,1);

for j=1:1:bnd

v=p(:,bound nodes(j));

if ((v(2,1)==min(p(2,:)) || v(2,1)==max(p(2,:)))
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&& (v(1,1)==min(p(1,:)) || v(1,1)==max(p(1,:))))
chorz(j)=bound nodes(j);

cvert (j)=bound nodes(j);

elseif (v(2,1)==min(p(2,:)) || v(2,1)==max(p(2,:)))
chorz(j)=bound nodes(j);

elseif (v(1,1)==min(p(1,:)) || v(1,1)==max(p(1,:)))
cvert (j)=bound nodes(j);
end

end

clear j

chorz=nonzeros (chorz) ;
chorz=chorz’+nd;
cvert=nonzeros(cvert) ;
cvert=cvert’;
colelm=[chorz cvert];
XX1(:,colelm)=[ |;XX1(colelm,:)=[ |;
XX2(:,colelm)=[ |;XX2(colelm,:)=] |;

SAO(colelm,:)=[ |;

%** Para calcular el valor de A en el tiempo=1 para usar en los demas

%** calculos

SAi{1}=(1e3)*ones(2*nd,1); SAi{1}(colelm,:)=[ |;

Ri{1}=(1e3)*ones(nd,1);

errSA1=10;

while (errSA1>(1le-16))
XXF1=0.5*Deltat*betaT*Ri{1}-nuFP*0.5%Deltat*alphafT* (ppval (FS,HOmax*cos (2*pi*f*(Deltat)))
+ppval (FS,HOmax) ) ;

XXF1(colelm,:)=[ |;

clear SA

SA{1}=pcg (XX1,XXF1,1e-16,100)

errSA1=abs (SA{1}-SAi{1});

errSAl=sum(errSA1l)

if (errSA1<(1e-16))

clear SA

SA{1}=sAi{1};

else

clear SAi

SAi{1}=SA{1};

clear j i

j=1;

for i=1:1:(2%nd)

if (ismember(i,colelm))

SAc{1}(i)=0;

else

SAc{1}(i)=SA{1}(j);

J=j+1;

end

end

rot_BT2=rot_BT;

rot_BT2(bound nodes, :)=[ |;

vpl=(rot_AT)*(SAc{1})’; vpl(bound nodes,:)=[ |;

for j=1:1:max(size(bound nodes))
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vpl=vpl-rot_BT2(:,bound nodes(j))*ppval (FS,HOmax*cos (2*pi*f*(Deltat)));
end

rot BT2(: ,bound nodes)=[ |;
Bc{1}=pcg(rot_BT2,vpl,1e-16,100);

clear i j

j=1;

for i=1:1:nd

if ismember (i,bound_nodes)

B{1}(i)=ppval (FS,HOmax*cos (2*pi*f*(Deltat)));

else

B{1} (i)=Bc{1}(j);

J=i+1

end

end

for i=1:1:max(size(B{1}))

if B{1}(i)>1.48

B{1}(i)=1.48;

elseif B{1}(i)<-1.474

B{1}(i)=-1.474;

else

end

end

clear H

H{1}=ppval (FSX,B{1});

clear i j

for i=1:1:nd

if ismember (i,bound_nodes)

H{1}(i)=HOmax*cos (2*pi*f*(Deltat));

else

end

end

clear Ri

Ri{1}=nuFP*B{1}’-H{1}’;

end

end

clear vpl rot BT2 i j XXF1 errSAil

for timedis=2:1:timemax

timedis

SAi{timedis}=(1e3)*ones(2*nd,1); SAitimedis(colelm,:)=[ |; Ri{timedis}=(1e3)*ones(nd,1);
errSA=10;

while (errSA>(le-16))

for ii=0:1:nlonda

if ( timedis>=(2xii*np) && timedis<(2*ii+1)#*np )
XXF=0.5*Deltat*betaT*(Ri{timedis}+Ri{timedis-1})~
nuFP*0.5*Deltat* (ppval (FS,HOmax*cos (f*2*pi*timedis*(Deltat)))+
ppval (FS,HOmax*cos (f*2*pi* (timedis-1)*(Deltat))))*alphafT;
elseif (timedis>=(2x*ii+1)*np && timedis<(2*(ii+1)*np))
XXF=0.5*Deltat*betaT*(Ri{timedis}+Ri{timedis-1})-
nuFP*0.5*Deltat* (ppval (FI,HOmax*cos (f*2*pi*timedis*(Deltat)))+
ppval (FI,HOmax*cos (2*pi*f*(timedis-1)*(Deltat))))*alphafT;
else



end

end

XXF(colelm,:)=| |;
SA{timedis}=pcg(XX1,XX2+SA{timedis-1}+XXF,1e-16,100) ;
errSA=abs (SA{timedis}-SAi{timedis});
errSA=sum(errSA)

if (errSA <(le-16))
SA{timedis}=SAi{timedis};

else

SAi{timedis}=SA{timedis};

clear j i

j=1;

for i=1:1:2*nd

if (ismember(i,colelm))
SAc{timedis}(i)=0;

else

SAc{timedis}(i)=SA{timedis}(j);
J=i+1

end

end

rot_BT2b=rot_BT;
rot_BT2b(bound_nodes, :)=| |;
vplb=(rot_AT)*(SAc{timedis})’;
vplb(bound nodes, :)=[ |;

for j=1:1:max(size(bound nodes))

for ii=0:1:nlonda

if (timedis>=(2*ii*np) && timedis<(2*ii+1)x*np)
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vplb=vplb-rot BT2b(:,bound nodes(j))*ppval (FS,HOmax*cos (f*2*timedis*pi*(Deltat)));

elseif (timedis>=(2*ii+1)*np && timedis<(2*(ii+1)*np))

vplb=vplb-rot_BT2b(:,bound nodes(j))*ppval (FI,HOmax*cos (f*2*timedis*pi*(Deltat)));

else

end

end

end

rot BT2b(:,bound nodes)=[ |;
Bc{timedis}=pcg(rot_BT2b,vplb,1e-16,100);

clear i j

j=1;

for i=1:1:nd

if ismember (i,bound_nodes)

for ii=0:1:nlonda

if (timedis>=(2*ii*np) && timedis< (2xii+1)x*np)
B{timedis}(i,1)=ppval (FS,HOmax*cos (f*2*pi*timedis*(Deltat)));
elseif (timedis>=(2*ii+1)#*np && timedis<(2*(ii+1)*np))
B{timedis}(i,1)=ppval (FI,HOmax*cos (f*2*pi*timedis*(Deltat)));
else

end

end

else

B{timedis}(i,1)=Bc{timedis}(j);

3=3+1;
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end

end

for i=1:1:max(size(B{timedis}))

if B{timedis}(i)>1.48

Btimedis(i)=1.48; elseif B{timedis}(i)<-1.474
B{timedis}(i)=-1.474;

else

end

end

for ii=0:1:nlonda

if (timedis>=(2*ii*np) && timedis<(2*ii+1)x*np)
H{timedis}=ppval (FSX,B{timedis});

elseif (timedis>=(2*ii+1)*np && timedis<(2*(ii+1)*np))
H{timedis}=ppval (FIX,B{timedis});

else

end

end

clear i j

for i=1:1:nd

if ismember (i,bound_nodes)

H{timedis}(i)=HOmax*cos (2*pixf*(Deltat)*timedis);
else

end

end

Ri{timedis}=nuFP*B{timedis}-H{timedis};

end

end

end

clear errSA rot_AT rot BT rot BT2b Ri ii j i SAc Bc SAi XX1 XX2 XXF vcl vplb
Dok sk sk ke ok sk ok sk sk o ok sk o e ok sk ok ok sk o sk e ok sk ok e ok sk s sk sk e ok sk o e ok sk ok sk sk s ok sk ok e ok sk ok ok
%#** Obteniendo los potenciales magneticos vectorialesk*x
Tk kst ok sk ks sk sk ok sk ok sk ks sk ok sk ok sk ki ok sk ok sk ki ok sk sk sk ok sk ok ok
clear A

for rr=1:1:timedis

clear j i

J=1;

for i=1:1:(2*nd)

if (ismember(i,colelm))

A{rr}(i)=0;

else

A{rr}(i)=SA{rr}(j);

j=j+1;

end

end

end

clear i j rr SA

Yok xkokkkokokkskokkkkCALCULANDO LAS CORRIENTES*kskskokskskokkokskok
Tk swsteske ok sk stk sk sk sk ok sk sk sk s ok sk ok ks ok stk sk ok sk ksl ok sk sk ok sk ok
O s sk stk sk sk ok sksk sk o ok sk sk sk s ke oksksksk ok ok sksksk sk s ok sksksk sk ok sk sk sk sk ok ok sk ok
clear J

J{1}=-(Sigma/Deltat)*A{1};
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for rr=2:1:timedis

J{rr}=-(Sigma/Deltat)* (A{rr}-A{rr-1});

end

clear A

% ke ke sk sk sk sk s e sk sk sk ok s e sk sk sk sk sk e ke ok sk sk s e sk sksk sk sk e ke ok sksk sk sk ke ok sk sk ok sk ok k sk ok
%** graficando la magnitud de las corrientes en pdeplot
O sk stk sk o sk ok sksk sk o ok sksksk ok o sk ok sksk sk ok ok sksksk sk s ok sksk sk sk ok sk sksk sk ok ok sk ok
for i=1:1:nd

magJ(i)=sqrt (J{rr} (1) *J{rr} (L) +IJ{rr}(i+nd) *J{rr} (i+nd));
end

magJ=magJ’;

figure, pdeplot(p,e,t,’xydata’,magJ,’colormap’,’pink’)
clear i

O ke ke sk sk sk sk s o sk sk sk s s sk sk sk sk sk e ke sk sk sk sk o sk sk sk sk sk e ke sk sk sk sk sk ok ok sk skok sk ok k ok ok
Yo****x** GRAFICANDO LAS DIRECCIONES DE LAS CORRIENTES
0 s ke sk sk sk sk sk e sk sk sk sk sk o o sk sk sk sk ok e ok ok sk sk ok e sk sksk sk ok e ok sksk sk sk ke ok sk sk sk sk o ok sk ok
for i=1:1:nd

Jg=J{rr};

mags=1;

if mags~=0

JX(1)=(1/mags) *Jg(i);

JY(i)=(1/mags)*Jg(i+nd) ;

else

JX(1)=0;

JY(1)=0;

end

end

Jvecxy=[JX’ JY’];
figure,pdeplot(p,e,t,’flowdata’,Jvecxy)

clear JX JY i mags

% s ke sk sk sk sk s e sk sk sk sk ok s o sk sk sk sk ok e ke sk sk sk s e sk sksk sk sk e ek sksk sk sk ke ok sksksk sk o ok k sk ok
Yox**x**x** Comportamiento de Jx y Jy en el nodo na **xx
0 sk ke sk stk sk o sk sk sksk sk o ok sksk sk sk s ok oksksksk ok ok sksksk sk s ok sksk sk sk ke ok sk sk sk sk ok ok sk ok
na=43;

qqw=J{1}(na);

qqw2=J{1} (na+nd) ;

for i=2:1:2000

qqv=[qqw J{i}(ma)];

qqw2=[qqw2 J{i}(na+nd)];

end

clear i

figure,plot(qqw) ;grid;ylabel(’Jx’)
figure,plot(qqw2);grid;ylabel(’Jy’)

clear qqw qqw2

clear B

O ke ke sk sk sk sk s o sk sk sk sk o s o sk sk sk sk ok e ke sk sk sk s e sk sk sk sk e ke sk sksk sk sk ke ok sk sksk sk o ok k sk ok
%***GENERANDO TERMINO DE PERDIDAS POR HYSTERESIS **x
%0 s ke sk sk sk sk e sk sk sksk ok o ok sk sk sk sk e sk ok sksk ok ok e sk sksk sk sk s ok sksk sk sk ok ok sksksk sk ok ok sk ok
for j=1:1:nd

Hval=H{1}(j);

for timedis=1:1:300
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Hval=[Hval H{timedis}(j)];

end

Hmax (j)=max(Hval) ;Hmin(j)=min(Hval) ;

end

for j=1:1:nd
ghyst{1}(j)=abs((quad(@(hx) (f1ls) ,Hmax(j) ,H{1}(j)))/Deltat);

end

for timedis=2:1:timemax

timedis

for ii=0:1:nlonda

if (timedis>=(2*ii*np) && timedis<(2*ii+1)x*np)

for j=1:1:nd

Fhyst1l=quad(@(hx) (f1s) ,Hmax (j) ,H{timedis}(j));

Fhyst2=quad (@ (hx) (f1s) ,Hmax (j) ,H{timedis-1}(j));
ghyst{timedis}(j)=abs(double ((Fhyst1-Fhyst2)/Deltat));clear Fhystl Fhyst2
end

elseif (timedis>=(2*ii+1)#*np && timedis<(2*(ii+1)*np))

for j=1:1:nd

Fhysti=quad(@(hx) (f1s) ,Hmax(j) ,Hmin(j))+quad(@(hx) (f1i) ,Hmin(j) ,H{timedis}(j));
Fhysti=quad(@(hx) (f1s) ,Hmax(j) ,Hmin(j))+quad(@(hx) (f1i) ,Hmin(j) ,H{timedis-1}(j));
ghyst{timedis} (j)=abs(double ((Fhyst1-Fhyst2)/Deltat));clear Fhystl Fhyst2
end

else

end

end

end

clear H

Ok sk sk s sk sk ok ok ok o sk ok ok ok o sk ok o ok ok ok ok ook ok ok ok o sk ok o ok ok K ok ook ok ok ook ok Kok o ok ok
%*****GENERANDO EL TERMINO DE PERDIDAS OHMICAS#ksxk

Dok sk o kok sk ok ok ok ook ok ok ok ook o ok ok ok ok o sk ok ok ok ok ok o ok ok ok ok ook ok ok ok ook ok ok ok ok

clear B

for i=1:1:max(size(J))

q2{i}=(1/Sigma)*J{i}.*J{i};

for j=1:1:nd

qoh{i}(3)=q2{i}(j)+q2{i} (j+nd);

end

end

clear g2 1 j J

Qoo sk sk ok sk ok ok ok ook ok ok ok o ok ok o ok ok ok ok ook ok o ok ok o sk ok ok ok ook ok o ok Kok ook ok ok ok ook ok ok ok ok ok ok ok K
Yoxx**xx*xx Suma de perdidas ohmicas y de histéresis ¥kxkikkxkkkkxk
Ookok sk o ko sk ok ok ok ook ok o ok o ok ok o ok ok ok ok ook ok o ok o ok ok o ok ok Kok ook ok o ok o ok ok o ok ok K ok ook ok Kok ook ok ook o K
for timedis=1:1:timemax

q{timedis}=qoh{timedis}+ghyst{timedis};

end

clear qoh ghyst

out_g9=q;



Apéndice C

ThermalFEM 2D.m

function out_T=ThermalFEM 2D(p,e,t,rho,lambda,c,TOext,Deltat,q,timeheatmax)
1fi=max(size(t));
nd=max(size(p));

tl=t;

t1(4, =] |;

for i=1:1:1f1
nodos{i}=t1(:,1i);
a=nodos{i};

for j=1:1:3
cord{j}=p(:,a(3))’;

end

cordi{i}=cord;

end

clear nodos cord i j a
vel=[1;1;1];

thetaT=0;

zetaT=0;

for i=1:1:1f1

i % Indicador de ciclo
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3}];
MDkl=vpa([vcl s2|);
MDjl=vpa([vcl s2]);
MDjk=vpa([vcl s2]);
Cjkl=det([vcl s2]);
%Generacién de los Nj(x,y)
syms x y

MDk1(1,:)=[1,x,y];

Dkl=det (MDk1) ;
Nj=Dk1/Cjkl;clear Dkl MDkl
MDj1(2,:)=[1,x,y];

Djl=det (MDj1);
Nk=Dj1/Cjkl;clear Djl MDjl
MDjk(3,:)=[1,x,y];

Djk=det (MDjk) ;
N1=Djk/Cjkl;clear Djk

99



100 APENDICE C. THERMALFEM_2D.M

dyNjkl=[diff (Nj,’y’), diff(Nk,’y’), diff(N1,’y’)]; dxNjkl=[diff(Nj,’x’), diff(Nk,’x’),
diff(N1,’x’)]; syms Xi Eta % variables del plano computacional
F=solve (Nj-Xi,Nk-Eta,’x’,’y’);

x=F.x;

y=F.y;clear F

JC=abs (det (jacobian([x;y],[Xi, Eta])));

clear x y

Toxxxxxxxxxxxx*%* Integrales por Cuadratura *xkkxkkkkxkkkkxkkx ul=sqrt(3)/3;u2=-sqrt(3)/3;
Xi1=(ul+1)*0.5;Eta1=0.25%(1-ul) *(1+sqrt(3)/3) ;Etalb=0.25*(1-ul) * (1-sqrt (3)/3);
Xi2=(u2+1)*0.5;Eta2=0.25*%(1-u2) *(1+sqrt(3)/3) ;Eta2b=0.25*%(1-u2) *(1-sqrt(3)/3);
syms x y

Fl=solve(Nj-Xil,Nk-Etal,’x’,’y’);

x=F1.x;

y=Fl.y;clear F1

MDjk(3,:)=[1,x,y];clear y x

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk

P11=JCx[Xil;Etal;N1]*[Xil;Etal;N1]’;

syms x y

F2=solve(Nj-Xil,Nk-Etalb,’x’,’y’);

x=F2.x;

y=F2.y;clear F2

MDjk(3,:)=[1,x,y];clear y x

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk

P11b=JC*[Xi1;Etalb;N1]x[Xi1;Etalb;N1]’;

syms x y

F3=solve(Nj-Xi2,Nk-Eta2,’x’,’y’);

x=F3.x;

y=F3.y;clear F3

MDjk(3,:)=[1,x,y];clear y x

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk

P22=JC*[Xi2;Eta2;N1]*[Xi2;Eta2;N1]’;

syms X y

F4=solve(Nj-Xi2,Nk-Eta2b,’x’,’y’);

x=F4.x;

y=F4.y;clear F4

MDjk(3,:)=[1,x,y];clear y x

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk

P22b=JC*[Xi2;Eta2b;N1|*[Xi2;Eta2b;N1|’; zeta=dxNjk1l’*dxNjkl*Cjk1*0.5+dyNjkl’*dyNjkl*Cjkl*0.5;
theta=0.125*%(1-ul)*(P11+P11b)+0.125% (1-u2) * (P22+P22b) ;

clear JC x y Xi Eta dyNjkl dxNjkl Nj Nk

zetaS=zeros(nd,nd) ;

thetaS=zeros(nd,nd);

vpru=t1(:,1i);

for kk=1:1:3

for 11=1:1:3

zetaS (vpru(kk) ,vpru(ll) )=zeta(kk,11);

thetaS (vpru(kk) ,vpru(ll))=theta(kk,11);
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end

end

clear kk 11 zeta theta vpru
thetaT=thetaS+thetaT;
zetaT=zetaS+zetaT,;

clear zetaS thetaS

end
O sk sk ke ok sk ok sk ok ok sk ke sk sk ke sk ok ok sk s ok stk sk stk sk ok ok sk ok ok sk sk ok ook sk ok sk ook skokok ok ok ok

Qokok sk sk ok sk ok ok ok sk ok ok ok ook ok o ok ok ok ok o sk ok ok ok o skok o ok ok ok ok ok ok Kok ok ok ok K
%**x* Calculo de la temperatura en el tiempo Ilkk¥*xx
p-olof=p’;

t_olof=t1’; %Adecuacion de las matrices para usar programa de olof Persson
bound_edges=boundedges (p_olof,t_olof);

bound nodes=unique (bound_edges); clear bound_edges
XXhnl=rho*c*thetaT+lambda*Deltat*0.5%zetaT;
XXhn2=rho*cxthetaT-lambda*Deltat*0.5*zetaT;
XXh1=XXhn1;

XXh2=XXhn2;

XXh1(bound nodes, :)=[ |;

vph=XXh2* (TOext*ones(nd, 1) )+0.5*Deltat*thetaT*(q{1}’);
vph(bound nodes, :)=| |;

for j=1:1:max(size(bound nodes))
vph=vph-XXh1(:,bound nodes(j))*TOext;

end

XXh1(:,bound nodes)=| |;
Tc{1}=cgs(XXh1,vph,1e-16,100);

clear i j

j=1;

for i=1:1:nd

if ismember (i,bound_nodes)

T1(i)=TOext;

else

T{1}(1)=Tc{1}(j);

J=i+1;

end

end

T{1}=T{1}’;

clear XXhl vph XXh2 j

for timedis=2:1:timeheatmax

timedis
vphn=XXhn2+T{timedis-1}+Deltat*0.5*thetaT*((q{timedis}) ’+(q{timedis-1})’);
XXhnt=XXhn1;

XXhnt (bound_nodes, :)=[ |;

vphn (bound_ nodes, :)=[ |;

for j=1:1:max(size(bound nodes))
vphn=vphn-XXhnt (: ,bound_nodes (j))*TOext;

end

XXhnt (: ,bound nodes)=| |;
Tc{timedis}=cgs(XXhnt,vphn,1e-16,100);

clear i j

i=1;
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for i=1:1:nd

if ismember(i,bound_nodes)
T{timedis}(i,1)=TOext;

else
T{timedis}(i,1)=Tc{timedis}(j);
j=3+1;

end

end

end

clear Tc j XXhnt vphn bound nodes XXhnl XXhn2
out_T=T;



Apéndice D

ThermalFEMConv_2D.m

function out_Tconv=ThermalFEMConv_2D(p,e,t,rho,lambda,c,TOext,h,Deltat,Tm,q,timeheatmax)
1fi=max(size(t));

nd=max(size(p));

tl=t;

t1(4, =] |;

for i=1:1:1f1

nodos{i}=t1(:,i);

a=nodos{i};

for j=1:1:3

cord{j}=p(:,a(3))’;

end

cordi{i}=cord;

end

clear nodos cord i j a

vel=[1;1;1]

thetaT=0;

zetaT=0;

for i=1:1:1f1

i % par ver donde va la cuenta
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3}];
MDkl=vpa([vcl s2|);

MDjl=vpa([vcl s2]);

MDjk=vpa([vcl s2]);

Cjkl=det([vcl s2));

Yox**x**x*x+* FORMANDO LOS NMjkl para calcular las integrales en la integrales en la frontera
Toxxxkxkrkkkkrkkkkrx NMjkld

clear y x

syms X

y=max(p(2,:)); % y=d el valor de y
MDk1(1,:)=[1,x,y];

Dkl=det (MDk1) ;

Nj=Dk1l/Cjkl;clear Dkl
MDj1(2,:)=[1,x,y];

Djl=det(MDjl);

Nk=Djl/Cjkl;clear Djl
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MDjk(3,:)=[1,x,y];

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk
NMjk1d{i}=[Nj;Nk;N1];clear Nj Nk N1
clear y

Ok ok Kok kK kK

Tokkkkkkkkkrkrkk NMjKlc
y=min(p(2,:)); % y=c el valor de y
MDk1(1,:)=[1,x,y];

Dkl=det (MDk1) ;

Nj=Dk1/Cjkl;clear Dkl
MDj1(2,:)=[1,x,y];

Djl=det (MDj1);

Nk=Djl/Cjkl;clear Djl

MDjk (3, :)=[1,x,y];

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk
NMjklc{i}=[Nj;Nk;N1];clear Nj Nk N1
clear y x

syms y

Ok ok ok koo ok kK ok ok ok ok ok o
Tokskkkkkkkkkrrrrrrrrnnx NMjklb
x=max(p(1,:)); % x=b el valor de x
MDk1(1,:)=[1,x,y];

Dkl=det (MDk1) ;

Nj=Dk1/Cjkl;clear Dkl
MDj1(2,:)=[1,x,y];

Djl=det (MDj1);

Nk=Dj1/Cjkl;clear Djl
MDjk(3,:)=[1,x,y];

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk
NMjk1b{i}=[Nj;Nk;N1];clear Nj Nk N1
clear x

ok ko sk ok ook ko ok ko ok ok ok ok o ook
Toskskskokokokokokokkkkkkkkkkkkkx NMjkla
x=min(p(1,:)); % x=a el valor de x
MDk1(1,:)=[1,x,y];

Dkl=det (MDk1) ;

Nj=Dk1/Cjkl;clear Dkl
MDj1(2,:)=[1,x,y];

Djl=det (MDj1);

Nk=Dj1/Cjkl;clear Djl

MDjk (3, :)=[1,x,y];

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk
NMjkla{i}=[Nj;Nk;N1];clear Nj Nk N1
clear y x

syms y X

ok ko sk ok ks ko ok ko ok ko ok ok ok ok ok K

ok ok Kok Kok kK ok ok Kok K ok ok ok ok K ok Kok ok ok kK ok K Kok ok
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%Generacién de los Nj(x,y)

syms X y

MDk1(1,:)=[41,x,y];

Dkl=det (MDk1) ;

Nj=Dk1/Cjkl;clear Dkl MDkl

MDj1(2,:)=[1,x,y];

Djl=det (MDj1) ;

Nk=Dj1/Cjkl;clear Djl MDjl

MDjk(3,:)=[1,x,y];

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk

dyNjkl=[diff(Nj,’y’), diff(Nk,’y’), diff(N1,’y’)]; %derivadas en y de los Nj
dxNjkl=[diff (Nj,’x’), diff(Nk,’x’), diff(N1,’x’)]; %derivadas en x de los Nj
syms Xi Eta % variables del plano computacional
F=solve(Nj-Xi,Nk-Eta,’x’,’y’);

x=F.x;

y=F.y;clear F

JC=abs (det (jacobian([x;y],[Xi, Eta])));
MDjk(3,:)=[1,x,y];

Djk=det (MDjk) ;

N1a=Djk/Cjkl;clear Djk

clear x y

Toxskkseronskksrkdokdorkkkkrksk Integrales por Cuadratura skskkskskokskoksskokskokskskskkokk
ul=sqrt(3)/3;u2=-sqrt(3)/3;
Xil=(ul+1)*0.5;Etal1=0.25%(1-ul)*(1+sqrt(3)/3) ;Etalb=0.25*%(1-ul) *(1-sqrt(3)/3);
Xi2=(u2+1)*0.5;Eta2=0.25*%(1-u2)*(1+sqrt(3)/3) ; Eta2b=0.25*(1-u2) *(1-sqrt(3)/3) ;
syms X y

Fl=solve(Nj-Xil1,Nk-Etal,’x’,’y’);

x=F1.x;

y=Fl.y;clear F1

MDjk(3,:)=[1,x,y];clear y x

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk
P11=JC*[Xil1;Etal;N1]*[Xi1;Etal;N1]’;

syms X y

F2=solve(Nj-Xil,Nk-Etalb,’x’,’y’);

x=F2.x;

y=F2.y;clear F2

MDjk(3,:)=[1,x,y];clear y x

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk
P11b=JC[Xi1;Etalb;N1]*[Xil;Etalb;N1]’;

syms X y

F3=solve(Nj-Xi2,Nk-Eta2,’x’,’y’);

x=F3.x;

y=F3.y;clear F3

MDjk(3,:)=[1,x,y];clear y x

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk
P22=JC*[Xi2;Eta2;N1]*[Xi2;Eta2;N1]’;

syms X y



106 APENDICE D. THERMALFEMCONV_2D.M

F4=solve(Nj-Xi2,Nk-Eta2b,’x’,’y’);

x=F4.x;

y=F4.y;clear F4

MDjk(3,:)=[1,x,y];clear y x

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk
P22b=JC*[Xi2;Eta2b;N1|*[Xi2;Eta2b;N1]’;
zeta=dxNjk1’*dxNjk1*Cjk1*0.5+dyNjkl’*dyNjk1*Cjk1*0.5
theta=0.125*(1-ul)*(P11+P11b)+0.125% (1-u2) * (P22+P22b)
clear JC x y Xi Eta dyNjkl dxNjkl Nj Nk
zetaS=zeros(nd,nd) ;

thetaS=zeros(nd,nd);

vpru=t1(:,i);

for kk=1:1:3

for 11=1:1:3

zetaS (vpru(kk) ,vpru(ll))=zeta(kk,11);

thetaS (vpru(kk) ,vpru(ll))=theta(kk,11);

end

end

clear kk 11 zeta theta vpru
thetaT=thetaS+thetaT;

zetaT=zetaS+zetaT;

clear zetaS thetaS

end

p-olof=p’;

t_olof=t1’; %Adecuacion de las matrices para usar programa de olof Persson
bound_edges=boundedges (p_olof,t_olof);

bound nodes=unique (bound edges); clear bound edges % Son los nodos que estan en la frontera
Dox*xxxxxxxx MATRIZ [alphaf]| sskkskrksksrkskrskkkrkkkx
Ok sk ok ok sk ok sk ok ok o sk ok ok K ok ok o oK ok ok o oK ok o o oK ok o K ok ok o oK ok ok oK ok o K ok o
Tox*xxxxxxx Matriz [alphafld] sxksksckkskkkx

[iid, jjd]=find (p==max(p(2,:)));clear iid

for 11=1:1:max(size(jjd))

[1id2, jjd2]=find (t1==jjd(11));clear iid2
bord{11l}=jjd2;clear jjd2

end

clear 11 jjd

ccbord=bord{1};

for kk=2:1:max(size(bord))
ccbord=[ccbord;bord{kk}|;

end

clear bord kk

for ww=1:1:max(size(ccbord))

[11d3, jjd3]=find (ccbord==ccbord(ww)) ;clear jjd3
iid3=max(size(iid3));

if (1id3)<(2)

ccbord_unid (ww)=ccbord (ww) ;

else

ccbord_unid(ww)=0;

end

end
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clear ww iid3

ccbord_unid=setdiff (ccbord, ccbord_unid) ;clear ccbord

for rr=1:1:max(size(ccbord_unid))

ggd=t1(:,ccbord_unid(rr)) ;

ggd=intersect (ggd,bound nodes) ;

if p(1,ggd(1)) < p(1,ggd(2))

alphafdc_d1{ccbord unid(rr) }=int (NMjkld{ccbord unid(rr)},’x’,p(1,ggd(1)),p(1,ggd(2)));
alphafdc_d2{ccbord unid(rr) }=int (NMjkld{ccbord unid(rr) }* (NMjkld{ccbord unid(rr)}’)
,’x’,p(1l,ggd (1)) ,p(1,ggd(2)));

else

alphafdc di{ccbord unid(rr) }=int (NMjkld{ccbord unid(rr)},’x’,p(1,ggd(2)),p(1,ggd(1)));
alphafdc_d2{ccbord unid(rr) }=int (NMjkld{ccbord unid(rr) }* (NMjkldccbord unid(rr)’)
,’x? ,p(l,ggd(2)) ,p(1,ggd(1)));

end

end

clear ggd rr NMjkld

Dok ok ks sk ok ok ook ok ok ok ook ook ok ook Kok ok ook Kok oK ook ok oK ok K ok ok o

Dox*xx*xx*x Matriz [alphaflc| skxkkxkkkx

[iic,jjc]=find (p==min(p(2,:)));clear iic

for 11=1:1:max(size(jjc))

[iic2,jjc2]=find(t1==jjc(11));clear iic2

bordc{ll}=jjc2;clear jj2

end

clear 11 jjc

ccbordc=bordc{1};

for kk=2:1:max(size(bordc))

ccbordc=[ccbordc;bordc{kk}];

end

clear kk bordc

for ww=1:1:max(size(ccbordc))

[iic3, jjc3]=find(ccbordc==ccbordc(ww));clear jjc3

iic3=size(iic3);

iic3=iic3(1,1);

if (iic3) < (2)

ccbord_unic (ww)=ccbordc (ww) ;

else

ccbord_unic(ww)=0;

end

end

clear ww iic3

ccbord_unic=setdiff (ccbordc,ccbord_unic) ;clear ccbordc

for rr=1:1:max(size(ccbord_unic))

ggc=t1(:,ccbord_unic(rr));

ggc=intersect (ggc,bound nodes) ;

if p(1,ggc(1)) < p(1,ggc(2))

alphafdc_c1{ccbord unic(rr) }=int (NMjklc{ccbord unic(rr)},’x’,p(1,ggd(1)),p(1,ggd(2)));
alphafdc_c2{ccbord unic(rr) }=int (NMjklc{ccbord unic(rr) }* (NMjklc{ccbord unic(rr)}’)
,’x,p(l,ggd(1)) ,p(1,ggd(2)));

else

alphafdc_c1{ccbord unic(rr) }=int (N\Mjklc{ccbord unic(rr)},’x’,p(1,ggd(2)),p(1,gegd(1)));
alphafdc_c2{ccbord unic(rr) }=int (NMjklc{ccbord unic(rr) }* (NMjklc{ccbord unic(rr)}’)
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,’x’,p(l,ggd(2)) ,p(1,ggd(1)));

end

end

clear rr ggc NMjklc

ook ok ok ko koK ok Kook ok KoK Kok K KK oK K KKk K ok
Tokxxxx*xx*x Matriz [alphafl2b] #kkkkkkkkx*

[iib, jjb]=find (p==max(p(1,:)));clear iib

for 11=1:1:max(size(jjb))

[1ib2,jjb2)=find (t1==3jb(11));clear iib2
bordb{11l}=jjb2;clear jjb2

end

clear 11 jjb

ccbordb=bordb{1};

for kk=2:1:max(size(bordb))
ccbordb=[ccbordb;bordb{kk}|;

end

clear kk bordb

for ww=1:1:max(size(ccbordb))

[iib3, jjb3]=find (ccbordb==ccbordb(ww)) ;clear jjb3
iib3=gize(iib3);

iib3=1iib3(1,1);

if (iib3) < (2)

ccbord_unib (ww)=ccbordb (ww) ;

else

ccbord_unib (ww)=0;

end

end

clear ww iib3

ccbord_unib=setdiff (ccbordb,ccbord_unib) ;clear ccbordb
for rr=1:1:max(size(ccbord_unib))
ggb=t1(:,ccbord unib(rr)) ;

ggb=intersect (ggb,bound nodes) ;

if p(2,ggb(1)) < p(2,ggb(2))

alphafba b1{ccbord unib(rr) }=int (NMjklb{ccbord unib(rr)},’y’,p(2,ggb(1)),p(2,geb(2)));
alphafba b2{ccbord unib(rr) }=int (NMjklb{ccbord unib(rr) }* (NMjklb{ccbord unib(rr)}’)
0y’ ,p(2,g8b(1)) ,p(2,88b(2)));

else

alphafba bl{ccbord unib(rr) }=int (NMjklb{ccbord unib(rr)},’y’,p(2,geb(2)),p(2,ggb(1)));
alphafba b2{ccbord unib(rr) }=int (N\Mjklb{ccbord unib(rr) }* (NMjklb{ccbord unib(rr)}’)
,’y7,p(2,ggb(2)),p(2,ggb(1)));

end

end

clear ggb rr NMjklb

ok ok ok ok ok ok o sk ook ook ook ok ook ook ok Kok ok Kok Kok K o
Yox*xx*xxx* Matriz [alphafla] skxkkxkkrkk
[iia,jjal=find (p==min(p(1,:)));clear iia

for 11=1:1:max(size(jja))
[iia2,jja2]=find(t1==jja(1ll));clear iia2
borda{ll}=jja2;clear jja2

end

clear 11 jja
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ccborda=borda{1};

for kk=2:1:max(size(borda))

ccborda=[ccborda;borda{kk}|;

end

clear kk borda

for ww=1:1:max(size(ccborda))
[iia3,jja3]=find(ccborda==ccborda(ww)) ;clear jja3
iia3=size(iia3);

iia3=iia3(1,1);

if (iia3) < (2)

ccbord_unia(ww)=ccborda(ww) ;

else

ccbord_unia(ww)=0;

end

end

clear ww iia3

ccbord_unia=setdiff (ccborda,ccbord_unia) ;clear ccborda

for rr=1:1:max(size(ccbord_unia))
gga=t1(:,ccbord_unia(rr));

gga=intersect (gga,bound nodes) ;

if p(2,gga(1)) < p(2,gga(2))

alphafba_al{ccbord unia(rr) }=int (NMjkla{ccbord unia(rr)},’y’,p(2,ggb(1)),p(2,ggb(2)));
alphafba_a2{ccbord unia(rr) }=int (NMjkla{ccbord unia(rr) }*(NMjkla{ccbord unia(rr)}’)
0y ,p(2,8gb (1)) ,p(2,ggb(2)));

else

alphafba al{ccbord unia(rr) }=int (NMjkla{ccbord unia(rr)},’y’,p(2,ggb(2)),p(2,ggb(1)));
alphafba a2{ccbord unia(rr) }=int (NMjkla{ccbord unia(rr) }*(NMjkla{ccbord unia(rr)}’)
0y ,p(2,8eb(2)),p(2,g8b(1)));

end

end

clear gga NMjkla

Yox*xx**x armando la [alphaf| completa

encalphald=setdiff ((1:1:1f1),ccbord unid);clear ccbord unid
for rr=1:1:max(size(encalphald))

alphafdc_d1=[0;0;0];

alphafdc_d2=zeros(3,3);

end

clear rr encalphald

encalphalc=setdiff ((1:1:1f1),ccbord unic);clear ccbord unic
for rr=1:1:max(size(encalphalc))
alphafdc_ci{encalphalc(rr) }=[0;0;0];
alphafdc_c2{encalphalc(rr) }=zeros(3,3);

end

clear rr encalphalc

encalpha2b=setdiff ((1:1:1f1),ccbord_unib) ;clear ccbord_unib
for rr=1:1:max(size(encalpha2b))

alphafba bi{encalpha2b(rr) }=[0;0;0];

alphafba b2{encalpha2b(rr) }=zeros(3,3);

end

clear rr encalpha2b
encalpha2a=setdiff((1:1:1f1),ccbord unia) ;clear ccbord unia
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for rr=1:1:max(size(encalpha2a))

alphafba_al{encalpha2a(rr) }=[0;0;0];

alphafba_a2{encalpha2a(rr) }=zeros(3,3);

end

clear rr encalpha2a

for rr=1:1:1f1
alphafi{rr}=alphafba bl{rr}-alphafba al{rr}+alphafdc_di{rr}-alphafdc_cl{rr};
alphaf2{rr}=alphafba a2{rr}-alphafba b2{rr}+alphadc_c2{rr}-alphadc_d2{rr};
end

clear rr alphafba bl alphafba_al alphafdc_dl alphafdc_cl alphafba_ a2 alphafba b2 alphadc_c2
alphadc_d2 jjc2

p-olof t_olof

for rr=1:1:1f1

alphaf1S{rr}=zeros(nd,1);

alphaf2S{rr}=zeros(nd,nd) ;

vpru=t1(:,rr);

for kk=1:1:3

alphaf1S{rr} (vpru(kk))=alphafi{rr}(kk) ;

for 11=1:1:3

alphaf2S{rr} (vpru(kk) ,vpru(1ll))=alphaf2{rr}(kk,11);

end

end

end

clear alphafl alphaf2 kk rr vpru

alphaf1T=0;

alphaf2T=0;

for rr=1:1:1f1

alphafiT=alphafi1Srr+alphafiT;

alphaf2T=alphaf2Srr+alphaf2T;

end

clear rr alphaflS alphaf28

0 s ke sk sk sk sk sk e sk sk sk o sk sk sk sk sk e ke ok sksk sk ok e sk sksksk sk s ke ok sksk sk sk ok ok sk sksk sk o ok sk ok

0 s ke sk stk sk o sk sk sksk sk o ok sk sk sk ok s ke oksksk sk ok ok sksksk sk s ok sksk sk sk ok sk sk sk sk ok ok sk ok

%** Calculo de la temperatura en el tiempo I1¥kikkkx
XXhnl=rhoxc*thetaT+lambda*Deltat*0.5*((h/lambda)*alphaf2T+zetaT) ;
XXhn2=rho*c*thetaT-lambda*Deltat*0.5%((h/lambda)*alphaf2T+zetaT) ;
XXh1=XXhni;

XXh2=XXhn2;

vph=XXh2* (TOext*ones(nd,1))-Deltat*h*Tm*alphaf1T+Deltat*0.5*thetaT*(q{1}’);
T{1}=cgs (XXh1,vph,1le-16,100);

clear XXhl vph XXh2

for timedis=2:1:timeheatmax

timedis
vphn=XXhn2*T{timedis-1}-Deltat*h*Tm*alphaf1T+Deltat*0.5*thetaT((q{timedis}) ’+(q{timedis-1})’);
XXhnt=XXhn1;

T{timedis}=cgs (XXhnt,vphn,le-16,100) ;

end

clear XXhnt vphn bound nodes XXhnl XXhn2

out_Tconv=T;



Apéndice E

ThermalFEMNO 2D.m

function out_TNO=ThermalFEMNO_2D(p,e,t,rho,lambda,c,TOext,Deltat,q,timeheatmax)
1fi=max(size(t));
nd=max(size(p));

tl=t;

t1(4, =] |;

for i=1:1:1f1
nodos{i}=t1(:,i);
a=nodos{i};

for j=1:1:3
cord{j}=p(:,a(3))’;

end

cordi{i}=cord;

end

clear nodos cord i j a
vel=[1;1;1];

thetaT=0;

zetaT=0;

for i=1:1:1f1

i % par ver donde va la cuenta
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3}];
MDkl=vpa([vcl s2|);
MDjl=vpa([vcl s2]);
MDjk=vpa([vcl s2]);
Cjkl=det([vcl s2));
%Generacién de los Nj(x,y)
syms X y

MDk1(1,:)=[1,x,y];

Dkl=det (MDk1) ;
Nj=Dk1/Cjkl;clear Dkl MDkl
MDj1(2,:)=[1,x,y];

Djl=det (MDj1);
Nk=Dj1/Cjkl;clear Djl MDjl
MDjk(3,:)=[1,x,y];

Djk=det (MDjk) ;
N1=Djk/Cjkl;clear Djk
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dyNjkl=[diff(Nj,’y’), diff(Nk,’y’), diff(N1,’y’)]; %derivadas en y de los Nj
dxNjkl=[diff (Nj,’x’), diff(Nk,’x’), diff(N1,’x’)]; %derivadas en x de los Nj
syms Xi Eta % variables del plano computacional
F=solve(Nj-Xi,Nk-Eta,’x’,’y’);

x=F.x;

y=F.y;clear F

JC=abs (det (jacobian([x;y],[Xi, Eta])));
MDjk(3,:)=[1,x,y];

Djk=det (MDjk) ;

Nla=Djk/Cjkl;clear Djk

clear x y

Ok sk sk ok sk ok ok sk ok ok ok ok ok Integrales por Cuadratura *xkskxkskskkskskkskk
ul=sqrt(3)/3;u2=-sqrt(3)/3;
Xi1=(ul+1)*0.5;Eta1=0.25*(1-ul) *(1+sqrt(3)/3) ;Etalb=0.25*(1-ul) * (1-sqrt (3)/3);
Xi2=(u2+1)*0.5;Eta2=0.25*%(1-u2) *(1+sqrt(3)/3) ;Eta2b=0.25*%(1-u2) *(1-sqrt(3)/3);
syms X y

Fl=solve(Nj-Xil,Nk-Etal,’x’,’y’);

x=F1.x;

y=Fl.y;clear F1

MDjk(3,:)=[1,x,y];clear y x

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk
P11=JC*[Xil;Etal;N1]*[Xil;Etal;N1]’;

syms X y

F2=solve(Nj-Xil,Nk-Etalb,’x’,’y’);

x=F2.x;

y=F2.y;clear F2

MDjk(3,:)=[1,x,y];clear y x

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk
P11b=JC*[Xil;Etalb;N1]*[Xil;Etalb;N1]’;

syms X y

F3=solve(Nj-Xi2,Nk-Eta2,’x’,’y’);

x=F3.x;

y=F3.y;clear F3

MDjk(3,:)=[1,x,y];clear y x

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk
P22=JCx[Xi2;Eta2;N1]*[Xi2;Eta2;N1]’;

syms X y

F4=solve(Nj-Xi2,Nk-Eta2b,’x’,’y’);

x=F4.x;

y=F4.y;clear F4

MDjk(3,:)=[1,x,y];clear y x

Djk=det (MDjk) ;

N1=Djk/Cjkl;clear Djk
P22b=JC*[Xi2;Eta2b;N1|*[Xi2;Eta2b;N1]’;
zeta=dxNjkl’*dxNjkl*Cjk1*0.5+dyNjkl’*dyNjkl*Cjk1l*0.5;
theta=0.125%(1-ul)*(P11+P11b)+0.125% (1-u2) * (P22+P22b) ;
clear JC x y Xi Eta dyNjkl dxNjkl Nj Nk
zetaS=zeros(nd,nd) ;
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thetaS=zeros(nd,nd);

vpru=t1(:,i);

for kk=1:1:3

for 11=1:1:3

zetaS (vpru(kk) ,vpru(ll))=zeta(kk,11);

thetaS (vpru(kk) ,vpru(1ll) )=theta(kk,11);

end

end

clear kk 11 zeta theta vpru

thetaT=thetaS+thetaT;

zetaT=zetaS+zetaT;

clear zetaS thetaS

end

O ok sk ke ok sk e ok sk sk ok sk ke sk o ok sk ok ok st ok sk sk ok sk ok ok sk sk ok sk ok ok ok sk ook sk ok ok ok sk ok ok ok ok ok
Q0 ok sk ke ok sk ok sk sk ok sk ok sk o ok sk ok sk ok ok sk ok sk ok ok sk sk ok sk ok ok ook sk ook sk ok ok ok ok ok sk ok ok ok ok
%**x* Calculo de la temperatura en el tiempo 1¥kx¥k*x*
rho=7.65%(1e3) ;lambda=31;c=434;T0ext=25+273.15;
XXhnl=rho*c*thetaT+lambda*Deltat*0.5%zetaT;
XXhn2=rho*c*thetaT-lambda*Deltat*0.5*zetaT;
XXh1=XXhni;

XXh2=XXhn2;

vph=XXh2* (TOext*ones(nd, 1) )+0.5*Deltat*thetaT*(q{1}’);
T{1}=cgs (XXh1,vph,le-16,100);

clear XXh1l vph XXh2

for timedis=2:1:timeheatmax

timedis
vphn=XXhn2*T{timedis-1}+Deltat*0.5*thetaT*((q{timedis}) ’+(q{timedis-1})’);
XXhnt=XXhn1;

T{timedis}=cgs (XXhnt,vphn,le-16,100) ;

end

clear Tc j XXhnt vphn bound nodes XXhnl XXhn2
out_TNO=T;
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Apéndice F

ElectroFEM 3D.m

function out_g=ElectroFEM 3D(p,t,nuFP,Sigma,Deltat,f,HOmax,np,nlonda,timemax,FS,FSX,FI
,FIX,fls,fli)
1fi=max(size(t));

nd=max (size(p));

for i=1:1:1f1
nodos{i}=t(i,:);

for j=1:1:4
cord{j}=p(nodos{i}(j),:);
end

cord1{i}=cord;

end

clear nodos cord j i
gammaT=0;

betaT=0;

alpha3T=0;

rotAT=0;

rotBT=0;

vel=[1;1;1;1];

for i=1:1:1f1

i
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDk1m=vpa([vcl s2]);

MDjlm=vpa([vcl s2]);
MDjkm=vpa([vcl s2]);
MDjkl=vpa([vcl s2]);
Cjklm=det([vcl s2]);clear s2
Yosyms x y z

MDk1m(1,:)=[1,x,y,2];

Dklm=det (MDklm) ;
Nj=Dklm/Cjklm;clear Dklm MDklm
MDjlm(2,:)=[1,x,y,2|;

Djlm=det (MDjlm);
Nk=Djlm/Cjklm;clear Djlm MDjlm
MDjkm(3,:)=[1,x,y,2];

Djkm=det (MDjkm) ;
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N1=Djkm/Cjklm;clear Djkm MDjkm

MDjk1(4,:)=[1,x,y,2];

Djkl=det (MDjkl) ;

Nm=Djkl/Cjklm;clear Djkl
dXNjklm=Miff(Nj,’X’),diff(Nk,’X’),diff(Nl,’X’),diff(Nm,’X’)h
dyNjklm=[diff (Nj,’y’),diff (Nk,’y’),diff (N1, y’) ,diff (Nm, ’y’)];
dzNjklm=[diff (Nj,’z’),diff (Nk,’z’),diff (N1,’z’) ,diff (Nm, ’z’)];
syms Xi Eta zzeta

F=solve(Nj-Xi,Nk-Eta,Nl-zzeta,’x’,’y’,’2’);

x=F.x;

y=F.y;

z=F.z;clear F

JC=abs(det (jacobian([x;y;z|,[Xi, Eta, zzeta])));
MDjk1(4,:)=[1,x,y,2];

Djkl=det (MDjk1) ;

Nma=Djk1l/Cjklm;clear Djkl

clear x y z;

%****************** Integra]_es por cuadratura skskskkok sk ok kkk k% kkkxk
ul=sqrt(3/5) ;u2=0;u3=-ul;

c1=(5/9) ;c2=8/9;c3=c1;

Xi1=0.5%(ul+1) ;Xi2=0.5*%(u2+1) ;Xi3=0.5%(u3+1) ;
Etal=(1-ul)*(1+sqrt(3)/3)*0.25;Etalb=(1-ul)*(1-sqrt(3)/3)*0.25;
Eta2=(1-u2)*(1+sqrt(3)/3)*0.25;Eta2b=(1-u2) *(1-sqrt (3) /3)*0.25;
Eta3=(1-u3)*(1+sqrt(3)/3)*0.25;Eta3b=(1-u3)*(1-sqrt(3)/3)*0.25;
zzetal=(1-ul) *(1-sqrt (3)/3) *(1+sqrt (3)/3)*0.125;
zzetalb=(1-ul)*(1-sqrt(3)/3)*(1-sqrt(3)/3)*0.125;
zzetalc=(1-ul) *(1+sqrt(3)/3) *(1+sqrt(3)/3)*0.125;
zzeta2=(1-u2) *(1-sqrt (3) /3) *(1+sqrt (3)/3)*0.125;
zzeta2b=(1-u2)*(1-sqrt(3)/3) *(1-sqrt (3)/3) *0.125;
zzeta2c=(1-u2) * (1+sqrt (3) /3) *(1+sqrt(3) /3)*0.125;
zzeta3=(1-u3) *(1-sqrt (3)/3) *(1+sqrt (3)/3)*0.125;
zzeta3b=(1-u3)*(1-sqrt(3)/3)*(1-sqrt(3)/3)*0.125;
zzeta3c=(1-u3)* (1+sqrt(3)/3) *(1+sqrt(3)/3)*0.125;

syms X y Z

Fl=solve(Nj-Xil,Nk-Etal,Nl-zzetal,’x’,’y’,’2’);
x=F1.x;y=Fl.y;z=F1l.z;clear F1

MDjk1(4,:)=[1,x,y,z|;clear x y 2

Djkl=det (MDjk1) ;

Nm=Djk1l/Cjklm;clear Djkl
P111=JC*[Xil;Etal;zzetal;Nm|*[Xil;Etal;zzetal;Nm]’;
betaz111=JC*[Xil;Etal;zzetal;Nm|*dzNjklm;
betay111=JC*[Xil;Etal;zzetal;Nm|*dyNjklm;
betax111=JC*[Xil;Etal;zzetal;Nm|*dxNjklm;clear Nm

syms X y z

F2=solve(Nj-Xi1,Nk-Etal,Nl-zzetalb,’x’,’y’,’z’);
x=F2.x;y=F2.y;z=F2.z;clear F2

MDjk1(4,:)=[1,x,y,z|;clear x y 2

Djkl=det (MDjk1) ;

Nm=Djk1l/Cjklm;clear Djkl
P111b=JC*[Xil;Etal;zzetalb;Nm|*[Xil;Etal;zzetalb;Nm|’;
beta2111b=JC*[Xi1;Etal;zzetalb;Nnﬂ*dzNjklm;



betayl111b=JC*[Xil;Etal;zzetalb;Nm|*dyNjklm;
betax111b=JC*[Xil;Etal;zzetalb;Nm|*dxNjklm;clear Nm zzetalb
Syms X y z

F3=solve (Nj-Xil,Nk-Etalb,Nl-zzetalc, ’x’,’y’, 2z’);
x=F3.x;y=F3.y;z=F3.z;clear F3
MDjk1(4,:)=[1,x,y,z|;clear x y 2

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P11b1c=JC*[Xil;Etalb;zzetalc;Nm|*[Xil;Etalb;zzetalc;Nm|’;
betazllblc=JC*[Xil;Etalb;zzetalc;Nm|*dzNjklm;
betayllblc=JC*[Xil;Etalb;zzetalc;Nm|*dyNjklm;
betax11b1c=JC*[Xi1;Etalb;zzetalc;Nm}*dejklm;clear Nm zzetalc
syms X y z
F4=solve(Nj-Xil,Nk-Etalb,Nl-zzetal,’x’,’y’,’z’);
x=F4.x;y=F4.y;z=F4.z;clear F4
MDjk1(4,:)=[1,x,y,z|;clear x y 2

Djkl=det (MDjk1) ;

Nm=Djk1l/Cjklm;clear Djkl
P11b1=JC*[Xil;Etalb;zzetal;Nm|*[Xil;Etalb;zzetal;Nm]’;
betazl11b1=JCx[Xil;Etalb;zzetal;Nm|*dzNjklm;
betayl1b1=JC*[Xil;Etalb;zzetal;Nm|*dyNjklm;
betax11b1=JC*[Xil;Etalb;zzetal;Nm|*dxNjklm;clear Nm
syms X y z
Fb=solve(Nj-Xi2,Nk-Eta2,Nl-zzeta2,’x’,’y’,’2’);
x=Fb.x;y=Fb.y;z=Fb5.z;clear F5
MDjk1(4,:)=[1,x,y,z|;clear x y 2

Djkl=det (MDjk1) ;

Nm=Djk1l/Cjklm;clear Djkl
P222=JC*[Xi2;Eta2;zzeta2;Nm|*[Xi2;Eta2;zzeta2;Nm]’;
betaz222=JC*[Xi2;Eta2;zzeta2; Nm|*dzNjklm;
betay222=JC*[Xi2;Eta2;zzeta2; Nm|*dyNjklm;
betax222=JC*[Xi2;Eta2;zzeta2;Nm|*dxNjklm;clear Nm
syms X y 2
F6=solve(Nj-Xi2,Nk-Eta2,N1-zzeta2b,’x’,’y’,’z’);
x=F6.x;y=F6.y;z=F6.z;clear F6
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P222b=JC*[Xi2;Eta2;zzeta2b;Nm|*[Xi2;Eta2;zzeta2b;Nm|’;
betaz222b=JC*[Xi2;Eta2;zzeta2b; Nm|*dzNjklm;
betay222b=JCx[Xi2;Eta2;zzeta2b; Nm|*dyNjklm;
betax222b=JC*[Xi2;Eta2;zzeta2b;Nm|*dxNjklm;clear Nm
syms X y 2
F7=solve(Nj-Xi2,Nk-Eta2b,Nl-zzeta2c,’x’,’y’,’z’);
x=F7.x;y=F7.y;z=F7.z;clear F7
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P22b2c=JC*[Xi2;Eta2b;zzeta2c;Nm|*[Xi2;Eta2b;zzeta2c;Nm|’;
betaz22b2c=JC*[Xi2;Eta2b;zzeta2c; Nm|*dzNjklm;
betay22b2c=JC*[Xi2;Eta2b;zzeta2c; Nm|*dyNjklm;
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betax22b2c=JC*[Xi2;Eta2b;zzeta2c;Nm|*dxNjklm;clear Nm
Syms X y z
F8=solve(Nj-Xi2,Nk-Eta2b,Nl-zzeta2,’x’,’y’,’z’);
x=F8.x;y=F8.y;z=F8.z;clear F8
MDjk1(4,:)=[1,x,y,z|;clear x y 2

Djkl=det (MDjk1) ;

Nm=Djk1l/Cjklm;clear Djkl
P22b2=JC*[Xi2;Eta2b;zzeta2;Nm|*[Xi2;Eta2b;zzeta2;Nm|’ ;
betaz22b2=JC*[Xi2;Eta2b;zzeta2; Nm|*dzNjklm;
betay22b2=JCx[Xi2;Eta2b;zzeta2; Nm|*dyNjklm;
betax22b2=JC*[Xi2;Eta2b;zzeta2;Nm|*dxNjklm;clear Nm
syms X y 2

F9=solve (Nj-Xi3,Nk-Eta3,Nl-zzeta3,’x’,’y’,’z’);
x=F9.x;y=F9.y;z=F9.z;clear F9
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P333=JC*[Xi3;Eta3;zzeta3;Nm|*[Xi3;Eta3;zzeta3;Nm|’;
betaz333=JC*[Xi3;Eta3;zzeta3; Nm|*dzNjklm;
betay333=JC*[Xi3;Eta3;zzeta3; Nm|*dyNjklm;
betax333=JC*[Xi3;Eta3;zzeta3;Nm|*dxNjklm;clear Nm
syms X y 2
F10=solve(Nj-Xi3,Nk-Eta3,Nl-zzeta3b,’x’,’y’,’z’);
x=F10.x;y=F10.y;2z=F10.z;clear F10
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P333b=JC*[Xi3;Eta3;zzeta3b;Nm|*[Xi3;Eta3;zzeta3b;Nm|’;
betaz333b=JC*[Xi3;Eta3;zzeta3b; Nm|*dzNjklm;
betay333b=JC*[Xi3;Eta3;zzeta3b; Nm|*dyNjklm;
betax333b=JCx[Xi3;Eta3;zzeta3b;Nm|*dxNjklm;clear Nm
syms X y 2
Fll=solve(Nj-Xi3,Nk-Eta3b,Nl-zzeta3c,’x’,’y’,’2’);
x=F11.x;y=F11.y;z=F11.z;clear F11
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P33b3c=JCx[Xi3;Eta3b;zzeta3c;Nm|*[Xi3;Eta3b;zzeta3c;Nm|’ ;
betaz33b3c=JC*[Xi3;Eta3b;zzeta3c;Nm|*dzNjklm;
betay33b3c=JC*[Xi3;Eta3b;zzeta3c;Nm|*dyNjklm;
betax33b3c=JC*[Xi3;Eta3b;zzetalc;Nm|*dxNjklm;clear Nm
syms X y 2
F12=solve(Nj-Xi3,Nk-Eta3b,Nl-zzeta3,’x’,’y’,’z’);
x=F12.x;y=F12.y;2z=F12.z;clear F12
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P33b3=JC*[Xi3;Eta3b;zzeta3;Nm|*[Xi3;Eta3b;zzeta3;Nm|’;
betaz33b3=JC*[Xi3;Eta3b;zzeta3;Nm|*dzNjklm;
betay33b3=JC*[Xi3;Eta3b;zzeta3; Nm|*dyNjklm;
betax33b3=JCx[Xi3;Eta3b;zzeta3;Nm|*dxNjklm;clear Nm



gamma=kron(eye(3),cl*(1-ul) A2%x(1-sqrt(3)/3)*(1/64)* (P111+P111b)+
cl*x(1-ul) A2* (1+sqrt(3)/3)*(1/64)*(P11blc+P11bl)+

c2x(1-u2) A2x(1-sqrt (3)/3)*(1/64) * (P222+P222b) +

c2* (1-u2) A2* (1+sqrt (3) /3) *(1/64) * (P22b2c+P22b2) +

c3*%(1-u3) A2% (1-sqrt(3)/3)*(1/64) * (P333+P333b) +

c3* (1-u3) A2* (1+sqrt (3)/3) *(1/64) * (P33b3c+P33b3)) ;
betaz=cl*(1-ul) A2*%(1-sqrt(3)/3)*(1/64)*(betazlll+betazlilib)+
c1*x(1-ul) A2* (1+sqrt (3) /3)*(1/64) * (betazllblc+betazllbl) +
c2*% (1-u2) A2*x(1-sqrt (3) /3) *(1/64) * (betaz222+betaz222b) +

c2* (1-u2) A2* (1+sqrt (3) /3) *(1/64) * (betaz22b2c+betaz22b2) +
c3*(1-u3) A2%(1-sqrt (3)/3)*(1/64) * (betaz333+betaz333b) +
c3*(1-u3) A2* (1+sqrt (3) /3) *(1/64) * (betaz33b3c+betaz33b3) ;
b12=zeros(3,3);b12(1,2)=-1;

b12=kron(b12,betaz);

b21=zeros(3,3);b21(2,1)=1;

b21=kron(b21,betaz) ;clear betaz

betay=c1*(1-ul) A2*%(1-sqrt(3)/3)*(1/64)*(betaylll+betayllib)+
clx(1-ul) A2%(1+sqrt(3)/3)*(1/64) *(betayllblc+betaylibl) +
c2* (1-u2) A2* (1-sqrt (3)/3) *(1/64) * (betay222+betay222b) +
c2x(1-u2) A2* (1+sqrt (3) /3) *(1/64) * (betay22b2c+betay22b2) +
c3*(1-u3) A2* (1-sqrt (3)/3)*(1/64) * (betay333+betay333b) +
c3*(1-u3) A2x (1+sqrt (3) /3)*(1/64) * (betay33b3c+betay33b3) ;
b13=zeros(3,3);b13(1,3)=1;

b13=kron(b13,betay) ;

b31=zeros(3,3);b31(3,1)=-1;

b31=kron(b31,betay) ;clear betay

betax=c1*(1-ul) A2*(1-sqrt(3)/3)*x(1/64)*(betaxlll+betax111b)+
c1*x(1-ul) A2* (1+sqrt (3) /3) *(1/64) * (betaxllblc+betax11bl)+
c2* (1-u2) A2* (1-sqrt (3) /3) *(1/64) * (betax222+betax222b) +

c2* (1-u2) A2* (1+sqrt(3) /3) *(1/64) * (betax22b2c+betax22b2) +
c3*%(1-u3) A2*(1-sqrt(3) /3)*(1/64) * (betax333+betax333b) +
c3*(1-u3) A2x (1+sqrt (3) /3)*(1/64) * (betax33b3c+betax33b3) ;
b23=zeros(3,3) ;b23(2,3)=-1;

b23=kron(b23,betax) ;

b32=zeros(3,3);b32(3,2)=1;

b32=kron(b32,betax) ;clear betax
beta=b12+b13+b21+b23+b31+b32;clear bl2 b21 bl3 b31 b23 b32
alpha3zz=JC*dzNjklm’*dzNjklm* (1/6) ;
alpha3zx=JC*dzNjklm’*dxNjklm* (1/6) ;
all=zeros(3,3);al1(1,1)=1;a13=zeros(3,3);al13(1,3)=-1;
alpha32=kron(all,alpha3zz)+kron(al3,alpha3zx);clear all al3
alpha3zy=JC*dzNjklm’*dyNjklm* (1/6) ;
a22=zeros(3,3);a22(2,2)=-1;a23=zeros(3,3);a23(2,3)=1;
alpha33=kron(a22,alpha3zz)+kron(a23,alphadzy);clear a22 a23
alpha3xz=JC*dxNjklm’*dzNjklm*(1/6) ;
alpha3xx=JC*dxNjklm’*dxNjklm*(1/6) ;
a3l=zeros(3,3);a31(3,1)=1;a33=zeros(3,3);a33(3,3)=-1;
alpha3b5=kron(a31,alpha3xz)+kron(a33,alpha3xx);clear a3l a33
alpha3yz=JC*dyNjklm’*dzNjklm* (1/6) ;
alphal3yy=JC*dyNjklm’*dyNjklm* (1/6) ;

a32=zeros(3,3) ;a32(3,2)=-1;a33=zeros(3,3) ;a33(3,3)=1;
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alpha36=kron(a32,alpha3yz)+kron(a33,alpha3yy);clear a32 a33
alpha3yx=JC*dyNjklm’*dxNjklm* (1/6) ;
all=zeros(3,3);al1(1,1)=-1;al12=zeros(3,3);al12(1,2)=1;
alpha31l=kron(all,alpha3yy)+kron(al2,alpha3yx);clear all al2
alpha3xy=JC*dxNjklm’*dyNjklm* (1/6) ;
a2l=zeros(3,3);a21(2,1)=-1;a22=zeros(3,3);a22(2,2)=1;
alpha34=kron(a21,alpha3xy)+kron(a22,alpha3dxx);clear a22 a2l
alpha3=alpha32-alpha31-alpha33+alpha34-alpha35-alpha36;

clear alpha32 alpha31l alpha33 alpha34 alpha35 alpha36 alpha3zz
alpha3zx alpha3zy alpha3xz alpha3xx alpha3yz alpha3yy alpha3yx alpha3xy
Gijdz=c1*(1-ul) A2%(1-sqrt(3)/3)*(1/64)*(betazlll+betazlllb)+
c1*x(1-ul) A2* (1+sqrt (3) /3) *(1/64) *(betazllblc+betazllbl) +

c2* (1-u2) A2* (1-sqrt (3) /3) *(1/64) * (betaz222+betaz222b) +

c2* (1-u2) A2* (1+sqrt(3) /3) *(1/64) * (betaz22b2c+betaz22b2) +
c3*%(1-u3) A2*(1-sqrt(3) /3) *(1/64) * (betaz333+betaz333b) +
c3x(1-u3) A2x (1+sqrt (3) /3)*(1/64) * (betaz33b3c+betaz33b3) ;
Gijdy=c1*(1-ul) A2*(1-sqrt(3)/3)*(1/64)*(betaylli+betaylllb)+
clx(1-ul) A2%(1+sqrt(3)/3)*(1/64) *(betayllblc+betaylibl)+

c2* (1-u2) A2* (1-sqrt (3) /3) *(1/64) * (betay222+betay222b) +
c2x(1-u2) A2* (1+sqrt (3) /3) *(1/64) * (betay22b2c+betay22b2) +
c3*(1-u3) A2* (1-sqrt (3)/3)*(1/64) * (betay333+betay333b) +
c3*(1-u3) A2x (1+sqrt (3) /3)*(1/64) * (betay33b3c+betay33b3) ;
Gijdx=c1*(1-ul) A2*(1-sqrt(3)/3)*(1/64)*(betaxlli+betax11llb)+
c1*x(1-ul) A2* (1+sqrt (3) /3) *(1/64) * (betaxllblc+betax11bl)+

c2*% (1-u2) A2*x(1-sqrt (3) /3) *(1/64) * (betax222+betax222b) +

c2x (1-u2) A2x (1+sqrt (3) /3) *(1/64) * (betax22b2c+betax22b2) +
c3*(1-u3) A2%(1-sqrt (3)/3)*(1/64) * (betax333+betax333b) +
c3*(1-u3) A2* (1+sqrt (3) /3) *(1/64) * (betax33b3c+betax33b3) ;
rotAz=zeros(3,3) ;rotAz(1,2)=-1;rotAz(2,1)=1;rotAz=kron(rotAz,Gijdz) ;clear Gijdz
rotAy=zeros(3,3);rotAy(1,3)=1;rotAy(3,1)=-1;rotAy=kron(rotAy,Gijdy) ;clear Gijdy
rotAx=zeros(3,3);rotAx(2,3)=-1;rotAx(3,2)=1;rotAx=kron(rotAx, Gijdx);clear Gijdx
rotA=rotAx+rotAy+rotAz;clear rotAx rotAy rotAz

Gijl=ci*(1-ul) A2x(1-sqrt(3)/3)*(1/64)*(P111+P111b)+

clx(1-ul) A2%(1+sqrt(3)/3)*(1/64)*(P11blc+P11bl)+

c2*x (1-u2) A2% (1-sqrt (3)/3) *(1/64) * (P222+P222b) +

c2* (1-u2) A2* (1+sqrt (3) /3) *(1/64) * (P22b2c+P22b2) +

c3*(1-u3) A2* (1-sqrt(3)/3)*(1/64)* (P333+P333b) +

c3*(1-u3) A2* (1+sqrt (3)/3) *(1/64) * (P33b3c+P33b3) ;

clear x y z Xi Eta zzeta JC Nj Nk N1 Nm dxNjklm dyNjklm dzNjklm
rotB=kron(eye(3),Gijl) ;clear Gij1

gammaS=zeros (3*nd, 3*nd) ;

betaS=zeros (3*nd,3*nd) ;

alpha3S=zeros(3*nd,3*nd) ;

rotBS=zeros (3*nd,3*nd) ;

rotAS=zeros(3*nd,3*nd) ;

vpru=t(i,:);

for kk=1:1:4

for 11=1:1:4

gamma$ (vpru(kk) ,vpru(1ll) ) =gamma(kk,11) ;

gammas (vpru(kk) ,vpru(1l)+nd)=gamma (kk,11+4) ;

gammasS (vpru (kk) ,vpru(1ll)+2+*nd)=gamma (kk,11+8) ;
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gamma$ (vpru(kk)+nd,vpru(ll) ) =gamma (kk+4,11) ;

gamma$ (vpru (kk)+2*nd, vpru(1l) ) =gamma (kk+8,11) ;
gamma$ (vpru(kk)+nd,vpru(1ll) +nd) =gamma (kk+4,11+4) ;
gammasS (vpru (kk) +2*nd , vpru(11) +2*nd) =gamma (kk+8,11+8) ;
gammasS (vpru (kk) +nd, vpru(11l) +2*nd) =gamma (kk+4,11+8) ;
gammas (vpru (kk) +2*nd , vpru(1l) +nd) =gamma (kk+8,11+4) ;
betaS (vpru(kk) ,vpru(ll))=beta(kk,11);

betaS (vpru(kk) ,vpru(ll)+nd)=beta(kk,11+4) ;

betaS (vpru(kk) ,vpru(ll)+2*nd)=beta(kk,11+8) ;

betaS (vpru(kk)+nd,vpru(ll))=beta(kk+4,11);

betaS (vpru(kk)+2#*nd,vpru(1ll) )=beta(kk+8,11) ;

betaS (vpru(kk)+nd,vpru(ll)+nd)=beta(kk+4,11+4) ;
betaS (vpru(kk)+2#nd,vpru(1l)+2*nd)=beta(kk+8,11+8) ;
betaS (vpru(kk)+nd,vpru(ll)+2*nd)=beta(kk+4,11+8);
betaS (vpru(kk)+2+*nd,vpru(1ll)+nd)=beta(kk+8,11+4) ;
alpha3S (vpru(kk) ,vpru(ll))=alpha3(kk,11);
alpha3S(vpru(kk) ,vpru(ll)+nd)=alpha3(kk,11+4);
alpha3S(vpru(kk) ,vpru(ll)+2*nd)=alpha3(kk,11+8) ;
alpha3S (vpru(kk)+nd,vpru(ll))=alpha3(kk+4,11);
alpha3S (vpru(kk)+2+*nd,vpru(1ll))=alpha3(kk+8,11);
alpha3S (vpru(kk)+nd,vpru(ll)+nd)=alpha3(kk+4,11+4) ;
alpha3S(vpru(kk)+2*nd,vpru(1ll)+2*nd)=alpha3(kk+8,11+8) ;
alpha3S(vpru(kk)+nd,vpru(ll)+2+nd)=alpha3(kk+4,11+8);
alpha3S (vpru(kk)+2*nd,vpru(1ll)+nd)=alpha3(kk+8,11+4) ;
rotBS (vpru(kk) ,vpru(1ll))=rotB(kk,11);

rotBS (vpru(kk) ,vpru(1ll)+nd)=rotB(kk,11+4);

rotBS (vpru(kk) ,vpru(1ll)+2*nd)=rotB(kk,11+8);

rotBS (vpru(kk)+nd,vpru(ll))=rotB(kk+4,11); rotBS(vpru(kk)+2*nd,vpru(ll))=rotB(kk+8,11);
rotBS (vpru(kk)+nd,vpru(ll)+nd)=rotB(kk+4,11+4) ;
rotBS (vpru(kk)+2*nd, vpru(1ll)+2*nd)=rotB(kk+8,11+8) ;
rotBS (vpru(kk)+nd,vpru(1ll)+2*nd)=rotB(kk+4,11+8) ;
rotBS (vpru(kk)+2*nd,vpru(1ll)+nd)=rotB(kk+8,11+4) ;
rotAS(vpru(kk) ,vpru(ll))=rotA(kk,11);

rotAS (vpru(kk) ,vpru(1ll)+nd)=rotA(kk,11+4);

rotAS (vpru(kk) ,vpru(ll)+2*nd)=rotA(kk,11+8);

rotAS (vpru(kk)+nd,vpru(1ll))=rotA(kk+4,11);

rotAS (vpru(kk)+2*nd,vpru(ll) )=rotA (kk+8,11);

rotAS (vpru(kk)+nd,vpru(ll)+nd)=rotA(kk+4,11+4) ;
rotAS (vpru(kk)+2*nd, vpru(1ll)+2+nd)=rotA(kk+8,11+8) ;
rotAS (vpru(kk)+nd,vpru(ll)+2*nd)=rotA (kk+4,11+8) ;
rotAS (vpru(kk)+2*nd,vpru(ll)+nd)=rotA(kk+8,11+4) ;
end

end

clear gamma kk 11 vpru beta alpha3 rotA rotB
gammaT=gammaT+gammaS;clear gammaS
betaT=betaT+betaS;clear betaS
alpha3T=alpha3T+alpha3S;clear alpha3S
rotAT=rotAT+rotAS;clear rotAS
rotBT=rotBT+rotBS;clear rotBS

end

clear vcl i
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O ok ook ok ok koK ook ok ook K ok K ok kK ok ok ok Kok KK ok kK ok
Tokskkkkkkkkrkrrk alphafdce_dkkkkskskskrsrskskkkk
O ok sk ok sk ok ks ok ok ok ok ook ok ok sk ok ook ok ok ok o ok sk o ook ok ok ko ok ok ok ok
vel=[1;1;1;1];
[ii,jj]=find(p(:,2)>0.46);clear jj

for i=1:1:1f1

i s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDklm=vpa([vcl s2]);

MDjlm=vpa([vcl s2]);

MDjkm=vpa([vcl s2]);

MDjkl=vpa([vcl s2]);

Cjklm=det ([vcl s2]);clear s2
Y%ox**%kxGeneracion de los Nj(x,y,z)

if max(size(intersect(t(i,:),ii)))>2
tcord=intersect (t(i,:),1ii);
pcord2D1=p(tcord(1),:);pcord2D1(2)=| |;
pcord2D2=p(tcord(2),:);pcord2D2(2)=] |;
pcord2D3=p(tcord(3),:);pcord2D3(2)=[ |;
Cjk12D=det ([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3| | |);
if Cjk12D<0
pcord2D1=p(tcord(2),:);pcord2D1(2)=| |;
pcord2D2=p(tcord(1),:);pcord2D2(2)=| |;
Cjk1l2D=det ([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3| | |);
else

end

clear tcord

MDk12D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3| | ]);
MDj12D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2]; [pcord2D3| | |);
clear pcord2D1 pcord2D2 pcord2D3

syms x z;

MDK12D (1, :)=[1,x,2];

Nj2D=det (MDk12D) /Cjk12D;

MDj12D(2,:)=[1,x,z];

Nk2D=det (MDj12D) /Cjk12D;

syms Xi2D Eta2D
F=solve(Nj2D-Xi2D,Nk2D-Eta2D,’x’,’z’);
x=F.x

z=F.z

y=0.5;

clear MDk12D MDj12D Nj2D Nk2D Cjkl2D F
MDk1lm(1,:)=[1,x,y,2];

Dklm=det (MDklm) ;

Nj=Dklm/Cjklm;clear Dklm MDklm
MDjlm(2,:)=[1,x,y,2];

Djlm=det (MDjlm) ;

Nk=Djlm/Cjklm;clear Djlm MDjlm
MDjkm(3,:)=[1,x,y,2|;

Djkm=det (MDjkm) ;

N1=Djkm/Cjklm;clear Djkm MDjkm
MDjk1(4,:)=[1,x,y,2];

Djkl=det (MDjk1) ;
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Nm=Djk1/Cjklm;clear Djkl MDjkl Cjklm

JC=abs (det (jacobian([x;z],[Xi2D, Eta2D])));
alphafdc_d{i}=JC*int (int ([Nj;Nk;N1;Nm|,Eta2D,0,1-Xi2D),Xi2D,0,1);clear Nj Nk N1 Nm JC
Xi2D Eta2D x y z

else

alphafdc d{i}=zeros(4,1);clear MDklm MDjlm MDjkm MDjkl Cjklm

end

end

clear i vcl ii

Ol ko ok ks ok ok sk ok ok ok ok KK Kok KKK KK KK ok o K

Tosxkskkskokkkronk alphafdc_cxkskskskskskkkkkskskkkk

Qo sk ko ok sk ok ok ok sk ok ok ok ook oK ok ok ook Kok oK ook Kok ok ook Kok ok ok K

vel=[1;1;1;1];

[ii,jj]=find(p(:,2)<-0.46);clear jj

for i=1:1:1f1

i s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];

MDk1lm=vpa([vcl s2]);
MDjlm=vpa([vcl s2]
MDjkm=vpa([vcl s2]
MDjkl=vpa([vcl s2]
Cjklm=det ([vcl s2]);clear s2

Y%o****xGeneracion de los Nj(x,y,z)

if max(size(intersect(t(i,:),ii)))>2

tcord=intersect (t(i,:),ii);
pcord2D1=p(tcord(1),:);pcord2D1(2)=[ |;
pcord2D2=p(tcord(2),:);pcord2D2(2)=| |;
pcord2D3=p(tcord(3),:);pcord2D3(2)=| |;
Cjkl2D=det ([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] | |);
if Cjk12D<0

pcord2D1=p(tcord(2),:);pcord2D1(2)=[ |;
pcord2D2=p(tcord(1),:);pcord2D2(2)=[ |;
Cjk12D=det ([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] | ) ;
else

end

clear tcord

MDk12D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2]; [pcord2D3| | |);
MDj12D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2]; [pcord2D3| | ]);
clear pcord2D1 pcord2D2 pcord2D3

syms x z;

MDk12D(1,:)=[1,x,z|;

Nj2D=det (MDk12D) /Cjk12D;

MDj12D(2,:)=[1,x,z];

Nk2D=det (MDj12D) /Cjk12D;

syms Xi2D Eta2D

F=solve(Nj2D-Xi2D,Nk2D-Eta2D,’x’,’z’);

x=F.x

z=F.z

y=-0.5;

clear MDk12D MDjl12D Nj2D Nk2D Cjkl2D F
MDk1m(1,:)=[1,x,y,2];

Dklm=det (MDklm) ;
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Nj=Dklm/Cjklm;clear Dklm MDklm
MDjlm(2,:)=[1,x,y,2];

Djlm=det (MDjlm) ;

Nk=Djlm/Cjklm;clear Djlm MDjlm
MDjkm(3,:)=[1,x%,y,2|;

Djkm=det (MDjkm) ;

N1=Djkm/Cjklm;clear Djkm MDjkm
MDjk1(4,:)=[1,x,y,2];

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl MDjkl Cjklm
JC=abs (det (jacobian([x;z],[Xi2D, Eta2D])));
alphafdc_c{i}=JC*int (int ([Nj;Nk;N1;Nm],Eta2D,0,1-Xi2D),Xi2D,0,1);clear Nj Nk N1 Nm JC
Xi2D Eta2D x y z

else

alphafdc_c{i}=zeros(4,1);clear MDklm MDjlm MDjkm MDjkl Cjklm
end

end

clear i vcl ii

for i=1:1:1f1
alphafi{i}=kron([1;0;0],alphafdc_d{i}-alphafdc_c{i});
end

clear alphafdc.d alphafdc.c i

for i=1:1:1f1

alphaf1S{i}=zeros(3+*nd,1);

vpru=t(i,:);

for kk=1:1:4

alphaf1S{i} (vpru(kk))=alphaf1{i}(kk);
alphaf1S{i}(vpru(kk)+nd)=alphafi{i} (kk+4);
alphaf1S{i} (vpru(kk)+2*nd)=alphafi1{i} (kk+8);
end

end

clear alphafl kk i vpru

alphaf1T=0;

for i=1:1:1f1
alphaf1T=alphaf1T+alphaf1S{i};

end

clear alphafilS i

ok sk ko sk sk ok ok ok sk ok ok ok ook oK ok ok ook ok ok ook Kok ok ook Kok ok ok ok
Tokkkkkkkkrrk alphafba b skkkkkkkkkkkkkk
Ol ok ok ok ok ok sk ook ok ok Kook ok koK Kok K kK ok ok K
vel=[1;1;1;1];
[ii,jj]=find(p(:,1)>0.46);clear jj

for i=1:1:1f1

i s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDklm=vpa([vcl s2]);

MDjlm=vpa([vcl s2]);

MDjkm=vpa([vcl s2]);

MDjkl=vpa([vcl s2]);

Cjklm=det([vcl s2]);clear s2
%x***Generacion de los Nj(x,y,z)

if max(size(intersect(t(i,:),ii)))>2
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tcord=intersect (t(i,:),ii);
pcord2D1=p(tcord(1),:);pcord2D1(1)=[ |;
pcord2D2=p(tcord(2),:);pcord2D2(1)=[ |;
pcord2D3=p(tcord(3),:);pcord2D3(1)=[ |;
Cjkl2D=det ([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] | |);
if Cjk12D<0

pcord2D1=p(tcord(2),:);pcord2D1(1)=[ |;
pcord2D2=p(tcord(1),:);pcord2D2(1)=] |;
Cjk12D=det ([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3| | |);
else

end

clear tcord

MDk12D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2|; [pcord2D3] | |);
MDj12D=vpa(| [1;1;1] [ [pcord2D1];[pcord2D2]; [pcord2D3| | |);
clear pcord2D1 pcord2D2 pcord2D3

syms y z;

MDk12D(1,:)=[1,y,2];

Nj2D=det (MDk12D) /Cjk12D;

MDj12D(2,:)=[1,y,z|;

Nk2D=det (MDj12D) /Cjk12D;

syms Xi2D Eta2D

F=solve(Nj2D-Xi2D,Nk2D-Eta2D,’y’,’z’);

y=F.y

z=F.z

x=0.5;

clear MDk12D MDj12D Nj2D Nk2D Cjkl2D F
MDk1m(1,:)=[1,x,y,2|;

Dklm=det (MDk1lm) ;

Nj=Dklm/Cjklm;clear Dklm MDklm

MDjlm(2,:)=[1,x,y,2];

Djlm=det (MDjlm) ;

Nk=Djlm/Cjklm;clear Djlm MDjlm

MDjkm(3,:)=[1,x,y,2|;

Djkm=det (MDjkm) ;

N1=Djkm/Cjklm;clear Djkm MDjkm

MDjk1(4,:)=[1,x,y,2];

Djkl=det (MDjk1) ;

Nm=Djk1l/Cjklm;clear Djkl MDjkl Cjklm

JC=abs (det (jacobian([y;z],[Xi2D, Eta2D])));

alphafba b{i}=JC*int (int ([Nj;Nk;N1;Nm|,Eta2D,0,1-Xi2D),Xi2D,0,1);clear Nj Nk N1 Nm JC
Xi2D Eta2D x y z

else

alphafba b{i}=zeros(4,1);clear MDklm MDjlm MDjkm MDjkl Cjklm
end

end

clear i vcl ii

ok ok ok ok ok ok ook K ok Kok KoK KoK KoK KoK KK KoK KoK KoK KoK Kok oK

Poxskkskrkskkkrkk alphafba_a skkskskokskorskskkskokk

Qo ok ok ok ok ok ok ook ok ok ook ook ok ook KKK Kok ok

vel=[1;1;1;1];

[i1,jj]=find(p(:,1)<-0.46);clear jj
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for i=1:1:1f1

i
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDklm=vpa([vcl s2]);

MDjlm=vpa([vcl s2]);

MDjkm=vpa([vcl s2]);

MDjkl=vpa([vcl s2]);

Cjklm=det([vcl s2]);clear s2

%***xGeneracion de los Nj(x,y,z)

if max(size(intersect(t(i,:),ii)))>2

tcord=intersect (t(i,:),ii);
pcord2D1=p(tcord(1),:);pcord2Di(1)=] |;
pcord2D2=p(tcord(2),:);pcord2D2(1)=[ |;
pcord2D3=p(tcord(3),:);pcord2D3(1)=[ |;
Cjk12D=det ([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3| | |);
if Cjk12D<0

pcord2D1=p(tcord(2),:);pcord2D1(2)=] |;
pcord2D2=p(tcord(1),:);pcord2D2(2)=[ |;
Cjk12D=det ([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3| | |);
else

end

clear tcord

MDk12D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2]; [pcord2D3| | |);
MDjl2D=vpa(| [1;1;1] [ [pcord2D1];[pcord2D2|; [pcord2D3] | |);
clear pcord2D1 pcord2D2 pcord2D3

syms y z;

MDk12D(1,:)=[1,y,z];

Nj2D=det (MDk12D) /Cjk12D;

MDj12D(2,:)=[1,y,2];

Nk2D=det (MDj12D) /Cjk12D;

syms Xi2D Eta2D

F=solve(Nj2D-Xi2D,Nk2D-Eta2D,’y’,’z’);

y=F.y

z=F.z

x=-0.5;

clear MDk12D MDjl12D Nj2D Nk2D Cjkl2D F
MDk1m(1,:)=[1,x,y,2|;

Dklm=det (MDklm) ;

Nj=Dklm/Cjklm;clear Dklm MDklm

MDjlm(2,:)=[1,x,y,2];

Djlm=det (MDjlm) ;

Nk=Djlm/Cjklm;clear Djlm MDjlm

MDjkm(3,:)=[1,x,y,2|;

Djkm=det (MDjkm) ;

N1=Djkm/Cjklm;clear Djkm MDjkm

MDjk1(4,:)=[1,x,y,2];

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl MDjkl Cjklm

JC=abs (det (jacobian([y;z],[Xi2D, Eta2D])));
alphafba_a{i}=JC*int (int ([Nj;Nk;N1;Nm|,Eta2D,0,1-Xi2D),Xi2D,0,1);clear Nj Nk N1 Nm JC
Xi2D Eta2D x y z



else

alphafba_a{i}=zeros(4,1);clear MDklm MDjlm MDjkm MDjkl Cjklm
end

end

clear i vcl ii

for i=1:1:1f1

alphaf4{i}=kron([0;1;0],alphafba b{i}-alphafba_a{i});

end

clear alphafba_b alphafba_a i

for i=1:1:1f1

alphaf4S{i}=zeros(3#*nd,1);

vpru=t(i,:);

for kk=1:1:4

alphaf4S{i}(vpru(kk))=alphaf4{i}(kk);
alphaf4S{i}(vpru(kk)+nd)=alphaf4{i} (kk+4);
alphaf4S{i}(vpru(kk)+2+nd)=alphafd{i}(kk+8);

end

end

clear alphaf4 kk i vpru

alphaf4T=0;

for i=1:1:1f1

alphaf4T=alphaf4T+alphaf4S{i};

end

clear alphaf4S i

alphafT=alphafl1T-alphaf4T;clear alphaflT alphaf4T

ok ok ok ok ok ok o ok oK ok K ok oK K oK KoK KoK KK KK KK KK KKK K KoK oK KoK oK oK o oK ook ok oK ok ok ok ok ok oK ok K ok ok ok K
Y%*** CALCULO DEL POTENCIAL MAGNETICO VECTORIAL skskoksksokkokskskokkokokokokokkok ok k
Q0k ok ok ok ok ok o ok oK oK KoK oK KoK KK K KK K K KK K KoK oK oK oK ook oK o oK ok oK ok oK ok Kok oK ok oK ok K ok ok ok K
clear SAO

for j=1:1:nd

SA0(j,1)=-p(j,2)*(1.472/2);

SA0(j+nd,1)=p(j,1)*(1.472/2);

SA0(j+2%nd,1)=0;

end

clear j

XX1=-Sigma*gammaT-nuFP*alpha3T*Deltat*0.5;
XX2=-Sigma*gammaT+nuFP*alpha3T*Deltat*0.5;
[i1,j1]=find(p(:,1)>0.46);clear j1
[i2,j2]=find(p(:,1)<-0.46);clear j2
nodtapX=union(il,i2);clear il i2
[i1,j1]=find(p(:,2)>0.46) ;clear j1
[i2,j2]=find(p(:,2)<-0.46) ;clear j2
nodtapY=union(il,i2);clear il i2
[i1,j1]=find(p(:,3)>0.96) ;clear j1
[i2,j2]=find(p(:,3)<-0.96) ;clear j2
nodtapZ=union(il,i2);clear il i2
aristl=intersect(nodtapX,nodtapZ) ;arist2=intersect (nodtapZ,nodtapy) ;
aristT=union(aristl,arist2) ;clear aristl arist2;
aristT=aristT+2*nd;

nodtapZ=setdiff (nodtapZ,nodtapX) ;nodtapZ=setdiff (nodtapZ,nodtapy);
colelm=union([nodtapX|, nodtapY+nd]) ;

127
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colelm=union(colelm,|[nodtapZ+2#*nd|) ; colelm=union(colelm,aristT);
XX1(colelm,:)=] |;XX1(:,colelm)=[ |;

XX2(colelm,:)=[ |;XX2(:,colelm)=] |;

SAO(colelm,:)=[ |;

SAi{1}=(1000) *ones(3*nd,1); SAi{1}(colelm,:)=[ |;
Ri{1}=(1000)*ones(3*nd, 1) ;

errSA1=10;

while (errSA1>(1le-13))
XXF1=nuFP*alphafT*Deltat*0.5* (ppval (FS,HOmax*cos (2*pi*f*(Deltat)))+
ppval (FS,HOmax) ) -betaT*Deltat*0.5+Ri{1};

XXF1(colelm,:)=[ |;

clear SA

SA{1}=cgs (XX1,XX2*SA0+XXF1,1e-16,100) ;
errSAl=abs(SA{1}-SAi{1});

errSAl=sum(errSAl)

if (errSA1<(1e-13))

clear SA

SA{1}=sAi{1};

else

clear SAi

SAi{1}=SA{1};

clear j i

j=1;

for i=1:1:3*nd

if (ismember(i,colelm))

SAc{1}(i)=0;

else

SAc{1}(1)=SA{1}(j);

J=i+1

end

end

clear i j

rot_BT2=rotBT;

rot _BT2([nodtapZ;nodtapZ+nd;nodtapZ+2+nd;nodtapX;nodtapX+nd;
nodtapX+2*nd;nodtapY;nodtapY+nd;nodtapY+2*nd|, :)=] |;
vpl=(rotAT)*(SAc{1})’;
vpl([nodtapZ;nodtapZ+nd;nodtapZ+2*nd;nodtapX;nodtapX+nd;
nodtapX+2*nd;nodtapY;nodtapY+nd;nodtapY+2*nd|, :)=[ |;

for j=1:1:max(size(nodtapZ))

vpl=vpl-rot BT2(:,nodtapZ(j)+2#*nd) * (4*pi*(1le-7))*HOmax*cos (2*pi*f*(Deltat));
end

for j=1:1:max(size(nodtapX))
vpl=vpl-rot_BT2(:,nodtapX(j)+2*nd)*ppval (FS,HOmax*cos (2*pi*f*(Deltat)));
end

for j=1:1:max(size(nodtapY))

vpl=vpl-rot BT2(:,nodtapY(j)+2*nd)*ppval (FS,HOmax*cos (2*pi*f*(Deltat)));
end
rotABT2(:,[nodtapZ;nodtapZ+nd;nodtapZ+2*nd;nodtapX;nodtapX+nd;
nodtapX+2#*nd;nodtapY;nodtapY+nd;nodtap¥Y+2*nd])=[ |;
Bc{1}=cgs(rot_BT2,vpl,1le-16,100);

clear i j
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j=1;

for i=1:1:3*nd

if ismember (i,nodtapZ)

B{1}(i)=0;

elseif ismember(i,nodtapZ+nd)

B{1}(i)=0;

elseif ismember(i,nodtapZ+2*nd)
B{1}(i)=(4*pi*(1le-7))*HOmax*cos (2*pi*f*(Deltat));
elseif ismember (i,nodtapX)

B{1}(i)=0;

elseif ismember (i,nodtapX+nd)

B{1}(i)=0;

elseif ismember(i,nodtapX+2*nd)
B{1}(i)=ppval (FS,HOmax*cos (2*pi*f*(Deltat)));
elseif ismember (i,nodtapY)

B{1}(i)=0;

elseif ismember(i,nodtapY+nd)

B{1}(i)=0;

elseif ismember (i,nodtapY+2*nd)
B{1}(i)=ppval (FS,HOmax*cos (2*pi*f*(Deltat)));
else

B{1}(i)=Bc{1}(j);

J=i+1

end

end

for i=1:1:max(size(B{1}))

if B{1}(i)>1.472

B{1}(i)=1.472;

elseif B{1}(i)<-1.472

B{1}(i)=-1.472;

else

end

end

clear H

H{1}=ppval (FSX,B{1});

clear i

for i=1:1:nd

if ismember(i,nodtapX)

H{1} (i+2*nd)=HOmax*cos (2*pi*f*(Deltat)) ;
H{1} (i)=0;

H{1}(i+nd)=0;

elseif ismember (i,nodtapY)

H{1} (i+2*nd)=HOmax*cos (2*pi*f*(Deltat));
H{1}(i)=0;

H{1} (i+nd)=0;

elseif ismember (i,nodtapZ)

H{1} (i+2*nd)=ppval (FSX, (4*pi*(le-7))*HOmax*cos (2+pi*f*(Deltat)));
H{1} (i)=0;

H{1} (i+nd)=0;

else

end
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end

clear Ri

Ri{1}=nuFP*B{1}-H{1};Ri{1}=Ri{1}’;

end

end

clear XXF1

for timedis=2:1:timemax

timedis

SAi{timedis}=(1000)*ones(3*nd,1); SAi{timedis}(colelm,:)=[ |;
Ri{timedis}=(1000)*ones(3*nd,1);

errSA=10;

while (errSA>(1le-13))

for ii=0:1:nlonda

if (timedis>=(2*ii*np) && timedis<(2*ii+1)*np )
XXF=nuFP#*Deltat#*0.5*alphafT*(ppval (FS,HOmax*cos (2*xpi*f*Deltat*timedis))+
ppval (FS,HOmax*cos (2*pi*f*Deltat*(timedis-1))))-Deltat*0.5*betaT*(Ri{timedis}-Ri{timedis-1});
elseif (timedis>=(2*ii+1)#*np && timedis<(2*(ii+1)*np))
XXF=nuFP#*Deltat*0.5*alphafT* (ppval (FI,HOmax*cos (2*pi*f*Deltat*timedis))+
ppval (FI,HOmax*cos (2*pi*f*Deltat* (timedis-1))))-Deltat*0.5*betaT* (Ri{timedis}-Ri{timedis-1});
else

end

end

XXF(colelm,:)=[ |;
SA{timedis}=cgs(XX1,XX2+SA{timedis-1}+XXF,1e-16,100);

errSA=abs (SA{timedis}-SAi{timedis});

errSA=sum(errSA)

if (errSA<(1le-13))

SA{timedis}=SAi{timedis};

else

SAi{timedis}=SA{timedis};

clear j i

j=1;

for i=1:1:3*nd

if (ismember(i,colelm))

SAc{timedis}(i)=0;

else

SAc{timedis}(i)=SA{timedis}(j);

J=i+1

end

end

clear i j

rot_BT2=rotBT;
rot_BT2(|nodtapZ;nodtapZ+nd;nodtapZ+2*nd;nodtapX;nodtapX+nd;
nodtapX+2#*nd;nodtapY;nodtapY+nd;nodtapY+2*nd|, :)=[ |;

vpl=(rotAT)* (SAc{timedis})’;
vpl([nodtapZ;nodtapZ+nd;nodtapZ+2*nd;nodtapX;nodtapX+nd;nodtapX+2*nd;
nodtapY;nodtapY+nd;nodtapY+2*nd|, :)=[ |;

for j=1:1:max(size(nodtapZ))

vpl=vpl-rot_BT2(:,nodtapZ(j)+2*nd)* (4*pix(1e-7))*HOmax*cos (2xpi*f*(Deltat)*timedis);
end

for j=1:1:max(size(nodtapX))



vpl=vpl-rot_BT2(:,nodtapX(j)+2*nd)*ppval (FS,HOmax*cos (2xpi*f*(Deltat)*timedis));
end

for j=1:1:max(size(nodtapY))
vpl=vpl-rot_BT2(:,nodtap¥(j)+2*nd)*ppval (FS,HOmax*cos (2xpi*f*(Deltat)*timedis));
end
rotABT2(:,[nodtapZ;nodtapZ+nd;nodtapZ+2*nd;nodtapX;nodtapX+nd;
nodtapX+2*nd;nodtapY;nodtapY+nd;nodtapY+2*nd])=[ |;
Bc{timedis}=cgs(rot_BT2,vpl,1le-16,100);

clear i j

J=1;

for i=1:1:3*nd

if ismember(i,nodtapZ)

B{timedis}(i,1)=0;

elseif ismember (i,nodtapZ+nd)

B{timedis}(i)=0;

elseif ismember (i,nodtapZ+2*nd)
B{timedis}(i,1)=(4*pix*(le-7))*HOmax*cos (2*pixf*(Deltat)*timedis);
elseif ismember (i,nodtapX)

B{timedis}(i,1)=0;

elseif ismember (i,nodtapX+nd)

B{timedis}(i,1)=0;

elseif ismember (i,nodtapX+2*nd)

for ii=0:1:nlonda

if (timedis>=(2*ii*np) && timedis< (2*ii+1)*np)
B{timedis}(i,1)=ppval (FS,HOmax*cos (2*pi*f*(Deltat)*timedis));
elseif (timedis>=(2x*ii+1)*np && timedis<(2*(ii+1)*np))
B{timedis}(i,1)=ppval (FI,HOmax*cos (2*pi*f*(Deltat)*timedis));
else

end

end

elseif ismember (i,nodtapY)

B{timedis}(i,1)=0;

elseif ismember(i,nodtapY+nd)

B{timedis}(i,1)=0;

elseif ismember (i,nodtapY+2*nd)

for ii=0:1:nlonda

if (timedis>=(2*ii*np) && timedis<(2*ii+1)x*np)
B{timedis}(i,1)=ppval (FS,HOmax*cos (2*pi*f*(Deltat)*timedis));
elseif (timedis>=(2*ii+1)*np && timedis<(2*(ii+1)*np))
B{timedis}(i,1)=ppval (FI,HOmax*cos(2*pi*f*(Deltat)*timedis));
else

end

end

else

B{timedis}(i,1)=Bc{1}(j);

3=3+1;

end

end

for i=1:1:max(size(B{timedis}))

if B{timedis}(i)>1.472

B{timedis} (i)=1.472;
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elseif B{timedis}(i)<-1.472

B{timedis}(i)=-1.472;

else

end

end

for ii=0:1:nlonda

if (timedis>=(2*ii*np) && timedis<(2xii+1)*np)
H{timedis}=ppval (FSX,B{timedis});

elseif (timedis>=(2*ii+1)*np && timedis<(2*(ii+1)*np))
H{timedis}=ppval (FIX,B{timedis});

else

end

end

clear i

for i=1:1:nd

if ismember (i,nodtapX)
H{timedis}(i+2*nd, 1)=HOmax*cos (2*pi*f*(Deltat)*timedis) ;
H{timedis}(i,1)=0;

H{timedis}(i+nd,1)=0;

elseif ismember (i,nodtapY)

H{timedis} (i+2*nd)=HOmax*cos (2*pi*f*(Deltat)*timedis);
H{timedis}(i,1)=0;

H{timedis}(i+nd,1)=0;

elseif ismember (i,nodtapZ)

for ii=0:1:nlonda

if (timedis>=(2*ii*np) && timedis< (2xii+1)x*np)
H{timedis}(i+2*nd,1)=ppval (FSX, (4*xpi*(le-7))*HOmax*cos (2*pi*f*(Deltat)*timedis));
elseif (timedis>=(2*ii+1)*np && timedis<(2*(ii+1)*np))
H{timedis}(i+2*nd,1)=ppval (FIX, (4*pi*(le-7))*HOmax*cos (2*pi*f*(Deltat)*timedis));
else

end

end

H{timedis}(i,1)=0;

H{timedis}(i+nd,1)=0;

end

end

Ri{timedis}=nuFP*B{timedis}-H{timedis};

end

end

end

clear SAc SAi Bc Ri ii nodtapY nodtapX nodtapZ XXF XX1 XX2
ok ok ok ok ok ok oK ok ook ok KoK KoK KoK oK KoK oK oK oK oK ook ok ok ok ok Kok ok ok K
Y%*** Armando el potencial magnetico vectorial *x*x

Dok ok ok ok ok ok ok KoK KoK oK oK oK K KK oK KooK o oK ok oK ok oK ok oK ok Kok K ok K
clear A

for rr=1:1:timemax

clear j i

j=1;

for i=1:1:(3*nd)

if (ismember(i,colelm))

A{rr}(i)=0;
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else

A{rr}(i)=SA{rr}(j);

3=j+1;

end

end

end

clear i j SA

Dok sk sk s kok sk ok ok ok ook ok ok ok ko o sk ok ok ok ook ok o ok o kok o sk ok ok ok ook ok ok ok ok ok o ok ko
%**x+ Armando el vector de las corrienmtes *¥kxkkkx*
Dok sk o ko sk ok ok ok ook ok ok ok o ok ok o ok ok Kok ook ok o ok o ok ok o ok ok Kok ook ok ook ook ok ook o ok o
clear J

J{1}=-(Sigma/Deltat)*A{1};

for rr=2:1:timemax

J{rr}=-(Sigma/Deltat)* (A{rr}-A{rr-1});

end

clear A

Yoxx*x*xx graficando la magnitud de las corrientes ¥ikkxkikkkki*
for i=1:1:nd

magJ(i)=sqrt (J{rr} (1) *IJ{rr} (L) +I{rr}(i+nd) *J{rr} (i+nd)+J{rr} (i+2*nd) *J{rr} (i+2*nd)) ;
end

clear i
figure,trisurf(t,p(:,1),p(:,2),p(:,3) ,magl, ’facecolor’,’interp’, ’edgecolor’, ’none’)
Dok sk sk sk ok ok ok ok Kok ook ok ok ok o kok o ok ok ok ok ok

Yoxkkkxciclos repetitivoskkskkrks

Dok sk sk ok sk ok sk ok ok ok o ok ok ook ok ok ok o ok ok o ok ok Kok o ok ok

na=43;

qqw=J{1}(na);

qqw2=J{1} (na+nd) ;

qqw3=J{1} (na+2*nd) ;

for i=2:1:2000

qqu=[qqw J{i}(na)];

qqw2=[qqw2 J{i}(na+nd)];

qqw3=[qqw3 J{i}(na+2#*nd)];

end

figure,plot(qqw);grid;ylabel(’Jx’)
figure,plot(qqw2);grid;ylabel (’Jy’)

figure,plot(qqw3) ;grid;ylabel(’Jz’)

clear qqw qqw2 qqw3

ook sk sk ok sk ok ok ok ook ok ok ok ook ok o ok ok ok ok ook ok o ok ko o sk ok Kok ook ok o ok Kok ok ok Kok oK
%#%+*GENERANDO TERMINO DE PERDIDAS POR HYSTERESIS ##kx*
Dok sk s ko sk ok ok ok ook ok o ok ook ok o ok ok ok ok ook ok oK ok ook ok o ok ok Kok ook ok o ok o ok ok o ok ok ok oK
for j=1:1:3*nd

Hval=H{1}(j);

for timedis=1:1:300

Hval=[Hval H{timedis}(j)];

end

Hmax (j)=max (Hval) ;Hmin(j)=min(Hval) ;

end

for j=1:1:3*nd
ghyst{1}(j)=abs((quad(@(hx) (f1s) ,Hmax(j) ,H{1}(j)))/Deltat);
end
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for timedis=2:1:timemax

timedis

for ii=0:1:nlonda

if (timedis>=(2*ii*np) && timedis< (2*ii+1)=*np)

for j=1:1:nd

Fhystl=quad(@(hx) (f1s) ,Hmax(j) ,H{timedis}(j));

Fhyst2=quad (@(hx) (f1s) ,Hmax (j) ,H{timedis-1}(j));
ghyst{timedis}(j)=abs(double ((Fhyst1-Fhyst2)/Deltat));clear Fhystl Fhyst2
end

elseif (timedis>=(2*ii+1)*np && timedis<(2*(ii+1)*np))

for j=1:1:nd

Fhysti=quad(@(hx) (f1s) ,Hmax(j) ,Hmin(j))+quad(@(hx) (£1i) ,Hmin(j) ,H{timedis}(j));
Fhystl=quad(@(hx) (f1s) ,Hmax (j) ,Hmin(j))+quad (@(hx) (f1i) ,Hmin(j) ,H{timedis-1}(j));
ghyst{timedis}(j)=abs(double ((Fhyst1-Fhyst2)/Deltat));clear Fhystl Fhyst2
end

else

end

end

end

clear H

for timedis=1:1:max(size(ghyst))

for j=1:1:nd
ghy{timedis}(j)=sqrt(ghyst{timedis}(j)*ghyst{timedis}(j)+
ghyst{timedis}(j+nd)*ghyst{timedis}(j+nd)+
ghyst{timedis}(j+2*nd)*qhyst{timedis} (j+2*nd));

end

end

clear ghyst

ok ok ok ok ok ok ook ook ook ook oK ok ok KKK KKK KKK KKK KKK ok K
Yox**x*GENERANDO EL TERMINO DE PERDIDAS OHMICAS*skxs

ok ok ok ok ok ok o ok oK ok Kok oK KoK KoK KoK KK KoK oK KKK oK KoK oK oK Kok ok K

clear B

for i=1:1:max(size(J))

q2{i}=(1/Sigma)*J{i}.*J{i};

for j=1:1:nd

qoh{i}(j)=q2{i}(j)+q2{i} (j+nd)+q2{i} (j+2*nd) ;

end

end

clear q2 i J

gk ok ok ok ok ok ook ok ok ook oK ok K ok KoK KoK KoK KK KKK KK K K oK ok ok K ok Kok Kok K ok Kok K ok K
%o****x Suma de perdidas ohmicas y de histéresis ¥xkkxkkkkkkkkkkk
ok ok ok ok ok ok ook K ok ok oK K oK KoK KoK KoK oK K K oK oK oK oK oK oK ook ook ok ok ok ok ok ok ok oK ok K ok K ok
for timedis=1:1:timemax

q{timedis}=qoh{timedis}+qhy{timedis};

end

clear qoh ghyst ghy

out_g=q;



Apéndice G

ThermalFEM _3D.m

function out_T=ThermalFEM 3D(p,t,rho,lambda,c,TOext,Deltat,q,timeheatmax)
1fi=max(size(t));

nd=max(size(p));

for i=1:1:1f1

nodos{i}=t(i,:);

for j=1:1:4
cord{j}=p(nodos{i}(j),:);
end

cord1{i}=cord;

end

clear nodos cord j i
psiT=0;

thetaT=0;

vel=[1;1;1;1];

for i=1:1:1f1

i s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDk1lm=vpa([vcl s2]);
MDjlm=vpa([vcl s2]);
MDjkm=vpa([vcl s2]);
MDjkl=vpa([vcl s2]);
Cjklm=det([vcl s2]);clear s2
%*x**Generacion de los Nj(x,y,z)
Syms X y z
MDk1m(1,:)=[1,x,y,2|;

Dklm=det (MDklm) ;
Nj=Dklm/Cjklm;clear Dklm MDklm
MDjlm(2,:)=[1,x,y,2];

Djlm=det (MDjlm) ;
Nk=Djlm/Cjklm;clear Djlm MDjlm
MDjkm(3,:)=[1,x,y,2|;

Djkm=det (MDjkm) ;
N1=Djkm/Cjklm;clear Djkm MDjkm
MDjk1(4,:)=[1,x,y,2];

Djkl=det (MDjk1) ;
Nm=Djk1/Cjklm;clear Djkl
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dXNjklm=Miff(Nj,’X’),diff(Nk,’X’),diff(Nl,’X’),diff(Nm,’X’)h
dyNjklm=[diff (Nj,’y’),diff (Nk,’y’),diff (N1,’y’) ,diff (Nm, ’y?)];
dzNjklm=[diff (Nj,’z’),diff (Nk,’z’) ,diff (N1,’z’) ,diff (Nm, ’z)];
syms Xi Eta zzeta
F=solve(Nj-Xi,Nk-Eta,Nl-zzeta,’x’,’y’,’z’);

x=F.x;

y=F.y;

z=F.z;clear F

JC=abs(det (jacobian([x;y;z],[Xi, Eta, zzeta])));
MDjk1(4,:)=[1,x,y,2];

Djkl=det (MDjk1) ;

Nma=Djkl/Cjklm;clear Djkl

clear x y z;

Tokxxxxkrkkkkrkkkkkkkx Integrales por cuadratura xkxkkkkkkkx
ul=sqrt(3/5);u2=0;u3=-ul;

c1=(5/9) ;c2=8/9;c3=c1;

Xi1=0.5%(ul+1) ;Xi2=0.5*%(u2+1) ;Xi3=0.5% (u3+1) ;
Etal=(1-ul)*(1+sqrt(3)/3)*0.25;Etalb=(1-ul) *(1-sqrt (3)/3)*0.25;
Eta2=(1-u2)*(1+sqrt(3)/3)*0.25;Eta2b=(1-u2)*(1-sqrt (3)/3) *0.25;
Eta3=(1-u3)*(1+sqrt(3)/3)*0.25;Eta3b=(1-u3)*(1-sqrt(3)/3)*0.25;
zzetal=(1-ul) *(1-sqrt(3) /3)*(1+sqrt(3)/3)*0.125;
zzetalb=(1-ul)*(1-sqrt(3)/3)*(1-sqrt(3)/3)*0.125;
zzetalc=(1-ul) *(1+sqrt(3)/3) *(1+sqrt(3)/3)*0.125;
zzeta2=(1-u2)*(1-sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzeta2b=(1-u2) *(1-sqrt (3)/3)*(1-sqrt(3) /3)*0.125;
zzeta2c=(1-u2) *(1+sqrt (3)/3) * (1+sqrt(3)/3)*0.125;
zzeta3=(1-u3)*(1-sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzeta3b=(1-u3)*(1-sqrt(3)/3)*(1-sqrt(3)/3)*0.125;
zzeta3c=(1-u3) * (1+sqrt(3)/3) *(1+sqrt (3)/3)*0.125;

Syms X y z

Fl=solve(Nj-Xil,Nk-Etal,Nl-zzetal,’x’,’y’,’z’);
x=F1.x;y=Fl.y;z=F1l.z;clear F1

MDjk1(4,:)=[1,x,y,z|;clear x y 2

Djkl=det (MDjk1) ;

Nm=Djkl/Cjklm;clear Djkl
P111=JC*[Xil;Etal;zzetal;Nm|*[Xil;Etal;zzetal;Nm|’;

syms X y Z

F2=solve(Nj-Xil,Nk-Etal,Nl-zzetalb,’x’,’y’,’z’);
x=F2.x;y=F2.y;z=F2.z;clear F2

MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P111b=JC*[Xil;Etal;zzetalb;Nm|*[Xil;Etal;zzetalb;Nm|’;

syms X y z

F3=solve(Nj-Xil,Nk-Etalb,Nl-zzetalc,’x’,’y’,’z’);
x=F3.x;y=F3.y;z=F3.z;clear F3

MDjk1(4,:)=[1,x,y,z|;clear x y 2

Djkl=det (MDjk1) ;

Nm=Djk1l/Cjklm;clear Djkl
P11b1c=JC*[Xil;Etalb;zzetalc;Nm|*[Xil;Etalb;zzetalc;Nm|’;

Syms X y z



F4=solve(Nj-Xil,Nk-Etalb,Nl-zzetal,’x’,’y’,’z’);
x=F4.x;y=F4.y;z=F4.z;clear F4
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P11b1=JC*[Xil;Etalb;zzetal;Nm|*[Xil;Etalb;zzetal;Nm|’;
syms X y z
F5=solve(Nj-Xi2,Nk-Eta2,Nl-zzeta2,’x’,’y’,’2z’);
x=F5.x;y=F5.y;z=F5.z;clear F5
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djk1l/Cjklm;clear Djkl
P222=JC*[Xi2;Eta2;zzeta2;Nm|*[Xi2;Eta2;zzeta2;Nm|’;
syms X y z
F6=solve(Nj-Xi2,Nk-Eta2,Nl-zzeta2b,’x’,’y’,’z’);
x=F6.x;y=F6.y;z=F6.z;clear F6
MDjk1(4,:)=[1,x,y,z|;clear x y 2

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P222b=JC*[Xi2;Eta2;zzeta2b;Nm|*[Xi2;Eta2;zzeta2b;Nm|’;
syms X y z
F7=solve(Nj-Xi2,Nk-Eta2b,Nl-zzeta2c,’x’,’y’,’z’);
x=F7.x;y=F7.y;z=F7.z;clear F7
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl

P22b2c=JCx[Xi2;Eta2b;zzeta2c;Nm|*[Xi2;Eta2b;zzeta2c;Nm|’ ;

Syms X y z
F8=solve(Nj-Xi2,Nk-Eta2b,Nl-zzeta2,’x’,’y’,’z’);
x=F8.x;y=F8.y;z=F8.z;clear F8
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djk1l/Cjklm;clear Djkl
P22b2=JC*[Xi2;Eta2b;zzeta2;Nm|*[Xi2;Eta2b;zzeta2;Nm|’ ;
Syms X y z

F9=solve(Nj-Xi3,Nk-Eta3,Nl-zzeta3, ’x’,’y’,’2’);
x=F9.x;y=F9.y;z=F9.z;clear F9
MDjk1(4,:)=[1,x,y,z|;clear x y 2

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P333=JC*[Xi3;Eta3;zzeta3;Nm|*[Xi3;Eta3;zzeta3;Nm|’;
Syms X y z
F10=solve(Nj-Xi3,Nk-Eta3,N1-zzeta3b,’x’,’y’,’z’);
x=F10.x;y=F10.y;2z=F10.z;clear F10
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P333b=JC*[Xi3;Eta3;zzeta3b;Nm|*[Xi3;Eta3;zzeta3b;Nm|’;
Syms X y z
Fli=solve(Nj-Xi3,Nk-Eta3b,Nl-zzeta3c,’x’,’y’,’z’);
x=F11.x;y=F11.y;z=F11.z;clear F11
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MDjk1(4,:)=[1,x,y,z|;clear x y 2

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P33b3c=JCx[Xi3;Eta3b;zzeta3c;Nm|*[Xi3;Eta3b;zzeta3c;Nm]’;
syms X y z
F12=solve(Nj-Xi3,Nk-Eta3b,Nl-zzeta3,’x’,’y’,’z’);
x=F12.x;y=F12.y;2z=F12.z;clear F12
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djkl/Cjklm;clear Djkl
P33b3=JC*[Xi3;Eta3b;zzeta3;Nm|*[Xi3;Eta3b;zzeta3;Nm|’;
theta=cl*(1-ul) A2%(1-sqrt(3)/3)*(1/64)*(P111+P111b)+
clx(1-ul) A2%(1+sqrt(3)/3)*(1/64)*(P11blc+P11bl)
+c2% (1-u2) A2% (1-sqrt (3) /3) *(1/64) * (P222+P222b) +
c2* (1-u2) A2* (1+sqrt (3) /3) *(1/64) * (P22b2c+P22b2)
+c3* (1-u3) A2* (1-sqrt (3) /3) *(1/64) * (P333+P333b) +
c3*(1-u3) A2* (1+sqrt (3) /3) *(1/64) * (P33b3c+P33b3)
psix=JC*dxNjklm’*dxNjklm* (1/6)

psiy=JC*dyNjklm’ *dyNjklm* (1/6)
psiz=JC*dzNjklm’*dzNjklm= (1/6)
psi=psix+psiy+psiz;clear psix psiy psiz
psiS=zeros(nd,nd);

thetaS=zeros(nd,nd);

vpru=t(i,:);

for kk=1:1:3

for 11=1:1:3

psiS(vpru(kk) ,vpru(ll))=psi(kk,11);

thetaS (vpru(kk) ,vpru(ll))=theta(kk,11);

end

end

clear kk 11 psi theta vpru
thetaT=thetaS+thetaT;clear thetaS
psiT=psiS+psiT;clear psiS

end

clear vcl i

p-olof=p’;

t_olof=t1’;

bound_edges=boundedges (p_olof,t_olof);

bound nodes=unique (bound edges); clear bound edges
Qokok sk s kok sk ok ok ok o sk ok ok ok ko o ok ok okok o sk ok ok ok ok ok o ok ook ok o ok ok ok ok ook ok ok
Dok ksk o ko sk ok ok ok sk ok ok ok o ok ok o ok o ok ok o ok ok ok ok ok ok o ok o ok ok o ok ok Kok ook ok ok o
%** Calculo de la temperatura en el tiempo lkx*x*x
bound nodes=unique (surftri(p,t));
XXhnl=rho*c*thetaT+lambda*Deltat*0.5*%psiT;
XXhn2=rho*c*thetaT-lambda*Deltat*0.5*psiT;
XXh1=XXhnli;

XXh2=XXhn2;

XXh1(bound nodes, :)=| |;

vph=XXh2* (TOext*ones(nd,1))+0.5*Deltat*thetaT*(q{1}’);
vph (bound nodes, : )= |;

for j=1:1:max(size(bound nodes))



vph=vph-XXh1(:,bound nodes(j))*TOext;
end

XXh1(:,bound nodes)=[ |;
Tc{1}=cgs(XXh1,vph,1le-16,100) ;
clear i j

j=1;

for i=1:1:nd

if ismember (i,bound_nodes)
T{1}(i)=TOext;

else

T{1} (1) =Tc{1}(§);

J=i+1

end

end

T{1}=T{1}’;

clear XXhl vph XXh2 j

for timedis=2:1:timeheatmax
timedis

vphn=XXhn2+T{timedis-1}+Deltat*0.5*thetaT*((q{timedis}) ’+(q{timedis-1})’);

XXhnt=XXhn1;

XXhnt (bound nodes, :)=[ |;

vphn (bound nodes, :)=[ |;

for j=1:1:max(size(bound nodes))
vphn=vphn-XXhnt (: ,bound_nodes (j))*TOext;
end

XXhnt (: ,bound nodes)=| |;
Tc{timedis}=cgs (XXhnt,vphn,1e-16,100);
clear i j

=1

for i=1:1:nd

if ismember (i,bound_nodes)
T{timedis}(i,1)=TOext;

else

T{timedis}(i,1)=Tc{timedis}(j);

J=i+1;

end

end

end

clear Tc j XXhnt vphn bound nodes XXhnl XXhn2

out_T=T;
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Apéndice H

ThermalFEMConv_3D.m

function out_Tconv=ThermalFEMConv_3D(p,t,rho,lambda,c,TOext,h,Deltat,Tm,q,timeheatmax)
1fi=max(size(t));
nd=max(size(p));

for i=1:1:1f1

nodos{i}=t(i,:);

for j=1:1:4
cord{j}=p(nodos{i}(j),:);

end

cord1{i}=cord;

end

clear nodos cord j i

psiT=0;

thetaT=0;

vel=[1;1;1;1];

for i=1:1:1f1

i
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDk1lm=vpa([vcl s2]);
MDjlm=vpa([vcl s2]);
MDjkm=vpa([vcl s2]);
MDjkl=vpa([vcl s2]);

Cjklm=det ([vcl s2]);clear s2
%***xx*Generacion de los Nj(x,y,z)
Syms X y z
MDk1m(1,:)=[1,x,y,2|;

Dklm=det (MDklm) ;
Nj=Dklm/Cjklm;clear Dklm MDklm
MDjlm(2,:)=[1,x,y,2];

Djlm=det (MDjlm) ;
Nk=Djlm/Cjklm;clear Djlm MDjlm
MDjkm(3,:)=[1,x,y,2|;

Djkm=det (MDjkm) ;
N1=Djkm/Cjklm;clear Djkm MDjkm
MDjk1(4,:)=[1,x,y,2];

Djkl=det (MDjk1) ;
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Nm=Djk1/Cjklm;clear Djkl

dxNjklm=[diff (Nj,’x’),diff (Nk,’x’),diff (N1, ’x’) ,diff (Nm, ’x)];
dyNjklm=[diff (Nj,’y’),diff (Nk,’y’),diff (N1,’y’),diff (Nm,’y’)];
dZNjklm=Miff(Nj,’Z’),diff(Nk,’Z’),diff(Nl,’z’),diff(Nm,’Z’)h
syms Xi Eta zzeta
F=solve(Nj-Xi,Nk-Eta,Nl-zzeta,’x’,’y’,’z’);

x=F.x;

y=F.y;

z=F.z;clear F

JC=abs(det (jacobian([x;y;z],[Xi, Eta, zzeta])));
MDjk1(4,:)=[1,x,y,2|;

Djkl=det (MDjk1) ;

Nma=Djk1/Cjklm;clear Djkl

clear x y z;

%***************** Integra]_es por cuadratura s kskkskkskxkkxkk
ul=sqrt(3/5) ;u2=0;u3=-ul;

c1=(5/9) ;c2=8/9;c3=c1;

Xi1=0.5%(ul+1) ;Xi2=0.5*%(u2+1) ;Xi3=0.5% (u3+1) ;
Etal=(1-ul)*(1+sqrt(3)/3)*0.25;Etalb=(1-ul)*(1-sqrt(3)/3)*0.25;
Eta2=(1-u2)*(1+sqrt(3)/3)*0.25;Eta2b=(1-u2) *(1-sqrt (3)/3)*0.25;
Eta3=(1-u3) *(1+sqrt(3)/3)*0.25;Eta3b=(1-u3) *(1-sqrt (3)/3)*0.25;
zzetal=(1-ul)*(1-sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzetalb=(1-ul)*(1-sqrt(3)/3)*(1-sqrt(3)/3)*0.125;
zzetalc=(1-ul)*(1+sqrt(3)/3) *(1+sqrt(3)/3)*0.125;
zzeta2=(1-u2) *(1-sqrt (3)/3) *(1+sqrt (3)/3)*0.125;
zzeta2b=(1-u2)*(1-sqrt(3)/3)*(1-sqrt(3)/3)*0.125;
zzeta2c=(1-u2) * (1+sqrt(3)/3) *(1+sqrt(3)/3)*0.125;
zzeta3=(1-u3) *(1-sqrt (3) /3) *(1+sqrt(3)/3)*0.125;
zzeta3b=(1-u3)*(1-sqrt(3)/3) *(1-sqrt(3)/3)*0.125;
zzeta3c=(1-u3) *(1+sqrt (3) /3) *(1+sqrt(3) /3)*0.125;

syms X y z

Fl=solve(Nj-Xil,Nk-Etal,Nl-zzetal,’x’,’y’,’z’);
x=F1.x;y=F1l.y;z=Fl.z;clear F1

MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1l) ;

Nm=Djkl/Cjklm;clear Djkl
P111=JC#[Xil;Etal;zzetal;Nm|*[Xil;Etal;zzetal;Nm|’;

syms X y Z

F2=solve(Nj-Xil,Nk-Etal,Nl-zzetalb,’x’,’y’,’z’);
x=F2.x;y=F2.y;z=F2.z;clear F2

MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P111b=JC*[Xil;Etal;zzetalb;Nm|*[Xil;Etal;zzetalb;Nm|’;

syms X y z

F3=solve (Nj-Xil,Nk-Etalb,Nl-zzetalc,’x’,’y’,’2’);
x=F3.x;y=F3.y;z=F3.z;clear F3

MDjk1(4,:)=[1,x,y,z|;clear x y 2

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P11b1c=JC*[Xil;Etalb;zzetalc;Nm|*[Xil;Etalb;zzetalc;Nm|’;



Syms X y z
F4=solve(Nj-Xil,Nk-Etalb,Nl-zzetal,’x’,’y’,’z’);
x=F4.x;y=F4.y;z=F4.z;clear F4
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P11b1=JC*[Xil;Etalb;zzetal;Nm|*[Xil;Etalb;zzetal;Nm|’;
Syms X y z
F5=solve(Nj-Xi2,Nk-Eta2,Nl-zzeta2,’x’,’y’,’2’);
x=Fb.x;y=Fb.y;z=Fb.z;clear F5
MDjk1(4,:)=[1,x,y,z|;clear x y 2

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P222=JC*[Xi2;Eta2;zzeta2;Nm|*[Xi2;Eta2;zzeta2;Nm]’;
Syms X y z
F6=solve(Nj-Xi2,Nk-Eta2,Nl-zzeta2b,’x’,’y’,’z’);
x=F6.x;y=F6.y;z=F6.z;clear F6
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjkl) ;

Nm=Djkl/Cjklm;clear Djkl
P222b=JC*[Xi2;Eta2;zzeta2b;Nm|*[Xi2;Eta2;zzeta2b;Nm|’;
Syms X y z
F7=solve(Nj-Xi2,Nk-Eta2b,Nl-zzeta2c,’x’,’y’,’z’);
x=F7.x;y=F7.y;z=F7.z;clear F7
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl

P22b2c=JCx[Xi2;Eta2b;zzeta2c;Nm|*[Xi2;Eta2b;zzeta2c;Nm|’ ;

Syms X y z
F8=solve(Nj-Xi2,Nk-Eta2b,Nl-zzeta2,’x’,’y’,’z’);
x=F8.x;y=F8.y;z=F8.z;clear F8
MDjk1(4,:)=[1,x,y,z|;clear x y 2

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P22b2=JC*[Xi2;Eta2b;zzeta2;Nm|*[Xi2;Eta2b;zzeta2;Nm|’ ;
Syms X y z
F9=solve(Nj-Xi3,Nk-Eta3,Nl-zzeta3,’x’,’y’,’z’);
x=F9.x;y=F9.y;z=F9.z;clear F9
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djkl/Cjklm;clear Djkl
P333=JC*[Xi3;Eta3;zzeta3;Nm|*[Xi3;Eta3;zzeta3;Nm|’ ;
Syms X y z
F10=solve(Nj-Xi3,Nk-Eta3,N1l-zzeta3b,’x’,’y’,’z’);
x=F10.x;y=F10.y;2z=F10.z;clear F10
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P333b=JC*[Xi3;Eta3;zzetal3b;Nm|*[Xi3;Eta3;zzeta3b;Nm|’;
Syms X y z
Fl1i=solve(Nj-Xi3,Nk-Eta3b,Nl-zzeta3c,’x’,’y’,’2z’);
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x=F11.x;y=F11.y;z=F11.z;clear F11
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjkl) ;

Nm=Djkl/Cjklm;clear Djkl
P33b3c=JC*[Xi3;Eta3b;zzeta3c;Nm|*[Xi3;Eta3b;zzeta3c;Nm|’ ;
Syms X y z
F12=solve(Nj-Xi3,Nk-Eta3b,Nl-zzeta3,’x’,’y’,’z’);
x=F12.x;y=F12.y;2z=F12.z;clear F12
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1);

Nm=Djk1/Cjklm;clear Djkl
P33b3=JC*[Xi3;Eta3b;zzeta3;Nm|*[Xi3;Eta3b;zzeta3;Nm|’;
theta=cl*(1-ul) A2*(1-sqrt(3)/3)*(1/64)*(P111+P111b)+
c1*x(1-ul) A2*(1+sqrt(3)/3)*(1/64)*(P11blc+P11b1)+
c2*%(1-u2) A2*(1-sqrt(3)/3) *(1/64) * (P222+P222b) +
c2* (1-u2) A2* (1+sqrt (3) /3) *(1/64) * (P22b2c+P22b2) +
c3*(1-u3) A2% (1-sqrt (3)/3)*(1/64) * (P333+P333b) +
c3*(1-u3) A2% (1+sqrt (3) /3) *(1/64) * (P33b3c+P33b3)
psix=JC*dxNjklm’*dxNjklm* (1/6)

psiy=JC*dyNjklm’ *dyNjklm*(1/6)
psiz=JC*dzNjklm’*dzNjklm* (1/6)
psi=psix+psiy+psiz;clear psix psiy psiz
psiS=zeros(nd,nd) ;

thetaS=zeros(nd,nd);

vpru=t(i,:);

for kk=1:1:3

for 11=1:1:3

psiS(vpru(kk) ,vpru(ll))=psi(kk,11);

thetaS (vpru(kk) ,vpru(ll))=theta(kk,11);

end

end

clear kk 11 psi theta vpru
thetaT=thetaS+thetaT;clear thetaS
psiT=psiS+psiT;clear psiS

end

clear vcl i

OF sk sk s ok sk o ks sk sk s sk ok sk ks ok sk sk ok sk o ks sk sk sk sk ok sk o
Toxxkkkkkkkkx alphafdc d skskskskskskskskokkskskskokskk

O sk sk sk ke ok sk o sk sk ok ok sk o o ok sk o sk sk o ok sk o e ok sk o sk sk s ok sk ok o ok sk ok o
vel=[1;1;1;1];

[ii,jj]=find(p(:,2)>0.46);clear jj

for i=1:1:1f1

i
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDklm=vpa([vcl s2]);

MDjlm=vpa([vcl s2]);

MDjkm=vpa([vcl s2]);

MDjkl=vpa([vcl s2]);

Cjklm=det([vcl s2]);clear s2

if max(size(intersect(t(i,:),ii)))>2
tcord=intersect (t(i,:),ii);
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pcord2D1=p(tcord(1),:);pcord2D1(2)=| |;
pcord2D2=p(tcord(2),:);pcord2D2(2)=[ |;
pcord2D3=p(tcord(3),:);pcord2D3(2)=[ |;
Cjkl2D=det ([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] | |);
if Cjk12D<0

pcord2D1=p(tcord(2),:);pcord2D1(2)=| |;
pcord2D2=p(tcord(1),:);pcord2D2(2)=[ |;
Cjkl2D=det ([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] | ]);
else

end

clear tcord

MDk12D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2]; [pcord2D3| | |);
MDj12D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2|; [pcord2D3] | |);
clear pcord2D1 pcord2D2 pcord2D3

Syms X z;

MDk12D(1,:)=[1,x,z];

Nj2D=det (MDk12D) /Cjk12D;

MDj12D(2,:)=[1,x,z];

Nk2D=det (MDj12D)/Cjk12D;

syms Xi2D Eta2D

F=solve(Nj2D-Xi2D,Nk2D-Eta2D,’x’,’z’);

x=F.x

z=F.z

y=0.5;

clear MDk12D MDj12D Nj2D Nk2D Cjkl2D F
MDk1m(1,:)=[1,x,y,2|;

Dklm=det (MDklm) ;

Nj=Dklm/Cjklm;clear Dklm MDklm

MDjlm(2,:)=[1,x,y,2];

Djlm=det (MDjlm) ;

Nk=Djlm/Cjklm;clear Djlm MDjlm

MDjkm(3,:)=[1,x,y,2|;

Djkm=det (MDjkm) ;

N1=Djkm/Cjklm;clear Djkm MDjkm

MDjk1(4,:)=[1,x,y,2];

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl MDjkl Cjklm

JC=abs(det (jacobian([x;z|,[Xi2D, Eta2D])));
alphafdc_d1{i}=JC*int (int ([Nj;Nk;N1;Nm|],Eta2D,0,1-Xi2D),Xi2D,0,1);
alphafdc_d2{i}=JCxint (int ([Nj;Nk;N1;Nm|*[Nj,Nk,N1,Nm],Eta2D,0,1-Xi2D),Xi2D,0,1);clear
Nj Nk N1 Nm JC Eta2D Xi2D x y z

else

alphafdc_di{i}=zeros(4,1);clear MDklm MDjlm MDjkm MDjkl Cjklm
alphafdc_d2{i}=zeros(4,4);

end

end

clear i vel ii

O ok ks ok ook o ook ok KK ok ok o ook K ok KK ok ok ook K ok K

Tokkkkkrkrrrk alphafdc_crkksrkrkrsskkkkkkk

O ok sk ok sk ook ok ook ok o ook ok ok ok ook ok o ok ok ok ok ok ok ok ok ok Kok K
vel=[1;1;1;1];
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[ii,jj]=find(p(:,2)<-0.46) ;clear jj

for i=1:1:1f1

i
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDklm=vpa([vcl s2]);

MDjlm=vpa([vcl s2])

MDjkm=vpa([vcl s2]);

MDjkl=vpa([vcl s2]);

Cjklm=det ([vcl s2]);clear s2

if max(size(intersect(t(i,:),ii)))>2

tcord=intersect (t(i,:),ii);
pcord2D1=p(tcord(1),:);pcord2D1(2)=] |;
pcord2D2=p(tcord(2),:);pcord2D2(2)=[ |;
pcord2D3=p(tcord(3),:);pcord2D3(2)=[ |;
Cjk12D=det ([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3| | |);
if Cjk12D<0

pcord2D1=p(tcord(2),:);pcord2D1(2)=] |;
pcord2D2=p(tcord(1),:);pcord2D2(2)=[ |;
Cjk12D=det ([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3| | |);
else

end

clear tcord

MDk12D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2]; [pcord2D3| | |);
MDjl2D=vpa(| [1;1;1] [ [pcord2D1];[pcord2D2|; [pcord2D3] | |);
clear pcord2D1 pcord2D2 pcord2D3

Syms X z;

MDk12D(1,:)=[1,x,z];

Nj2D=det (MDk12D) /Cjk12D;

MDj12D(2,:)=[1,x,z];

Nk2D=det (MDj12D) /Cjk12D;

syms Xi2D Eta2D

F=solve(Nj2D-Xi2D,Nk2D-Eta2D,’x’,’z’);

x=F.x

z=F.z

y=-0.5;

clear MDk12D MDjl12D Nj2D Nk2D Cjkl2D F
MDk1m(1,:)=[1,x,y,2|;

Dklm=det (MDklm) ;

Nj=Dklm/Cjklm;clear Dklm MDklm

MDjlm(2,:)=[1,x,y,2];

Djlm=det (MDjlm) ;

Nk=Djlm/Cjklm;clear Djlm MDjlm

MDjkm(3,:)=[1,x,y,2|;

Djkm=det (MDjkm) ;

N1=Djkm/Cjklm;clear Djkm MDjkm

MDjk1(4,:)=[1,x,y,2];

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl MDjkl Cjklm

JC=abs (det (jacobian([x;z],[Xi2D, Eta2D])));
alphafdc_c1{i}=JC*int (int ([Nj;Nk;N1;Nm|,Eta2D,0,1-Xi2D),Xi2D,0,1);
alphafdc_c2{i}=JC*int (int ([Nj;Nk;N1;Nm|*[Nj,Nk,N1,Nm],Eta2D,0,1-Xi2D) ,Xi2D,0,1) ;clear
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Nj Nk N1 Nm JC Xi2D Eta2D x y z

else

alphafdc_c1{i}=zeros(4,1);clear MDklm MDjlm MDjkm MDjkl Cjklm
alphafdc_c2{i}=zeros(4,4);

end

end

clear i vcl ii

Ol ok ok sk ok ok ok ok oo ok ok o ok ook ok Kook ok Kook ok Kok ok ok

Qo k4 4 ok ok ok ok k alphafba_b skkkskskokkskskskokokskokokskokk

Ol ok ks ok ok koK ok ok ok KK ok ok KKK ok KK oK KKK oK KoK Kok K
vel=[1;1;1;1];

[ii,jj]=find(p(:,1)>0.46);clear jj

for i=1:1:1f1

i
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDklm=vpa([vcl s2]);

MDjlm=vpa([vcl s2])

MDjkm=vpa([vcl s2]);

MDjkl=vpa([vcl s2]);

Cjklm=det ([vcl s2]);clear s2

if max(size(intersect(t(i,:),ii)))>2

tcord=intersect (t(i,:),ii);
pcord2D1=p(tcord(1),:);pcord2D1(1)=[ |;
pcord2D2=p(tcord(2),:);pcord2D2(1)=[ |;
pcord2D3=p(tcord(3),:);pcord2D3(1)=[ |;
Cjkl2D=det ([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] | |);
if Cjk12D<0

pcord2D1=p(tcord(2),:);pcord2Di(1)=] |;
pcord2D2=p(tcord(1),:);pcord2D2(1)=] |;
Cjk12D=det ([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3| | |);
else

end

clear tcord

MDk12D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2|; [pcord2D3] | |);
MDj12D=vpa(| [1;1;1] [ [pcord2D1];[pcord2D2];|[pcord2D3| | |);
clear pcord2D1 pcord2D2 pcord2D3

syms y z;

MDk12D(1,:)=[1,y,2];

Nj2D=det (MDk12D) /Cjk12D;

MDj12D(2,:)=[1,y,z|;

Nk2D=det (MDj12D) /Cjk12D;

syms Xi2D Eta2D

F=solve(Nj2D-Xi2D,Nk2D-Eta2D,’y’,’z’);

y=F.y

z=F.z

x=0.5;

clear MDk12D MDj12D Nj2D Nk2D Cjkl2D F
MDk1m(1,:)=[1,x,y,2|;

Dklm=det (MDklm) ;

Nj=Dklm/Cjklm;clear Dklm MDklm

MDjlm(2,:)=[1,x,y,2];
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Djlm=det (MDjlm);

Nk=Djlm/Cjklm;clear Djlm MDjlm

MDjkm(3,:)=[1,x,y,2];

Djkm=det (MDjkm) ;

N1=Djkm/Cjklm;clear Djkm MDjkm

MDjk1(4,:)=[1,x,y,2|;

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl MDjkl Cjklm

JC=abs(det (jacobian([y;z],[Xi2D, Eta2D])));
alphafba;bl{i}=JC*int(int([Nj;Nk;Nl;Nm],EtaQD,O,l—XiQD),XiQD,O,l);
alphafba b2{i}=JC*int (int ([Nj;Nk;N1;Nm|*[Nj,Nk,N1,Nm|,Eta2D,0,1-Xi2D),Xi2D,0,1) ;clear
Nj Nk N1 Nm JC Xi2D Eta2D x y z

else

alphafba b1{i}=zeros(4,1);clear MDklm MDjlm MDjkm MDjkl Cjklm
alphafba b2{i}=zeros(4,4);

end

end

clear i vcl ii

Ol ok ok ok ok ko ok o ok ok ok ok ok ok Kook ok KoKk KK Kok

Q0% ok ok sk k ok ok ok ok alphafba_a *kkkskskokkokskskokokskskokkokk

Ol ko ok ko ok ok kK sk ok oK ok K ok KKK ok KoK K ok KKK ok KoK Kok K
vel=[1;1;1;1];

[ii,jj]=find(p(:,1)<-0.46);clear jj

for i=1:1:1f1

i
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDklm=vpa([vcl s2]);

MDjlm=vpa([vcl s2]);

MDjkm=vpa([vcl s2]);

MDjkl=vpa([vcl s2]);

Cjklm=det([vcl s2]);clear s2

if max(size(intersect(t(i,:),ii)))>2

tcord=intersect (t(i,:),ii);
pcord2D1=p(tcord(1),:);pcord2D1(1)=[ |;
pcord2D2=p(tcord(2),:);pcord2D2(1)=[ |;
pcord2D3=p(tcord(3),:);pcord2D3(1)=[ |;
Cjk12D=det ([ [1;1;1] [ [pcord2Di];[pcord2D2];[pcord2D3] | |);
if Cjk12D<0

pcord2D1=p(tcord(2),:);pcord2D1(2)=[ |;
pcord2D2=p(tcord(1),:);pcord2D2(2)=[ |;
Cjk12D=det ([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3| | |);
else

end

clear tcord

MDk12D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2|; [pcord2D3] | |);
MDj12D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2]; [pcord2D3| | |);
clear pcord2D1 pcord2D2 pcord2D3

syms y z;

MDk12D(1,:)=[1,y,2];

Nj2D=det (MDk12D) /Cjk12D;

MDjl12D(2,:)=[1,y,z|;
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Nk2D=det (MDj12D) /Cjk12D;

syms Xi2D Eta2D

F=solve(Nj2D-Xi2D,Nk2D-Eta2D,’y’,’z’);

y=F.y

z=F.z

x=-0.5;

clear MDk12D MDjl12D Nj2D Nk2D Cjkl2D F
MDk1m(1,:)=[1,x,y,2];

Dklm=det (MDklm) ;

Nj=Dklm/Cjklm;clear Dklm MDklm

MDjlm(2,:)=[1,x,y,2|;

Djlm=det (MDj1m) ;

Nk=Dj1m/Cjklm;clear Djlm MDjlm

MDjkm(3,:)=[1,x,y,2];

Djkm=det (MDjkm) ;

N1=Djkm/Cjklm;clear Djkm MDjkm

MDjk1(4,:)=[1,x,y,2|;

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl MDjkl Cjklm

JC=abs(det (jacobian([y;z],[Xi2D, Eta2D])));

alphafba a1{i}=JC*int (int ([Nj;Nk;N1;Nm|,Eta2D,0,1-Xi2D),Xi2D,0,1);
alphafba_a2{i}=JC*int (int ([Nj;Nk;N1;Nm|*[Nj,Nk,N1,Nm|,Eta2D,0,1-Xi2D),Xi2D,0,1); clear
Nj Nk N1 Nm JC Xi2D Eta2D x y

z else alphafba al{i}=zeros(4,1);clear MDklm MDjlm MDjkm MDjkl Cjklm
alphafba_a2{i}=zeros(4,4);

end

end

clear i vcl ii

Ol ok ok sk ok ok sk ok ok o ok ook ok ook ok ook ok Kok ok Kook

Q0% ok sk k k ok ok k% alphaffe _f skkkskskokkskskokskokskokk

ook ok koo ok oK ok ok KKK ok KKK KKKk Kk K
vel=[1;1;1;1];

[ii,jj]=find(p(:,3)>0.96);clear jj

for i=1:1:1f1

i
s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];
MDklm=vpa([vcl s2]);

MDjlm=vpa([vcl s2])

MDjkm=vpa([vcl s2]);

MDjkl=vpa([vcl s2]);

Cjklm=det([vcl s2]);clear s2

if max(size(intersect(t(i,:),ii)))>2

tcord=intersect (t(i,:),ii);
pcord2D1=p(tcord(1),:);pcord2D1(3)=[ |;
pcord2D2=p(tcord(2),:);pcord2D2(3)=[ |;
pcord2D3=p(tcord(3),:);pcord2D3(3)=[ |;
Cjkl2D=det ([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] | |);
if Cjk12D<0

pcord2D1=p(tcord(2),:);pcord2D1(2)=[ |;
pcord2D2=p(tcord(1),:);pcord2D2(2)=] |;
Cjk12D=det ([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3| | |);
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else

end

clear tcord
MDk12D=vpa([ [1;1;1] [ [pcord2D1];[pcord2D2]; [pcord2D3| | |);

MDjl2D=vpa(| [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] | |);

clear pcord2Dl1 pcord2D2 pcord2D3

syms X y;

MDk12D(1, :)=[1,x,y];

Nj2D=det (MDk12D) /Cjk12D;

MDj12D(2, :)=[1,x,y];

Nk2D=det (MDj12D)/Cjk12D;

syms Xi2D Eta2D

F=solve(Nj2D-Xi2D,Nk2D-Eta2D,’x’,’y’);

x=F.x

y=F.y

z=1;

clear MDk12D MDj12D Nj2D Nk2D Cjkl2D F

MDk1m(1,:)=[1,x,y,2];

Dklm=det (MDklm) ;

Nj=Dklm/Cjklm;clear Dklm MDklm

MDjlm(2,:)=[1,x,y,2|;

Djlm=det (MDjlm);

Nk=Djlm/Cjklm;clear Djlm MDjlm

MDjkm(3,:)=[1,x,y,2];

Djkm=det (MDjkm) ;

N1=Djkm/Cjklm;clear Djkm MDjkm

MDjk1(4,:)=[1,x,y,2|;

Djkl=det (MDjk1) ;

Nm=Djk1l/Cjklm;clear Djkl MDjkl Cjklm

JC=abs(det (jacobian([x;y],[Xi2D, Eta2D])));

alphaffe f1{i}=JCxint (int (|Nj;Nk;N1;Nm],Eta2D,0,1-Xi2D),Xi2D,0,1);

alphaffe f2{i}=JC*int (int ([Nj;Nk;N1;Nm|*[Nj,Nk,N1,Nm|,Eta2D,0,1-Xi2D),Xi2D,0,1); clear
Nj Nk N1 Nm JC Xi2D Eta2D x y z

else

alphaffe f1{i}=zeros(4,1);clear MDklm MDjlm MDjkm MDjkl Cjklm

alphaffe f2{i}=zeros(4,4);

end

end

clear i vcl ii Tokskokskskokorskokokokokokokskokdokskok ok skokokokskok ok ok ok ok skok ok skok ok sk ok

Tk ok sk skskoksk s ok ke ok alphaffe_f skkssksfofokkokkokskkskokokk

Ok sk ke ok sk ok sk s s ok sk ok ok sk ok sk ok sk ok sk ok e ok sk o sk e ok sk ok ke ok sk sk ok ok

vel=[1;1;1;1];

[ii,jj]=find(p(:,3)<-0.96) ;clear jj

for i=1:1:1f1

i

s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];

MDklm=vpa([vcl s2]);

MDjlm=vpa([vcl s2]
MDjkm=vpa([vcl s2)]
MDjkl=vpa([vcl s2]
Cjklm=det ([vcl s2]
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if max(size(intersect(t(i,:),ii)))>2

tcord=intersect (t(i,:),ii);
pcord2D1=p(tcord(1),:);pcord2D1(3)=[ |;
pcord2D2=p(tcord(2),:);pcord2D2(3)=[ |;
pcord2D3=p(tcord(3),:);pcord2D3(3)=| |;
Cjk12D=det ([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3] | ) ;
if Cjk12D<0

pcord2D1=p(tcord(2),:);pcord2D1(2)=] |;
pcord2D2=p(tcord(1),:);pcord2D2(2)=[ |;
Cjk12D=det ([ [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3| | |);
else

end

clear tcord

MDk12D=vpa(| [1;1;1] [ [pcord2D1];[pcord2D2];[pcord2D3| | |);
MDj12D=vpa(| [1;1;1] [ [pcord2D1];[pcord2D2]; [pcord2D3| | |);
clear pcord2Dl1 pcord2D2 pcord2D3

sSyms X y;

MDk12D(1,:)=[1,x,y];

Nj2D=det (MDk12D) /Cjk12D;

MDj12D(2, :)=[1,x,y];

Nk2D=det (MDj12D) /Cjk12D;

syms Xi2D Eta2D

F=solve (Nj2D-Xi2D,Nk2D-Eta2D, ’x’,’y’);

x=F.x

y=F.y

z=-1;

clear MDk12D MDj12D Nj2D Nk2D Cjkl2D F
MDk1m(1,:)=[1,x,y,2|;

Dklm=det (MDklm) ;

Nj=Dklm/Cjklm;clear Dklm MDklm

MDjlm(2,:)=[1,x,y,2];

Djlm=det (MDjlm);

Nk=Djlm/Cjklm;clear Djlm MDjlm

MDjkm(3,:)=[1,x,y,2];

Djkm=det (MDjkm) ;

N1=Djkm/Cjklm;clear Djkm MDjkm

MDjk1(4,:)=[1,x,y,2|;

Djkl=det (MDjk1) ;

Nm=Djk1l/Cjklm;clear Djkl MDjkl Cjklm

JC=abs(det (jacobian([x;y],[Xi2D, Eta2D])));
alphaffe,el{i}=JC*int(int([Nj;Nk;Nl;Nm],EtaQD,O,l—XiQD),XiQD,O,l);
alphaffe e2{i}=JC*int (int ([Nj;Nk;N1;Nm|*[Nj,Nk,N1,Nm|,Eta2D,0,1-Xi2D),Xi2D,0,1); clear
Nj Nk N1 Nm JC Xi2D Eta2D x y z

else

alphaffe el{i}=zeros(4,1);clear MDklm MDjlm MDjkm MDjkl Cjklm
alphaffe_e2{i}=zeros(4,4);

end

end

clear i vcl ii

for i=1:1:1f1
alphafi{i}=alphafba bi{i}-alphafba al{i}+alphafdc_di{i}-alphafdc_c1{i}+
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alphaffe f1{i}-alphaffe e1{i};

alphaf2{i}=alphafba_a2{i}-alphafba b2{i}+alphafdc_c2{i}-alphafdc_d2{i}+
alphaffe_e2{i}-alphaffe £2{i};

end

clear alphafba_ bl alphafba_al alphafdc_dl alphafdc_cl alphaffe f1 alphaffe el alphafba_a2
alphafba_ b2 alphafdc_c2 alphafdc_d2 alphaffe_e2 alphaffe f2
alphaf1T=0;

alphaf2T=0;

for i=1:1:1f1

alphafiS=zeros(nd,1);

alphaf2S=zeros(nd,nd) ;

vpru=t(i,:);

for kk=1:1:4

for 11=1:1:4

alphaf2S(vpru(kk) ,vpru(1ll))=alphaf2i(kk,11);

end

alphaf1S(vpru(kk))=alphafi1{i}(kk);

end

alphafi1T=alphaf1T+alphaflS;

alphaf2T=alphaf2T+alphaf2S;

end

clear alphaf2 alphafl alphaflS alphaf2S

% ke sk sk ke sk sk ok sk sk s ok sk ok e sk sk ok sk sk s sk ok e ok sk ok sk sk s ok sk sk e ok sk sk sk sk sk ok sk ok e ok sk ok

%* Calculo de la temperatura en el tiempo Li¥kikkkkx
XXhnl=rho*cxthetaT+Deltat*0.5*xlambda* ((h/lambda)*alphaf2T+psiT) ;
XXhn2=rho*cxthetaT-Deltat*0.5*lambda* ((h/lambda)*alphaf2T+psiT) ;
XXh1=XXhnl;

XXh2=XXhn2;

vph=XXh2* (TOext*ones(nd,1))-h*Tm*Deltat*alphaf1T+Deltat*0.5*thetaT*(q{1}’);
T{1}=cgs (XXh1,vph,1le-16,100);

for j=1:1:nd

if T{1}(j)<(TOext-10)

T{1} (j)=TOext;

else

end

end

clear XXhl vph XXh2

for timedis=2:1:timeheatmax

timedis
vphn=XXhn2+T{timedis-1}-h*Tm*Deltat*alphaf1T+Deltat*0.5*thetaT*((q{timedis}) ’+(q{timedis-1}));
XXhnt=XXhnl;

T{timedis}=cgs (XXhnt,vphn,le-16,100);

for j=1:1:nd

if T{timedis}(j)<(TOext-10)

T{timedis}(j)=TOext;

else

end

end

end

clear j XXhnt vphn bound_nodes XXhnl XXhn2 q

out_Tconv=T;



Apéndice 1

ThermalFEMNO 3D.m

function out_TNO=ThermalFEMNO_3D(p,t,rho,lambda,c,TOext,Deltat,q,timeheatmax)
1fi=max(size(t));

nd=max(size(p));

for i=1:1:1f1

nodos{i}=t(i,:);

for j=1:1:4

cord{j}=p(nodos{i}(j),:);

end

cord1{i}=cord;

end

clear nodos cord j i

psiT=0;

thetaT=0;

vel=[1;1;1;1];

for i=1:1:1f1

i

s2=[cord1{i}{1,1};cord1{i}{1,2};cord1{i}{1,3};cord1{i}{1,4}];

MDk1lm=vpa([vcl s2]);

MDjlm=vpa([vcl
MDjkm=vpa([vcl
MDjkl=vpa([vcl
Cjklm=det ([vcl s2]);clear s2
%***x*Generacion de los Nj(x,y,z)
Syms X y z

MDk1m(1,:)=[1,x,y,2|;

Dklm=det (MDk1lm) ;
Nj=Dklm/Cjklm;clear Dklm MDklm
MDjlm(2,:)=[1,x,y,2];

Djlm=det (MDjlm) ;
Nk=Djlm/Cjklm;clear Djlm MDjlm
MDjkm(3,:)=[1,x,y,2|;

Djkm=det (MDjkm) ;
N1=Djkm/Cjklm;clear Djkm MDjkm
MDjk1(4,:)=[1,x,y,2];

Djkl=det (MDjk1) ;

s2]);
s2]);
s2]);
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Nm=Djk1/Cjklm;clear Djkl

dxNjklm=[diff (Nj,’x’),diff (Nk,’x’),diff (N1, ’x’) ,diff (Nm, ’x)];
dyNjklm=[diff (Nj,’y’),diff (Nk,’y’),diff (N1,’y’),diff (Nm,’y’)];
dZNjklm=Miff(Nj,’Z’),diff(Nk,’Z’),diff(Nl,’z’),diff(Nm,’Z’)h
syms Xi Eta zzeta
F=solve(Nj-Xi,Nk-Eta,Nl-zzeta,’x’,’y’,’z’);

x=F.x;

y=F.y;

z=F.z;clear F

JC=abs(det (jacobian([x;y;z],[Xi, Eta, zzeta])));
MDjk1(4,:)=[1,x,y,2|;

Djkl=det (MDjk1) ;

Nma=Djk1/Cjklm;clear Djkl

clear x y z;

%****************** Integra]_es por cuadratura sk*kskkkskkkkkx
ul=sqrt(3/5) ;u2=0;u3=-ul;

c1=(5/9) ;c2=8/9;c3=c1;

Xi1=0.5%(ul+1) ;Xi2=0.5*%(u2+1) ;Xi3=0.5% (u3+1) ;
Etal=(1-ul)*(1+sqrt(3)/3)*0.25;Etalb=(1-ul)*(1-sqrt(3)/3)*0.25;
Eta2=(1-u2)*(1+sqrt(3)/3)*0.25;Eta2b=(1-u2) *(1-sqrt (3)/3)*0.25;
Eta3=(1-u3) *(1+sqrt(3)/3)*0.25;Eta3b=(1-u3) *(1-sqrt (3)/3)*0.25;
zzetal=(1-ul)*(1-sqrt(3)/3)*(1+sqrt(3)/3)*0.125;
zzetalb=(1-ul)*(1-sqrt(3)/3)*(1-sqrt(3)/3)*0.125;
zzetalc=(1-ul)*(1+sqrt(3)/3) *(1+sqrt(3)/3)*0.125;
zzeta2=(1-u2) *(1-sqrt (3)/3) *(1+sqrt (3)/3)*0.125;
zzeta2b=(1-u2)*(1-sqrt(3)/3)*(1-sqrt(3)/3)*0.125;
zzeta2c=(1-u2) * (1+sqrt(3)/3) *(1+sqrt(3)/3)*0.125;
zzeta3=(1-u3) *(1-sqrt (3) /3) *(1+sqrt(3)/3)*0.125;
zzeta3b=(1-u3)*(1-sqrt(3)/3) *(1-sqrt(3)/3)*0.125;
zzeta3c=(1-u3) *(1+sqrt (3) /3) *(1+sqrt(3) /3)*0.125;

syms X y z

Fl=solve(Nj-Xil,Nk-Etal,Nl-zzetal,’x’,’y’,’z’);
x=F1.x;y=F1l.y;z=Fl.z;clear F1

MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1l) ;

Nm=Djkl/Cjklm;clear Djkl
P111=JC#[Xil;Etal;zzetal;Nm|*[Xil;Etal;zzetal;Nm|’;

syms X y Z

F2=solve(Nj-Xil,Nk-Etal,Nl-zzetalb,’x’,’y’,’z’);
x=F2.x;y=F2.y;z=F2.z;clear F2

MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P111b=JC*[Xil;Etal;zzetalb;Nm|*[Xil;Etal;zzetalb;Nm|’;

syms X y z

F3=solve (Nj-Xil,Nk-Etalb,Nl-zzetalc,’x’,’y’,’2’);
x=F3.x;y=F3.y;z=F3.z;clear F3

MDjk1(4,:)=[1,x,y,z|;clear x y 2

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P11b1c=JC*[Xil;Etalb;zzetalc;Nm|*[Xil;Etalb;zzetalc;Nm|’;



Syms X y z
F4=solve(Nj-Xil,Nk-Etalb,Nl-zzetal,’x’,’y’,’z’);
x=F4.x;y=F4.y;z=F4.z;clear F4
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P11b1=JC*[Xil;Etalb;zzetal;Nm|*[Xil;Etalb;zzetal;Nm|’;
Syms X y z
F5=solve(Nj-Xi2,Nk-Eta2,Nl-zzeta2,’x’,’y’,’2’);
x=Fb.x;y=Fb.y;z=Fb.z;clear F5
MDjk1(4,:)=[1,x,y,z|;clear x y 2

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P222=JC*[Xi2;Eta2;zzeta2;Nm|*[Xi2;Eta2;zzeta2;Nm]’;
Syms X y z
F6=solve(Nj-Xi2,Nk-Eta2,Nl-zzeta2b,’x’,’y’,’z’);
x=F6.x;y=F6.y;z=F6.z;clear F6
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjkl) ;

Nm=Djkl/Cjklm;clear Djkl
P222b=JC*[Xi2;Eta2;zzeta2b;Nm|*[Xi2;Eta2;zzeta2b;Nm|’;
Syms X y z
F7=solve(Nj-Xi2,Nk-Eta2b,Nl-zzeta2c,’x’,’y’,’z’);
x=F7.x;y=F7.y;z=F7.z;clear F7
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl

P22b2c=JCx[Xi2;Eta2b;zzeta2c;Nm|*[Xi2;Eta2b;zzeta2c;Nm|’ ;

Syms X y z
F8=solve(Nj-Xi2,Nk-Eta2b,Nl-zzeta2,’x’,’y’,’z’);
x=F8.x;y=F8.y;z=F8.z;clear F8
MDjk1(4,:)=[1,x,y,z|;clear x y 2

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P22b2=JC*[Xi2;Eta2b;zzeta2;Nm|*[Xi2;Eta2b;zzeta2;Nm|’ ;
Syms X y z
F9=solve(Nj-Xi3,Nk-Eta3,Nl-zzeta3,’x’,’y’,’z’);
x=F9.x;y=F9.y;z=F9.z;clear F9
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djkl/Cjklm;clear Djkl
P333=JC*[Xi3;Eta3;zzeta3;Nm|*[Xi3;Eta3;zzeta3;Nm|’ ;
Syms X y z
F10=solve(Nj-Xi3,Nk-Eta3,N1l-zzeta3b,’x’,’y’,’z’);
x=F10.x;y=F10.y;2z=F10.z;clear F10
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1) ;

Nm=Djk1/Cjklm;clear Djkl
P333b=JC*[Xi3;Eta3;zzetal3b;Nm|*[Xi3;Eta3;zzeta3b;Nm|’;
Syms X y z
Fl1i=solve(Nj-Xi3,Nk-Eta3b,Nl-zzeta3c,’x’,’y’,’2z’);
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x=F11.x;y=F11.y;z=F11.z;clear F11
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjkl) ;

Nm=Djkl/Cjklm;clear Djkl
P33b3c=JC*[Xi3;Eta3b;zzeta3c;Nm|*[Xi3;Eta3b;zzeta3c;Nm|’ ;
syms X y z
F12=solve(Nj-Xi3,Nk-Eta3b,Nl-zzeta3,’x’,’y’,’z’);
x=F12.x;y=F12.y;2z=F12.z;clear F12
MDjk1(4,:)=[1,x,y,z|;clear x y z

Djkl=det (MDjk1);

Nm=Djk1/Cjklm;clear Djkl
P33b3=JC*[Xi3;Eta3b;zzeta3;Nm|*[Xi3;Eta3b;zzeta3;Nm|’;
theta=cl*(1-ul) A2*(1-sqrt(3)/3)*(1/64)*(P111+P111b)+
c1*x(1-ul) A2*(1+sqrt(3)/3)*(1/64)*(P11blc+P11b1)+
c2*%(1-u2) A2*(1-sqrt(3)/3) *(1/64) * (P222+P222b) +

c2* (1-u2) A2* (1+sqrt (3) /3) *(1/64) * (P22b2c+P22b2) +
c3*(1-u3) A2% (1-sqrt (3)/3)*(1/64) * (P333+P333b) +
c3*(1-u3) A2% (1+sqrt (3) /3) *(1/64) * (P33b3c+P33b3)
psix=JC*dxNjklm’*dxNjklm* (1/6)
psiy=JC*xdyNjklm’*dyNjklm= (1/6)
psiz=JC*dzNjklm’*dzNjklm* (1/6)
psi=psix+psiy+psiz;clear psix psiy psiz
psiS=zeros(nd,nd) ;

thetaS=zeros(nd,nd);

vpru=t(i,:);

for kk=1:1:3

for 11=1:1:3

psiS(vpru(kk) ,vpru(ll))=psi(kk,11);

thetaS (vpru(kk) ,vpru(ll))=theta(kk,11);

end

end

clear kk 11 psi theta vpru
thetaT=thetaS+thetaT;clear thetaS
psiT=psiS+psiT;clear psiS

end

clear vcl i

Q7K %k k3 3k ok ok ok ok sk sk K K K 3 o ok ok oK ok ok oK 3K 3 K o o ok ok oK ok ok K 3k 3K 3 3 o ok ok ok ok oK K K K K ok ok ok
%**Calculo de la temperatura en el tiempo 1xkxkxkxkxx*
XXhnl=rho*c*thetaT+lambda*Deltat*0.5*psiT;
XXhn2=rho*c*thetaT-lambda*Deltat*0.5*psiT;
XXh1=XXhn1;

XXh2=XXhn2;

vph=XXh2* (TOext*ones(nd, 1) )+0.5*Deltat*thetaT*(q{1}’);
T{1}=cgs (XXh1,vph,1le-16,100);

for j=1:1:nd

if T{1}(j) <(TOext-10)

T{1}(j)=TOext;

else

end

end

clear XXhl vph XXh2
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for timedis=2:1:timeheatmax

timedis
vphn=XXhn2+T{timedis-1}+Deltat*0.5*thetaT*((q{timedis}) ’+(q{timedis-1})’);
XXhnt=XXhnl;

T{timedis}=cgs (XXhnt,vphn,le-16,100);

for j=1:1:nd

if T{timedis}(j)<(TOext-10)
T{timedis}(j)=TOext;

else

end

end

end

clear j XXhnt vphn bound_nodes XXhnl XXhn2 q
out_TNO=T;
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Apéndice J

Curvas Experimentales de Histéresis.
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Apéndice K

Curvas Experimentales de Histéresis.
Vacofer
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