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pues aún creo firmemente en las verdaderas matemáticas como el futuro de los principales desarro-
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RESUMEN

TÍTULO: SEGUIMIENTO DINÁMICO DE EXPRESIONES FACIALES USANDO TRATAMIEN-
TO DIGITAL DE IMÁGENES
1

AUTOR:2 ALEJANDRO PARADA MAYORGA

PALABRAS CLAVE: Expresiones Faciales, Tratamiento Digital de Imágenes, Detección de Ros-
tro, Localización de Puntos Faciales, Extracción de Caracteŕısticas, features, Reducción de dimen-
sionalidad, Comportamiento Dinámico, Modelos de Apariencia Activa.

DESCRIPCIÓN:
En este trabajo se aborda el problema de seguimiento dinámico de las expresiones faciales usando
tratamiento digital de imágenes. Se trata inicialmente el problema de la detección de rostro emple-
ando las técnicas más efectivas para dicho fin de acuerdo al estado del arte, integrando herramientas
cromáticas y de textura.
Con esto como punto de partida, se realiza la detección de puntos faciales empleando los Active
Appearance Models, dando una descripción detallada de su construcción, entrenamiento y validación
con imágenes faciales pertenecientes a la base de datos Cohn-Kanade.

La extracción de caracteŕısticas es abordada siguiendo las propuestas más consolidadas de la
literatura, dando como resultado una colección de cinco conjuntos de features encajados en espacios
euclidianos de dimensiones fijas, cada uno de los cuales se procesa por separado.

Como etapa final se realiza un análisis a fin de determinar las técnicas más apropiadas para
realizar la estimación de la dimensión y la reducción de dimensionalidad de la información extráıda.
Se plantea un esquema de reducción considerando las técnicas más apropiadas para los fines de esta
investigación considerando calidad de reducción, fundamentación teórica y selección de parámetros.

Finalmente se presentan los resultados generales de la investigación, consignando las principales
conclusiones y delimitando un escenario de aplicación para los desarrollos logrados, dando además
recomendaciones para futuras investigaciones.

1Proyecto de Grado de Maestŕıa
2Facultad de Ingenieŕıas F́ısico-Mecánicas. Escuela de Ingenieŕıa Eléctrica, Electrónica y Telecomunicaciones. Di-

rector: Arturo Plata Gómez. email: alejandro parada.m@hotmail.com
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SUMMARIZE

TITLE: DYNAMIC TRACKING OF FACIAL EXPRESSIONS USING DIGITAL IM-
AGE PROCESSING
3

AUTHOR:4 ALEJANDRO PARADA MAYORGA

KEY WORDS: Facial Expressions, Digital Image Processing, Face Detection, Facial Point Detec-
tion, Feature Extraction, Nonlinear dimensionality reduction, dynamic behavior, Active Appearance
Models.

DESCRIPTION:
This paper addresses the problem of dynamic tracking of facial expressions using digital image pro-
cessing. Initially addressing the problem of face detection using the most effective techniques for
this purpose according to the state of the art, integrating color and texture tools.
With this as a starting point, we make the facial point detection using the Active Appearance Mod-
els, giving a detailed description of its construction, training and validation using facial images
belonging to the database Cohn-Kanade.

The feature extraction is treated according to the most important proposals of the literature,
resulting in a collection of five sets of textit features embedded in Euclidean spaces of fixed dimen-
sions, each of which is processed separately.

As this, final analysis is performed to determine the most appropriate techniques for estimating
the size and dimensionality reduction of the extracted information. We propose a reduction scheme
considering the most appropriate techniques for the purposes of this research considering the quality
of reduction, theoretical foundation and parameter selection.

Finally, we present the overall results of the research, detailing the main findings and outlining
an application scenario for the developments, besides giving recommendations for future research.

3Master Thesis
4Physics Mechanical Engineering Faculty. Electric, Electronic and Telecommunications School. Director:Arturo

Plata Gómez. email: alejandro parada.m@hotmail.com
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5.6. Dimensión Intŕınseca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6.1. Dimensión de Recubrimiento . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.6.2. Dimensión de Hausdorff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6.3. Dimensión de Capacidad (Box-Counting Dimension) . . . . . . . . . . . . . . 78

5.6.4. Dimensión de Información . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6.5. Dimensión de Correlación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6.6. Relación entre algunas dimensiones . . . . . . . . . . . . . . . . . . . . . . . . 79
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2.8. Resultados Finales. Imágenes Base de Datos Cohn-Kanade [7] . . . . . . . . . . . . . 33
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3.17. Resultados Imágenes 85-91. Para cada renglón, la primera columna muestra el sujeto
con la ubicación inicial de la forma media, la segunda columna muestra el mean
shape en la posición inicial, la tercera columna muestra el enmallado final después
del proceso de minimización sobre la imagen objetivo, la cuarta columna muestra la
textura final del modelo sobre la imagen y por último la quinta columna muestra la
imagen original. Los datos de error final y número de iteraciones asociadas a estas
figuras se encuentran consignados en la tabla 3.1 . . . . . . . . . . . . . . . . . . . . 62
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1

Introducción

La extracción y procesamiento de información asociada a expresiones faciales es un problema
que despierta interés en diversas áreas [1] [2]. Distintos desarrollos han sido realizados para la ex-
tracción, representación y análisis de dicha información, sin embargo la mayor parte de éstos se
enfocan en un manejo estático asociado a un determinado instante de tiempo, quedando aśı por
explotar aún mucha de la riqueza existente en el comportamiento dinámico [1].

En esta tesis se aborda el problema de realizar el seguimiento dinámico por medio de herramien-
tas computacionales a las expresiones faciales, en donde la hipótesis central es

Existen conjuntos de expresiones faciales por individuo, para las cuales es posible
afirmar que: el comportamiento dinámico está bien diferenciado de una expresión a

otra

es decir las trayectorias en el espacio de evolución de la información son diferentes y disjuntas entre
śı.

Para probar esta hipótesis, se aborda el problema de la extracción de información lidiando
primero con la detección de rostro, la localización de puntos faciales y la extracción de los descrip-
tores para finalmente tratar en forma detallada la reducción de dimensionalidad.

En este caṕıtulo se da un panorama de las consideraciones generales involucradas en la inves-
tigación, dando primero una presentación de las hechos que motivan el desarrollo de la misma.
Finalmente se dará una descripción de la organización del documento.
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1.1. Motivación

La descripción y análisis de la información contenida en las expresiones faciales de un determinado
individuo, ha sido de interés en áreas que van desde la psicoloǵıa [3] hasta áreas más recientes
como la de comunicaciones futuras en donde el principal interés recae en la interacción hombre-
máquina [1].

El estudio de estos patrones faciales se ha desarrollado en primera instancia alrededor de un
manejo estático [1], sin embargo contribuciones recientes indican la riqueza para descripción y rep-
resentación que puede encontrarse en un análisis dinámico [2].

El trabajo de investigadores como Goleman [3] en donde se destaca la importancia de lo que
hoy es conocido como la inteligencia emocional, generan un gran interés en pro de emitir conceptos
con información que va más allá de un solo instante de tiempo, y aśı tener en cuenta el proceso de
evolución de una expresión en śı misma. Ekman [4] [5] por su parte, ha realizado marcadas con-
tribuciones gracias a las cuales ha sido posible entre otras cosas, establecer conclusiones generales
y con carácter de universalidad sobre los patrones faciales de los individuos y sus respuestas a de-
terminados est́ımulos. Estos resultados están basados en profundos análisis dentro de las ciencias
de la psicoloǵıa, sin embargo brindan un soporte riguroso para el análisis y extracción automático
de información de los patrones faciales con un enfoque dinámico, pues tanto las estrategias de re-
conocimiento como de clasificación se centran en la identificación de las AU (Action Units) que
hacen parte del sistema FACS (Facial Action Coding System) desarrollado por Ekman [6], teniendo
cada una de las mimas un grado de evolución diferente dentro de cada expresión [1] [2].

En torno a estas ideas se realiza esta investigación, buscando el desarrollo de herramientas para
cuantificar la dinámica de los patrones faciales en un determinado sujeto, teniendo como finalidad
lograr un seguimiento dinámico de la expresión que sea confiable para fines de clasificación y/o
śıntesis.

1.2. Consideraciones Generales

El problema de la detección de rostro se aborda considerando condiciones controladas. Es de-
cir, es posible manejar distintas condiciones de iluminación para cada una de las imágenes pero no
tratando situaciones extremas que puedan ser consideradas oclusiones. Adicionalmente, se consid-
eran imágenes de sujetos cuya información facial no es interferida por aspestos fisionómicos como
la barba, anteojos y accesorios que puedan ser causantes de algún tipo de oclusión.

Si bien el interés de la investigación es en la descripción dinámica de la información, se analiza
en bloque la totalidad de la información contenida en una secuencia de video, de manera que no se
aborda el problema de procesamiento en tiempo real.

1.3. Organización del Documento

En el caṕıtulo 2 se presenta el problema de la detección de rostro planteando un esquema de solu-
ción basado en segmentación cromática y de textura. Se da una descripción detallada de cada una,
aśı como una presentación de los resultados obtenidos con las imágenes a Color de la base de Datos
Cohn-Kanade [7].

En el caṕıtulo 3 se aborda el problema de la detección de puntos faciales. Se presenta una solu-
ción basada en Active Appearance Models (AAM), dando una descripción completa de estos modelos.
Se dan los detalles de cómo se realiza la construcción y el entrenamiento de los mismos, aśı como
los resultados obtenidos con una miscelania de imágenes de la base de datos Cohn-Kanade [7].

La extracción de descriptores es abordada en el caṕıtulo 4 planteando un esquema que inte-
gra las propuestas más relevantes de la literatura y modificaciones adicionales a fin de dar una
descripción más completa. Se dan a conocer en detalle los descriptores empleados y la forma como
se maneja esta información para su posterior procesamiento.
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En el caṕıtulo 5 se aborda el problema de la reducción de dimensionalidad, presentando las
técnicas con mejores resultados para dicho fin. Se da una descripción de las mismas a fin de conocer
en detalle sus fortalezas y debilidades dentro de un análisis automático de la información extráıda
de las expresiones faciales. Esto brinda un análisis riguroso en una etapa cŕıtica en el seguimiento,
ya que el uso inadecuado de una técnica puede conducir a resultados sin sentido. Más aún, los
resultados obtenidos por dos técnicas distintas pueden diferir de manera considerable si las técnicas
o la selección de sus parámetros no son las adecuadas. Es un caṕıtulo en el que se da prioridad a la
rigurosidad y no a la brevedad, siendo su papel crucial en los resultados y posibles aplicaciones de
los mismos. Además se da una presentación de una contribución realizada para estimar la dimensión
intŕınseca de los datos que se asumen recaen sobre una variedad diferencial.

Los resultados generales del esquema de seguimiento dinámico de la expresión son finalmente
presentados en el caṕıtulo 6, en el que además se describen los productos entregados en las investi-
gación y se presenta el escenario para su aplicación.

Finalmente en el caṕıtulo 7, se consignan las conclusiones de la investigación. Se presentan
además las recomendaciones para trabajos futuros.
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2

Detección de Rostro

La localización o detección de rostro en una imagen facial juega un papel esencial en el análisis del
comportamiento dinámico de las expresiones. Si bien existen algunas herramientas como los Active
Appearance Models (AAM) [1], que permiten en principio la segmentación detallada del rostro [8],
su buen funcionamiento depende fuertemente de qué tan cercana sea la condición inicial de dichos
modelos al rostro ubicado en la imagen objetivo. La mejor forma de lograr dicha condición es
localizando lo más aproximado posible el rostro.

En este capt́ıtulo se presenta el esquema empleado para realizar la detección de rostro, con el
cual se busca mejorar las condiciones para la construcción y aplicación de los Active Appearance
Models (AAM) en la localización de puntos faciales. Inicialmente se realiza un breve cometario del
estado del arte sobre la detección de rostro, mencionando las técnicas que se consideraron más
relevantes y/o pertinentes para esta investigación.

En la sección 2.2 se presenta en detalle el esquema seleccionado mencionando las principales
propiedades y caracteŕısticas de cada técnica, y finalmente se presentarán los resultados de la misma
para dar algunas de las conclusiones parciales del empleo de este esquema.

2.1. Estado del Arte

En [1] [2] se evidencia que existen dos grandes enfoques para la detección de rostro. El primero
de ellos se basa en el uso de información de textura y features obtenidos a partir de la misma para
localizar la región facial, mientras que el segundo se basa en el uso de la información a color para
identificar regiones con piel y después discriminar con textura u otro criterio.

En tanto la técnicas basadas en textura son atractivas por su robustez [1] [2], las técnicas
cromáticas los son por su bajo costo computacional representando un atractivo para implementa-
ciones en dispositivos de bajas carácteŕısticas de hardware [9].
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Figura 2.1: Esquema Propuesto para la Detección de Rostro

Teniendo en cuenta estas ideas, en este trabajo se propone realizar una integración de estos dos
grandes enfoques, considerando los análisis realizados por Zli [1] [2] según los cuales, la detección de
rostro basada en Adaboost, desarrollada por Viola y Jones [10], ha mostrado ser la mejor solución
para la detección de rostro en condiciones controladas. Sumado a esto se consideran los resultados
obtenidos por Ichikawa [11] y Huang [12] en los cuales se muestra un alto grado de robustez de
ésta técnica para lidiar con problemas de detección facial incluso con oclusiones severas y grandes
ángulos de rotación.

A fin de mejorar el grado de aproximación del detector de Viola y Jones [10], se emplea seg-
mentación cromática siguiendo las ideas plasmadas en [13] [14] [15] en donde se emplea parte del
detector de Viola y Jones adicionando información de tipo cromático para mejorar el proceso de
detección.

Los trabajos realizados sobre segmentación cromática para detección de rostros son variados,
como se evidencia en [1] [2]. La razón de esto recae en gran medida en el hecho de que las imágenes
a color pueden representarse en distintos espacios, que pueden ser adecuados o no según la distribu-
ción de color de piel empleada para la construcción del cluster [1] [16]. Los espacios más empleados
para estos fines son el Y CbCr [17] [18] [19] y el espacio HSV [20] [21], combinados con procesos de
discriminación adicionales basados en features extráıdos de la imagen en escala de grises. En algunos
trabajos como en [22] [23] [24] se emplea simultáneamente la información correspondiente a varios
espacios de color, pero obteniendo pocas o ninguna ventaja sobre el empleo de un solo espacio.

La idea común a todos estos desarrollos sobre segmentación cromática de rostros, es la de
encontrar una región adecuada en un espacio de color que contenga la distribución de colores corre-
spondiente a las zonas de piel de una determinada imagen facial [1]. El uso del espacio Y CbCr aunque
busca disminuir la dependencia de la iluminación al considerar para la segmentación los planos CbCr,
no logra completamente dicho fin pues el plano Y involucra información cromática [25]. Al usar otros
espacios este problema sigue existiendo pues el cluster empleado para realizar la segmentación de-
penderá fuertemente de la iluminación de las imágenes usadas para construir la distribución [25].

Como parte de una solución a este problema King [26] desarrolla una técnica que incluye las
ideas básicas de segmentación cromática mencionadas anteriormente, pero adicionando una poderosa
técnica de corrección de iluminación desarrollada por Finlayson [27]. Los resultados son extremada-
mente satisfactorios pues por medio de esta técnica de corrección de iluminación se logra estabilizar
la distribución que representa el color de la piel sea cual sea el espacio que se use para representar-
la [26].

Por otra parte Zhang [28] desarrolla una técnica de segmentación por color capaz de lidiar
por si sola con algunos defectos de iluminación, y con la propiedad de separar satisfactoriamente
la distribución de colores de la piel de las distribuciones de color de otros objetos no fácilmente
separables por medio de otras técnicas.

En este trabajo se emplea la técnica de iluminación desarrollada por Finlayson [27] junto con
la técnica propuesta por Zhang [28], para finalmente usar el detector de rostro de Viola y Jones [10]
basado en Adaboost. Con esta propuesta se busca seguir las principales tendencias en el estado del
arte, teniendo en cuenta la calidad de los desarrollos y su pertinencia para este trabajo.El esquema
planteado se puede apreciar en la figura 2.1
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2.2. Esquema Seleccionado

2.2.1. Comprehensive Colour Image Normalization (CCIN)

Una imagen bajo diferentes condiciones de iluminación puede aparecer con diferentes valores en
su representación en el espacio RGB, ya sea debido a la geometŕıa de la iluminación o a el illumi-
nant color [25]. Por esto una técnica de normalización del color es necesaria para un segmentación
cromática de mayor precisión. Finlayson [27] ha desarrollado una técnica de tipo iterativo para

la normalización de imágenes a color. Éste autor prueba que usando sucesivamente las ecuaciones
clásicas para compensar la geometŕıa de la iluminación, es posible encontrar una imagen que es
idempotente y única, y por tanto el proceso es siempre convergente. Además la rata de convergen-
cia es alta, t́ıpicamente es alcanzada entre cinco y seis iteraciones.

Sea Ii,j j = R,G,B una imagen en el espacio de color RGB, i es el pixel. Sea R el operador
normalizador de renglones definido como

R (Ii,j) =
Ii,j∑

k=R,G,B Ii,k
(2.1)

y sea C el operador normalizador de columnas, definido como

C (Ii,j) =
NIi,j

3
∑N

k=1 Ik,j
(2.2)

N es el número total de pixeles en la imagen.
El método propuesto por Finlayson [27] puede presentarse como

1. Inicialización: Tome I(0)
i,j = Ii,j como el valor inicial en el proceso

iterativo.

2. Paso de Iteración: Haga I(r+1)
i,j = C

(
R
(
I(r)
i,j

))
.

3. Paso de Finalización: Si I(r+1)
i,j = I(r)

i,j detenga el proceso y haga Inormalizedi,j =

I(r)
i,j , si no vaya al paso 2.

Una vez la convergencia es alcanzada es necesario hacer un escalamiento de los valores de la imagen
resultante. En este trabajo se propone realizar este escalamiento como

Ifinali,j = I(0)
i,j Inormalizedi,j (2.3)

Ebner ha mostrado en [25], que este no es el único camino para realizar este escalamiento pero es
uno de los más usados y uno de los que permite obtener mejores resultados.

En la figura 2.2 se muestra un ejemplo de los resultados obtenidos para una imagen de la base
de datos FERET [29] [30]. La principal diferencia no está en la apariencia de las imágenes sino en
la relación que tiene cada pixel con sus vecinos en la imagen. Esta diferencia se remarcará en los
espacios de color de representación.

2.2.2. Centroid Color Segmentation (CCS)

Zhang [28] ha propuesto una nueva técnica para la segmentación de color basada en una transfor-
mación del espacio RGB a un espacio de dos dimensiones usando un nuevo sistema de coordenadas
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Figura 2.2: Izquierda: Imagen Original Ii,j . Derecha: Imagen Normalizada Ifinali,j
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Figura 2.3: Transformación del espacio RGB a R2.

y el centroide de un triangulo. En la figura 2.3 se muestra esta transformación, en donde cada
componente del vector (Ii,R, Ii,G, Ii,B) = (r, g, b) es mapeada a un nuevo sistema de ejes, en el cual
cada uno de los ejes está separado por 120 grados. El nuevo eje R está a 90 grados de la horizontal.
Entonces, se construye un triangulo con los vértices asociados a los valores de los pixeles en este
nuevo sistema coordenado, y éste tendrá un centroide (u, v), donde (u, v) es el punto en el nuevo
espacio de representación. Algebraicamente, esto se puede expresar de la siguiente manera:

Sea T : R3 7−→ R2 el operador de transformación del espacio RGB a R2. La transformación
está definida como

T (Ii,j) = uiêx + viêy (2.4)

donde

ui =
1

3

[
Ii,B cos

(π
6

)
− Ii,G cos

(π
6

)]
(2.5)

vi =
1

3

[
Ii,R − Ii,B sin

(π
6

)
− Ii,G sin

(π
6

)]
(2.6)

êx, êy son los vectores unitarios en las coordenadas x, y de R2. Acorde a Zhang [28], después de que
se hace esta transformación, se representan los datos en coordenadas polares (θ, r), de manera que
la región en la cual se espera que se encuentren los datos asociados al color de la piel es definida
como

{(θ, r)| r ∈ [rmin, rmax], θ ∈ [θmin, θmax]} (2.7)

En este trabajo se representará la región de distribución de los pixeles de color de la piel,
delimitando aún más la región de interés como el interior de un poĺıgono. En la figura 2.4 se
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muestra la distribución de pixeles de piel en el espacio (θ, r) con 517880 pixeles de piel tomadas de
las bases de datos: FERET [29] [30], Cohn-Kanade [7] y PIE [31] junto con una miscelania de 100
imágenes extráıdas de Internet. La región de interés se delimita por medio de las ecuaciones:

r − 54, 84 ≤ −1,2758(θ − 54,24) (2.8)

r − 54,84 ≤ 2,2074(θ − 54,24) (2.9)

r ≥ 2,5 (2.10)

Esta región se denomina Ms ⊂ R2, de tal manera que la región de distribución de la piel es

{(θ, r)| (θ, r) ∈Ms} (2.11)

Aśı, se espera obtener un modelo flexible pero que elimine muchas zonas en la imagen cuyo color no
es cercano a la distribución de la piel. Se obtiene esta descripción matemática de manera emṕırica,
de acuerdo a lo propuesto por Zhang [28], quién tomó algunos valores emṕıricos para delimitar θ y
r. La máscara resultante de esta umbralización es

Ii,ccs =

{
1 Si Ii,j ∈Ms

0 En caso contrario
(2.12)

Después de la umbralización, es necesario hacer un proceso de corrección no lineal. Zhang [28]
realiza este proceso de la siguiente manera:

Sea Ii,gray la versión en escala de grises de Ii,j , entonces la corrección no lineal es

Ii,binary =
ln (1 + 255Ii,gray)
k ln (1 + 255)

(2.13)

donde k = 2. Con este proceso el ruido es reducido. El valor de k, indica el número de clusters en
la imagen resultante. Luego, la máscara de segmentación se obtiene como

Ii,masc = Ii,ccsIi,binary (2.14)

Después de esto, se llenan los agujeros de Ii,masc. Luego la máscara final de segmentación es

Ii,Fmasc = FfillHoles (Ii,masc) (2.15)

donde FfillHoles es el operador de llenado de huecos. En la figura 2.5 se muestran los resultados de
usar segmentación CCS sobre la imagen normalizada, obtenida en el proceso de normalización de
color.

2.2.3. Adaboost

Viola y Jones han propuesto y desarrollado en [10] un detector de rostro robusto basado en Adaboost,
logrando con éste grandes tasas de reconocimiento. Acorde a Zli [1] [2] éste es de lejos el mejor
detector de rostro para entornos controlados.

El funcionamiento de esta propuesta se basa principalmente en el uso de features extráıdos con
funciones tipo Haar, y el uso de una cascada de clasificadores. Usando Adaboost, los clasificadores
débiles son diseñados de tal manera que se obtiene un clasificador fuerte como una superposición
de los primeros, y la cascada de clasificación aumenta por etapas su poder de discriminación.

Para hacer este entrenamiento eficiente Viola y Jones introducen el concepto de imagen integral,
por medio de la cual es posible obtener eficientemente todos los features de la imagen en una
nueva computada de la original usando sumas acumulativas. Si se denota con II la imagen integral
calculada a partir de la imagen en escala de grises I, se tiene que

II (r, s) =
∑

m≤r,n≤s
I (m,n) (2.16)

Los principales aspectos acerca del algoritmo de Adaboost, pueden resumirse de la siguiente man-
era [10] [1]
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Skin Distribution

Skin Distribution

Making a Zoom

Figura 2.4: Distribución de la Piel en el plano (θ, r). Hay 517880 pixeles de Piel tomadas de las bases
de datos: FERET [29] [30], Cohn-Kanade [7] y PIE [31] junto con una miscelania de 100 imágenes
extráıdas de Internet
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Figura 2.5: Izquierda: Inormalizedi,j . Derecha: Segmentación sobre Inormalizedi,j usando CCS, con los
umbrales especificados en 2.8, 2.9, 2.10
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0. (Entrada)

(1) Sean los ejemplos de entrenamiento Z = {(x1, y1) , . . . (xN , yN )}, donde
N = a + b, tal que existen a ejemplos con yi = 1 y b ejemplos con
yi = −1.

(2) Sea M el número el número de clasificadores débiles a ser
combinados.

1. (Inicialización)

w
(0)
i =

1

2a
Para los ejemplos con yi = 1

w
(0)
i =

1

2b
Para los ejemplos con yi = −1.

2. (Ciclo Iterativo)
For m = 1, . . . ,M:

(1) Seleccione el hm óptimo que minimice el error residual:

εm =
∑

i

w
(m−1)
i 1 [sign (hm (xi)) 6= yi]

(2) Seleccione αm de acuerdo a

αm = log

(
1− εm
εm

)

(3) Actualizar w
(m)
i ← w

(m)
i e−yiαmhm(xi) y normalice a

∑
iw

(m)
i = 1

3. (Salida)

Se construye la Función de Clasificación: HM como

HM (x) =

∑M
m=1 αmhm (x)
∑M

m=1 αm

Una vez que todos los clasificadores han sido diseñados. La cascada de clasificadores llamada atten-
tional cascade es usada para llevar a cabo una búsqueda eficiente en la imagen. Cada clasificador usa
un número creciente de features. De tal manera que los primeros juegan un papel importante para
descartar regiones que no contengan información facial y las regiones con la información más rica
son analizadas con los clasificadores más elaborados y aceptadas como regiones faciales. Para todos
los detalles acerca de este procedimiento el autor refiere al lector al trabajo de Viola y Jones [10].

En la figura 2.6 se muestran los resultados de detección de rostro empleando Adaboost.

2.3. Implementación

2.3.1. Comprehensive Color Image Normalization (CCIN)

Comprehensive colour image normalization (CCIN) es implementada en Matlab. Debido al bajo
costo computacional, del orden de mili segundos, el lenguaje de programación no juega un papel
central.



2.4. RESULTADOS 31

Figura 2.6: Detección de Rostro usando Adaboost sobre una imagen de la base de datos FERET
[29] [30]. Algoritmo de Viola y Jones [10]

2.3.2. Color Centroids Segmentation (CCS)

Como en el caso anterior, la implementación de CCS es realizada en Matlab. El programa se realiza
haciendo uso de operaciones vectoriales, de tal manera que el costo computacional es muy bajo, del
orden de mili segundos.

2.3.3. Adaboost

Una de las implemantaciones más populares del detector de rostro de Viola y Jones basada en
Adaboost se encuentra disponible en la libreŕıa openCV para C++, y se ejecuta en el orden de los
mili segundos. Masnadi [32] ha realizado una implementación de ésta técnica para Matlab, pero no
es la mejor opción debido al enorme costo computacional, que puede llegar a ser de varios minutos
para una imagen de baja resolución. Por lo tanto en este trabajo se usará la implementación que se
encuentra en la libreŕıa openCV.

2.4. Resultados

En la figura 2.7 se muestra un diagrama que ejemplifica el esquema general de detección de rostro
discutido, sobre una de las imágenes de la base de datos FERET [29] [30], mientras que en las
figuras 2.8, 2.9, 2.10 y 2.11 se muestran los resultados sobre una imagen en escala de grises y todas
las imágenes a color de la base de datos Cohn-Kanade [7]. Los resultados de detección son exitosos
salvo por dos casos en la figura 2.9. La tasa de localización en imágenes en escala de grises es la
misma que en [10] puesto que las imágenes de este tipo son tratadas directamente por medio del
detector de Viola y Jones (ver figura 2.1).

2.5. Conclusión

El uso de segmentación cromática es un buen enfoque para obtener resultados más aproximados
en el empleo de un detector de rostro basado en Adaboost. La contribución más importante en
esta sección del trabajo es la combinación de la técnica propuesta por Finlayson [27] con la técnica
de segmentación por centroides desarrollada por Zhang [28] junto con Adaboost. La integración de
estas dos técnicas cromáticas ha mostrado ser una excelente alternativa para la segmentación de
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Adaboost

CCS

Face Detection

Normalized Colour Image

Figura 2.7: Esquema general de Resultados Finales. Imagen de la base de datos FERET [29] [30]

otros objetos en imágenes de color en śı misma y podŕıa usarse con otro tipo de técnica posterior
distinta de Adaboost.
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S005_001_00000001_

S139_002_00000001_

S148_002_00000001_

S149_002_00000001_

S147_002_00000001_
S151_002_00000001_

Figura 2.8: Resultados Finales. Imágenes Base de Datos Cohn-Kanade [7]
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S154_002_00000001

S155_002_00000001

S156_002_00000001

S157_002_00000001

S158_002_00000001

S160_006_00000001

Figura 2.9: Resultados Finales. Imágenes Base de Datos Cohn-Kanade [7]
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S501_001_00000001

S502_001_00000001

S503_001_00000001

S504_001_00000001

S505_002_00000001

S506_001_00000001

Figura 2.10: Resultados Finales. Imágenes Base de Datos Cohn-Kanade [7]

S999_001_00000001

Figura 2.11: Resultados Finales. Imágenes Base de Datos Cohn-Kanade [7]
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3

Localización Automática de Puntos Faciales

La localización automática de puntos faciales representa uno de los mayores desaf́ıos en el análisis
automático de expresiones, cualquiera sea su finalidad [1]. Extraer la información a partir de estos
puntos brinda la posibilidad de analizar los patrones más relevantes involucrados en la imagen facial,
sin necesidad de realizar encajamientos en espacios de mayor dimensión.

En este caṕıtulo se presenta el esquema diseñado para la detección de puntos faciales, que se
apoya y depende fuertemente del esquema de detección de rostros presentado en el caṕıtulo anterior.
Se escogen los Active Appearance Models (AAM) para llevar a cabo este propósito teniendo en cuenta
sus ventajas y el hecho de que representan información consolidada para este fin.

En primera instancia se presenta una breve descripción del estado del arte en esta temática,
mencionando los trabajos más importantes y/o relevantes para los propósitos de esta investigación.
Posteriormente se dedicarán las demás secciones a la discusión de los detalles sobre la construcción
y proceso de búsqueda con los AAM.

Finalmente se dará una presentación de los resultados obtenidos.

3.1. Estado del Arte

El problema de la detección de puntos faciales esa aún hoy en d́ıa un problema abierto, en donde
existen diferentes propuestas que se consolidan con el pasar de los años y las investigaciones [1] [2],
pero que no ofrecen soluciones definitivas al problema.

Desde trabajos como los realizados por Chen [33] en donde se aprovechan argumentos de tipo
probabilista a fin de conocer las regiones más probables para la ubicación de un punto facial con

37
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base en un conjunto de imágenes de entrenamiento, hasta trabajos como el de Yun [34] en donde se
busca emplear herramientas de clasificación de tipo estad́ıstico para localizar los puntos faciales de
acuerdo a los features asociados a una vecindad con centro en dicho punto, y pasando por trabajos
como el de Hu [35] en donde se usan combinaciones lineales de modelos de rostro prototipo para la
localización de las marcas faciales; los argumentos y propuestas son diversos. Sin embargo existen
dos grandes enfoques que despiertan cada vez más el interés de los investigadores. El primero de
éstos basado en Active Appearance Models (AAM), como se evidencia en los trabajos [36] [37] [33],
mientras que el segundo, donde destacan los trabajos de Pantic [38], Kozakaya [39] y recientemente
Valstar [40], en los cuales la localización de cada punto facial es independiente de la localización de
otro dentro de un mismo esquema.

El primer enfoque retoma las fortalezas y debilidades de los AAM, pero con el valor agrega-
do de aprovechar el hecho de que es información consolidada, analizada, mejorada y criticada por
diferentes investigadores, lo que permite conocer con gran profundidad sus limitaciones y potencial-
idades.

Los trabajos de Valstar [40] y Pantic [38] en el Imperial College of London, toman como refer-
encia el esquema de detección de rostro desarrollado por Viola y Jones [10], buscando la localización
de los puntos por medio de features. Valstar [40] propone usar el esquema de detección de rostro
a fin de hacer más eficiente la búsqueda de los puntos, estableciendo regiones más probables para
la búsqueda de acuerdo a unas imágenes de entrenamiento. Los features son extráıdos empleando
wavelets o máscaras de tipo Haar, para posteriormente usar clasificadores boosted o regresión de
soporte vectorial.

Estos últimos trabajos dan indicios tener una fuerte fundamentación, además de ser trabajos
promisorios. Sin embargo las publicaciones sobre éstos no son lo suficientemente detalladas como
para realizar una implementación, y más importante, no permiten conocer en detalle sus limita-
ciones y fortalezas para su aplicación en un proyecto de investigación.

Por estas razones, en este trabajo se emplearán los AAM a fin de lograr la detección de puntos
faciales, siguiendo parte de las ideas de Valstar [40] y Pantic [38] en donde se emplea el mismo es-
quema de detección de rostro, para realizar una búsqueda mucho más aproximada. La localización
automática de estos puntos se realiza en cada frame, y no se consideran algoritmos de seguimiento
ya que las secuencias de imágenes que se encuentran en la base de datos Cohn-Kanade [7], poseen
tazas de muestreo arbitrarias.

3.2. Modelos de Apariencia Activa (AAM)

3.2.1. Formulación del Modelo de Forma

Para la construcción de un modelo de forma, se requiere de un conjunto de imágenes de entre-
namiento anotadas con su respectivo conjunto de marcas [41]. Como el interés en este trabajo es en
imágenes faciales se usan las imágenes de la base de datos Cohn-Kanade [7] después de emplear el
esquema de detección presentado en el caṕıtulo 2.

Las marcas representan los principales puntos geométricos del rostro (ver figura 3.1), y no existe
un único camino para definirlas [1]. A fin de obtener el modelo de forma es necesario en primera
instancia realizar un alineamiento del conjunto de formas empleado para llegar a sus caractaŕısticas
geométricas esenciales [42] [43] [41]. Dichas caracteŕısticas geométricas son invariantes después de
haber eliminado la rotación, el desplazamiento respecto al origen y el escalamiento [44] [45]. Una
vez hecho esto se lleva a cabo la construcción de un modelo de tipo estad́ıstico. Este procedimiento
se detalla a continuación, por medio de varias etapas.

Alineamiento de Forma

Sea

xi =
(
x

(1)
i , x

(2)
i , x

(3)
i , . . . , x

(n)
i , y

(1)
i , y

(2)
i , y

(3)
i , . . . , y

(n)
i

)T
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Un vector de 2n componentes, cuyas primeras n componentes representan las abscisas y las compo-
nentes de n+ 1 hasta 2n son las ordenadas de un conjunto de marcas que representan la forma de
la i−ésima imagen facial de un conjunto de entrenamiento. Los pasos del proceso de alineamiento
se pueden presentar como [45] [44] [41]

1. Trasladar cada forma, de tal manera que su centroide se ubique en el
origen.

2. Tome una forma xi como una estimado inicial del mean shape x̄ y escálelo
de tal manera que ‖x̄‖ = 1.

3. Se hace x̄0 = x̄

Se repite

4. Alinee todas las formas con la estimación actual del mean shape

5. Estimar nuevamente el mean shape como:

x̄ =
1

nS

nS∑

j=1

xj (3.1)

donde nS es el número de formas que serán alineadas.

6. Alinee x̄ a la referencia inicial x̄0

7. Normalice el mean shape tal que ‖x̄‖ = 1

Hasta lograr convergencia

En el paso 4 se plantea alinear cada forma con el mean shape. Es decir este paso se reduce al
alineamiento entre dos formas. Sea xi,xj , i 6= j dos formas diferentes que se desean alinear. El
proceso de alineación de la forma xi a la forma xj se plantea como el de encontrar los parámetros
de una transformación de similaridad T tal que

T (xi) =

[
a −b
b a

]
xi +

[
tx
ty

]
= xj (3.2)

por supuesto no hay garant́ıa de que existan a, b, tx, ty de tal manera que se cumpla una igualdad,
por ello para llegar a los mejores parámetros se minimiza la función

E = ‖T (xi)− xj‖2 (3.3)

que llega a su valor mı́nimo seleccionando los parámetros con los siguientes valores

a =
xi · xj
‖xi‖2

, b =

∑n
r=1 (xi(r)xj(n+ r)− xi(r + n)xj(r))

‖xi‖2
(3.4)

tx =
1

n

n∑

r=1

xj(r), ty =
1

n

n∑

r=1

xj(n+ r) (3.5)
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Figura 3.1: Izquierda: Conjunto de marcas asignadas con el estándar de la base de datos Cohn-
Kanade [7]. Derecha: Conjunto de marcas asignadas siguiendo el esquema de Cootes [1]

Análisis de Componentes Principales

Para la construcción del modelo estad́ıstico se emplea análisis de componentes principales. Primero
se computa la matriz de covarianza Ss de los datos como [42] [43] [41]

Ss =
1

nS − 1

nS∑

i=1

(xi − x̄) (xi − x̄)T (3.6)

y entonces se calculan los eigenvectores φsk correspondientes a los eigenvalores λsk, ordenados tal
que λsk ≥ λs(k+1). Si Φs es la matriz cuyos vectores columna son los eigenvectores φsk correspon-
dientes a los qs eigenvalores más grandes, el valor de cualquier x puede ser aproximado por

x ≈ x̄ + Φsbs (3.7)

donde bs es un vector que contiene el conjunto de parámetros del modelo deformable. Variando
los elementos de bs se puede variar la forma x usando la ecuación 3.7. La varianza del i−ésimo
parámetro, bsi, en el conjunto de entrenamiento está dado por λsi [46]. El número de eigenvectores
a retener, qs, puede ser escogido de tal manera que se conserve una porción de la varianza total de
los datos [46] [42] [43], acorde a Cootes et al [42] [43] un criterio para tomar este porcentaje es

∑qs
k=1 λk∑
k=1 λk

≥ 0,98

es decir, tomando el 98 % de la enerǵıa total de los eigenvalores.

3.2.2. Formulación del Modelo de Textura

Como en el caso del modelo de forma, para la construcción del modelo de textura se requiere de un
conjunto de imágenes de entrenamiento, que es el mismo conjunto empleado para la construcción del
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modelo de forma. Una vez se cuenta con estas imágenes, se realiza un procedimiento de normalización
o alineación para aśı construir un modelo estad́ıstico empleando análisis de componentes principales
[42] [43].

Es importante dejar claro que las muestras de textura se toman dentro del convex hull obtenido
de las formas no alineadas [41].

Image Warping

Usando el image warping se mapea la textura de las muestras dentro de una forma a otra [41]. Para
esto se construye un enmallado triangular cuyos vértices son las marcas que definen la forma del
objeto, y la textura del mismo se encontrará en el convex hull de dicha forma. En esta construcción
de enmallados se usa usualmente el algoritmo Delaunay [41].

Una vez realizado esto, se mapean los niveles de gris correspondientes a los pixeles dentro de
cada triángulo de la forma original al triangulo asociado de la otra forma [41]. Para ilustrar esto
considere el diagrama de la figura 3.2, sea xr la forma de un objeto y x̃r otra forma asociada. Sean
v(1),v(2),v(3) los vectores que representan los vértices de un triangulo 4v(1,2,3)

sobre el enmallado

del objeto xr tomados en sentido contrario a las manecillas del reloj, mientras que v
′

(1),v
′

(2),v
′

(3) son

los vectores correspondientes al triángulo 4
v
′
(1,2,3)

asociado a 4v(1,2,3)
sobre la forma x̃r. Entonces

el valor del pixel localizado en v = [x, y]T dentro del triángulo 4v(1,2,3)
es mapeado a v

′
= [x

′
, y
′
]T

dentro del triángulo 4
v
′
(1,2,3)

de la siguiente manera

Twarp (v) =

[
x
′

y
′

]
= αv

′

(1) + βv
′

(2) + γv
′

(3) (3.8)

donde
α = 1− (β + γ) (3.9)

β =
yvx3 − vx1y − vx3vy1 − vy3x+ vx1vy3 + xvy1

−vx2vy3 + vx2vy1 + vx1vy3 + vx3vy2 − vx3vy1 − vx1vy2

(3.10)

γ =
xvy2 − xvy1 − vx1vy2 − vx2y + vx2vy1 + vx1y

−vx2vy3 + vx2vy1 + vx1vy3 + vx3vy2 − vx3vy1 − vx1vy2

(3.11)

y v(i) = [vxi , vyi ]
T , i = 1, 2, 3. Una vez hecho este mapeo es necesario llevar a cabo una interpo-

lación para definir los niveles de gris en los cuales no se mapea ningún valor de textura [41].
Aunque este procedimiento se define entre dos formas generales que cuentan con enmallados cuyos

números de triángulos y vértices son iguales, se considera que la segunda forma es una versión
deformada de la primera por medio de alguna transformación [41]. En la figura 3.3 se evidencia la
operación de image warping sobre una imagen de la base de datos FERET [29] [30].

Alineación de Textura

Para minimizar los efectos de variaciones globales de iluminación, se normaliza el conjunto de
imágenes empleadas para construir el modelo buscando dejar varianza unitaria y media nula [42]
[43] [1].

Sea gi el vector columna de las muestras de textura (los niveles de gris en la imagen en escala de
grises) de la imagen i en el interior del convex hull de la forma no alineada xi. gi es la representación
vectorial de la imagen por lo cual alĺı habrá una cantidad de ceros asociada a los pixeles que estén
fuera del convex hull de xi. El proceso de normalización se puede presentar como
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4v(1,2,3)
4v

′
(1,2,3)

v(1)

v(3)

v(2)

v
′
(1)

v
′
(2)

v
′
(3)

xr x̃r

b

b

Figura 3.2: Diagrama que Ilustra el Image Warping, en donde xr es una versión deformada de x̃r
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1. Haga el warping de las muestras de textura dentro del convex hull de xi
para la imagen original i al mean shape ubicado en el centro de la imagen
y con un escalamiento que es el promedio de todos los tama~nos de los
rostros en el conjunto de imágenes de entrenamiento. Esto se representa
como gi ← Twarp (gi).

2. Calcule para todos los gi

gi =
gi − β1√

α
(3.12)

donde

β =
gi · 1
nS

(3.13)

α =
‖gi‖2
nS

− β2 (3.14)

aqúı 1 es el vector cuyas componentes son todas iguales a 1. Este no es el único camino para
realizar esta normalización, Cootes en [42] propone otra forma para realizar esta normalización con
resultados semejantes a los presentados en este trabajo y en el trabajo de Stegmann [41].

Analisis de Componentes Principales

Una vez las muestras de textura se han normalizado, se calcula la matriz de covarianza1 [42] [43] [41]
como

Sg =
1

nS − 1

nS∑

i=1

(gi − ḡ) (gi − ḡ)T (3.15)

y entonces se computan los eigenvectores φgk correspondientes a los eigenvalores λgk, ordenados
como λgk ≥ λg(k+1). Si Φg es la matriz cuyos vectores columna son los eigenvectores φgk cor-
respondientes a los qg eigenvalores más grandes, el valor de cualquier gi puede ser aproximado
como

g ≈ ḡ + Φgbg (3.16)

donde bg es un vector que representa un conjunto de parámetros del modelo. Variando los elementos
de bg se puede modificar la textura g usando la ecuación 3.16. La varianza del i−ésimo parámetro
bgi para el conjunto de entrenamiento está dado por λgi [46]. El número de eigenvectores a retener
qg, puede ser escogido tal que el modelo represente una porción de la varianza total de los datos
[46] [42] [43]. Acorde a Cootes et al, un criterio que puede tomarse es, al igual que en el modelo de
forma ∑qg

k=1 λk∑
k=1 λk

≥ 0,98

3.2.3. Formulación del Modelo Combinado

Se puede obtener una formulación combinada del modelo de apariencia aplicando análisis de com-
ponentes principales a los vectores

b =

[
Wsbs

bg

]
=

[
WsΦ

T
s (x− x̄)

ΦT
g (g − ḡ)

]
(3.17)

1Generalmente el tamaño de las imágenes hace inaceptable el costo computacional asociado a esta matriz de
covarianza, por lo cual es necesario realizar una proyección. Con ésta se podrá encontrar los eigenvalores de una
matriz más pequeña, y cuyos eigenvectores permitirán por medio de dicha proyección obtener los eigenvectores de la
matriz de covarianza original [47] [48]
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Figura 3.3: De izquierda a derecha: a) Imagen Original, b)Imagen con Marcas asignadas,
c)Enmallado construido usando las marcas, d)Textura en el interior del convex hull del enmallado
mapeada sobre la forma media usando image warping

en donde Ws es una matriz de escalamiento para adecuar unidades. Si se denota la matriz de estos
nuevos eigenvectores como Φ̂, entonces el nuevo modelo tiene la siguiente forma

b = Φ̂c (3.18)

Los vectores c son llamados parámetros de apariencia [49] [50] [51]. Con esto, se puede controlar
la forma y el modelo de textura. Puesto que el modelo de forma y textura tienen media cero, c
también tiene media cero [42] [43]. Entonces el modelo combinado puede ser escrito como

x = x̄ + ΦsW
−1
s Φ̂csc (3.19)

g = ḡ + ΦgΦ̂cgc (3.20)

donde

Φ̂ =

[
Φ̂cs

Φ̂cg

]
(3.21)

En la figura 3.4 se puede apreciar el comportamiento del modelo combinado variando los parámetros
del vector c.

Selección de parámetros de ponderación de forma Ws

En este trabajo se usa la propuesta realizada por Cootes [42], en la que Ws es seleccionado como:

Ws = rI (3.22)

donde I es la matriz identidad, y r > 0 es tal que

r2 =

∑qg
k=1 λgk∑qs
k=1 λsk

(3.23)

3.2.4. Búsqueda en AAM

La búsqueda en los Active Appearance Models requiere de una etapa de entrenamiento, en la cual
se construyen cantidades requeridas para la siguiente etapa, que es finalmente el proceso de mini-
mización de una función de error para acoplar el modelo a la imagen objetivo.



3.2. MODELOS DE APARIENCIA ACTIVA (AAM) 45

Figura 3.4: De izquierda a Derecha: a)Valor del modelo haciendo c1 = −
√
λ1, ci = 0 ∀i > 1,

b)Textura media, sobre la forma media (Mean Shape) c)Valor del modelo haciendo c1 =
√
λ1, ci =

0 ∀i > 1, d)Representación de los cambios de forma por la variación de c1 (Azul: Mean Shape,
Verde: c1 =

√
λ1, Rojo: c1 = −

√
λ1)

Para realizar este proceso es necesario aplicar una transformación de similaridad sobre el mod-
elo, con la que se busca representar la variación del modelo combinado en el frame de la imagen.
Esta transformación se representa para cualquier punto v = [x, y]T como

Tt (v) =

[
1 + sx −sy
sy 1 + sx

]
v +

[
tx
ty

]
(3.24)

t = (t1, t2, t3, t4) = (sx, sy, tx, ty) donde sx = s cos(θ) − 1, sy = s sin(θ). θ es la rotación, y s el
escalado, mientras que (tx, ty) es la traslación.

A continuación se detallan las dos etapas que describen la búsqueda con los AAM

Entrenamiento: Corrección de los Parámetros del Modelo

La principal idea para el entrenamiento en la corrección de los valores de los parámetros, es usar las
condiciones de imágenes conocidas en el modelo. Se hace una perturbación controlada sobre éstas y
se almacena el error. Entonces, todos los errores son almacenados en una matriz que es usada para
realizar la búsqueda en el frame de la imagen.

Sean ci,0 y ti,0 los valores de los parámetros del modelo y de la transformación de similaridad
con los cuales el modelo genera el elemento gi de la imagen i. Se realiza una perturbación conocida
δc, δt para cada parámetro individualmente como

c = ci,0 + δc (3.25)

t = ti,0 + δt, (3.26)

de manera que

Tti,0+δt (xm) = Tti,0 (Tδt (xm)) = ˆ̂xm (3.27)

gm = ḡ + ΦgΦ̂cg (ci,0 + δc) (3.28)

xm = x̄ + ΦsW
−1
s Φ̂cs (ci,0 + δc) (3.29)

ˆ̂gm es la textura generada en el marco de la imagen i haciendo warping de gm a ˆ̂xm, entonces el
error se puede computar como

Ξg = gs − ˆ̂gm (3.30)

donde gs es la muestra de textura dentro del convex hull de ˆ̂xm que es el modelo de forma perturbado
en el marco de la imagen i.
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Sea g∂kpi el error computado por perturbación del parámetro pi por un valor de ζ (k) , k =
1, 2, 3, ..., d y sea A la matriz cuyos vectores columna ai son de la forma

ai =
1

d

d∑

k=1

wkg∂kpi (3.31)

donde

wk =
1

pk
e
− (δpk)2

2σ2
k (3.32)

σk es la desviación estándar, si pk = ck entonces σk =
√
λk y si pk = tk σk tiene otro valor

dependiendo de las perturbaciones realizadas en los ti.
Ahora, con esta notación y acorde a [43] [52] se construye

R̂ =
(
AAT

)−1 A (3.33)

Refinamiento Iterativo del modelo

Para el refinamiento iterativo del modelo, se siguen los siguientes pasos [42] [43] [52]:

1. Se inicia con c = 0, t = t0 siendo t0 la condición inicial de la
transformación que ubica xm en el marco de referencia de la imagen con
un escalamiento que es el promedio de los tama~nos de las imágnes sin
alinear, junto con un desplazamiento al centro de la imagen. Entonces

gm = ḡ (3.34)

xm = x̄ (3.35)

y Tt0 (xm) = ˆ̂xm es el marco de referencia asociado al modelo de textura.

2. Se proyecta la muestra de textura gs dentro de ˆ̂xm haciendo normalización
para que tenga media cero y varianza unitaria, obteniendo un nuevo gs.

3. Evalúe el error Ξg = gs − ˆ̂gm, y el error actual, E = ‖Ξg‖2.

4. Calcule los desplazamientos δp = −R̂Ξg, donde pT = (cT |tT )

5. Actualice los parámetros del modelo p → p + ζ(k)δp donde inicialmente k =
1, y

ζ(k)δp =




ζc(k)δc1

ζc(k)δc2
...

ζc(k)δcn
ζt(k)δt1

...
ζt(k)δt4




(3.36)

6. Calcule los nuevos puntos, ˆ̂x
′
m y el modelo de textura en el marco de la

imagen ˆ̂g
′
m.

7. Tome las muestras de textura de la imagen en el interior del convex hull

de ˆ̂x
′
m y normalice para obtener g

′
s.
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8. Calcule el nuevo vector de error, Ξ
′
g = g

′
s − ˆ̂g

′
m.

9. Si
∥∥∥Ξ′g

∥∥∥
2
< E, entonces acepte el nuevo estimado; de lo contrario se

prueba con k = 0,5; k = 0,25; etc.

Cootes et al [42] [43] y Stegmann en [52] han demostrado que la selección óptima de los desplaza-
mientos se realiza como

δci = k
√
λi k ∈ Q (3.37)

teniendo en cuenta esto, en este trabajo se selecciona

ζc(k) =
1

5
(k − 3,5), ∀k ∈ [1, 6], k ∈ Z y δci =

√
λi (3.38)

para los desplazamientos en los parámetros de la transformación de similaridad se hace

δti = 1, ∀i (3.39)

y se selecciona

ζt|t1(k) = ζt|t2(k) =
1

5
(k − 3,5), ∀k ∈ [1, 6], k ∈ Z (3.40)

ζt|t3(k) = ζt|t4(k) =
2(k − 3,5)

sx0 + 1
, ∀k ∈ [1, 6], k ∈ Z (3.41)

donde sx0 + 1 = sx0 cos(θ0) define los parámetros de la transformación de similaridad sin pertur-

bación, tal que gi es generado en el frame de la imagen como Tti,0(gi) = ˆ̂gi.

3.3. Implementación

Para realizar la implementación de los AAM, se empleó la herramienta de simulación Matlab. Los
tiempos de búsqueda por imagen oscilan entre los 3 y 5 minutos aproximadamente en un computador
con caracteŕısticas promedio. En el entrenamiento se requiere de un tiempo del orden de horas.

3.4. Resultados

3.4.1. Evaluación Cuantitativa

El interés principal de este trabajo en el uso de los modelos de apariencia activa es la localización
de puntos faciales, en donde una medida de la calidad de esta localización puede estar asociada al
comportamiento final en textura del modelo. Sin embargo este aspecto no es definitivo, teniendo en
cuenta que en muchos casos el acople del enmallado final no está siempre relacionado con errores
finales pequeños, por ello se establece un umbral de error satisfactorio valorando los resultados
experimentales.

En las figuras 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, se
muestran los resultados finales de detección de puntos faciales sobre un conjunto de 100 imágenes de
la base de datos Cohn-kanade [7] no usadas ni en el entranamiento ni en la construcción del modelo.
Los resultados por imagen individual se encuentran organizados en renglones. Para cada renglón, la
primera columna muestra el sujeto con la ubicación inicial de la forma media, la segunda columna
muestra el mean shape en la posición inicial, la tercera columna muestra el enmallado final después
del proceso de minimización sobre la imagen objetivo, la cuarta columna muestra la textura final
del modelo sobre la imagen y por último la quinta columna muestra la imagen original. Los datos de
error final y número de iteraciones asociadas a estas figuras se encuentran consignados en la tabla
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3.1.
Para la construcción del modelo fueron empleadas 244 imágenes de la base de datos Cohn-

Kanade [7] usando el estándar de marcas asociado a la misma (ver figura 3.1). El entrenamiento
fue realizado sobre un conjunto de 193 imágenes. Teniendo en cuenta todos estos resultados el
umbral establecido para considerar como satisfactoria la búsqueda es de 95. Aśı, 84 de las pruebas
consignadas en la tabla 3.1 tienen un error final inferior a este umbral.

3.5. Discusión y Conclusiones

El uso del esquema de detección de rostro planteado en el caṕıtulo 2, permitió mejorar los resultados
obtenidos en el uso de AAM, ya que se redujo en gran medida el grado de subjetividad para indicar
la condición inicial del modelo respecto de la imagen. Esto representa una opción para los fines de
extracción de información.

La forma de entrenamiento requerida para realizar el proceso de búsqueda con los AAM implica
que para un buen funcionamiento y comportamiento de los mismos debe haber una gran correlación
entre los patrones faciales del sujeto en la imagen objetivo y las imágenes de entrenamiento. Por
ello el escenario más pertinente para la aplicación de este desarrollo es uno en el cual es posible con
unas cuántas imágenes de un individuo, identificar en una secuencia arbitraria y no conocida de
imágenes del mismo, los puntos faciales de interés.
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Imagen Error Final Iteraciones Imagen Error Final Iteraciones
1 48.1108 44 51 83.6237 6
2 98.5801 21 52 74.0367 6
3 79.7742 16 53 71.9703 14
4 48.4909 43 54 34.9860 57
5 59.5254 40 55 43.7373 37
6 56.9495 35 56 50.7269 32
7 58.0280 29 57 50.7269 49
8 66.8353 16 58 94.7319 5
9 71.0264 28 59 11.30386 5
10 40.9431 52 60 97.8205 25
11 67.6079 14 61 75.9192 35
12 67.1339 17 62 77.3782 26
13 62.3094 39 63 71.2283 17
14 100.9103 15 64 52.7941 55
15 101.4590 17 65 67.9733 17
16 69.0196 16 66 86.0298 17
17 68.7041 25 67 54.4744 58
18 75.1369 20 68 108.9230 6
19 73.2374 9 69 57.9465 51
20 48.3397 25 70 56.0894 81
21 51.1266 36 71 114.6948 5
22 73.9588 14 72 49.6707 78
23 71.9316 8 73 94.0578 5
24 69.2547 20 74 54.1309 54
25 78.1378 12 75 108.6562 8
26 86.3782 8 76 104.2382 7
27 85.2431 9 77 87.5434 11
28 74.6489 10 78 44.4923 59
29 53.1672 27 79 95.8944 18
30 60.4367 33 80 72.1129 16
31 39.7533 55 81 62.2984 23
32 79.2244 18 82 66.0403 20
33 71.1190 18 83 64.6535 58
34 40.4023 47 84 49.0298 91
35 81.1578 7 85 68.8150 17
36 92.4814 7 86 55.9712 59
37 92.4814 36 87 100.4090 6
38 48.0576 43 88 58.0705 55
39 41.5301 42 89 95.1503 4
40 97.3068 7 90 81.6702 11
41 53.8275 46 91 43.2614 60
42 54.6813 33 92 59.9984 18
43 34.7397 52 93 60.6217 23
44 99.3486 5 94 67.4194 22
45 99.4995 4 95 76.5257 16
46 85.1043 6 96 69.8225 23
47 79.6058 5 97 52.9968 47
48 43.0793 45 98 40.8333 56
49 77.3700 25 99 50.7203 46
50 75.8155 31 100 104.9347 5

Cuadro 3.1: Resultados AAM
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Figura 3.5: Resultados Imágenes 1-7. Para cada renglón, la primera columna muestra el sujeto con
la ubicación inicial de la forma media, la segunda columna muestra el mean shape en la posición
inicial, la tercera columna muestra el enmallado final después del proceso de minimización sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
último la quinta columna muestra la imagen original. Los datos de error final y número de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla 3.1
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Figura 3.6: Resultados Imágenes 8-14. Para cada renglón, la primera columna muestra el sujeto con
la ubicación inicial de la forma media, la segunda columna muestra el mean shape en la posición
inicial, la tercera columna muestra el enmallado final después del proceso de minimización sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
último la quinta columna muestra la imagen original. Los datos de error final y número de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla 3.1
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Figura 3.7: Resultados Imágenes 15-21. Para cada renglón, la primera columna muestra el sujeto
con la ubicación inicial de la forma media, la segunda columna muestra el mean shape en la posición
inicial, la tercera columna muestra el enmallado final después del proceso de minimización sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
último la quinta columna muestra la imagen original. Los datos de error final y número de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla 3.1
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Figura 3.8: Resultados Imágenes 22-28. Para cada renglón, la primera columna muestra el sujeto
con la ubicación inicial de la forma media, la segunda columna muestra el mean shape en la posición
inicial, la tercera columna muestra el enmallado final después del proceso de minimización sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
último la quinta columna muestra la imagen original. Los datos de error final y número de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla 3.1
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Figura 3.9: Resultados Imágenes 29-35. Para cada renglón, la primera columna muestra el sujeto
con la ubicación inicial de la forma media, la segunda columna muestra el mean shape en la posición
inicial, la tercera columna muestra el enmallado final después del proceso de minimización sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
último la quinta columna muestra la imagen original. Los datos de error final y número de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla 3.1
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Figura 3.10: Resultados Imágenes 36-42. Para cada renglón, la primera columna muestra el sujeto
con la ubicación inicial de la forma media, la segunda columna muestra el mean shape en la posición
inicial, la tercera columna muestra el enmallado final después del proceso de minimización sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
último la quinta columna muestra la imagen original. Los datos de error final y número de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla 3.1
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Figura 3.11: Resultados Imágenes 43-49. Para cada renglón, la primera columna muestra el sujeto
con la ubicación inicial de la forma media, la segunda columna muestra el mean shape en la posición
inicial, la tercera columna muestra el enmallado final después del proceso de minimización sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
último la quinta columna muestra la imagen original. Los datos de error final y número de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla 3.1
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Figura 3.12: Resultados Imágenes 50-56. Para cada renglón, la primera columna muestra el sujeto
con la ubicación inicial de la forma media, la segunda columna muestra el mean shape en la posición
inicial, la tercera columna muestra el enmallado final después del proceso de minimización sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
último la quinta columna muestra la imagen original. Los datos de error final y número de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla 3.1
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Figura 3.13: Resultados Imágenes 57-63. Para cada renglón, la primera columna muestra el sujeto
con la ubicación inicial de la forma media, la segunda columna muestra el mean shape en la posición
inicial, la tercera columna muestra el enmallado final después del proceso de minimización sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
último la quinta columna muestra la imagen original. Los datos de error final y número de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla 3.1
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Figura 3.14: Resultados Imágenes 64-70. Para cada renglón, la primera columna muestra el sujeto
con la ubicación inicial de la forma media, la segunda columna muestra el mean shape en la posición
inicial, la tercera columna muestra el enmallado final después del proceso de minimización sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
último la quinta columna muestra la imagen original. Los datos de error final y número de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla 3.1
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Figura 3.15: Resultados Imágenes 71-77. Para cada renglón, la primera columna muestra el sujeto
con la ubicación inicial de la forma media, la segunda columna muestra el mean shape en la posición
inicial, la tercera columna muestra el enmallado final después del proceso de minimización sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
último la quinta columna muestra la imagen original. Los datos de error final y número de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla 3.1
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Figura 3.16: Resultados Imágenes 78-84. Para cada renglón, la primera columna muestra el sujeto
con la ubicación inicial de la forma media, la segunda columna muestra el mean shape en la posición
inicial, la tercera columna muestra el enmallado final después del proceso de minimización sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
último la quinta columna muestra la imagen original. Los datos de error final y número de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla 3.1
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Figura 3.17: Resultados Imágenes 85-91. Para cada renglón, la primera columna muestra el sujeto
con la ubicación inicial de la forma media, la segunda columna muestra el mean shape en la posición
inicial, la tercera columna muestra el enmallado final después del proceso de minimización sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
último la quinta columna muestra la imagen original. Los datos de error final y número de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla 3.1
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Figura 3.18: Resultados Imágenes 92-98. Para cada renglón, la primera columna muestra el sujeto
con la ubicación inicial de la forma media, la segunda columna muestra el mean shape en la posición
inicial, la tercera columna muestra el enmallado final después del proceso de minimización sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
último la quinta columna muestra la imagen original. Los datos de error final y número de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla 3.1
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Figura 3.19: Resultados Imágenes 99-100. Para cada renglón, la primera columna muestra el sujeto
con la ubicación inicial de la forma media, la segunda columna muestra el mean shape en la posición
inicial, la tercera columna muestra el enmallado final después del proceso de minimización sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
último la quinta columna muestra la imagen original. Los datos de error final y número de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla 3.1



4

Extracción de Descriptores

h

a

b

s,t,w,q,v,z

La representación de patrones en señales e imágenes, busca la descripción de un objeto particular
en un entorno donde existe más información que no es de interés [53]. Dicha información adicional
no siempre es fácilmente separable del mismo, y por ello la forma en como se representa este objeto
debe obedecer a criterios tanto teóricos como prácticos, buscando que cada descriptor posea una
gran riqueza de información [54].

El problema de representación de las expresiones faciales, ha mostrado ser fuente de distintas
propuestas en la definición de los descriptores [1]. Sin embargo, existen propuestas que destacan
entre las demás por su fundamentación y efectividad en fines de clasificación y śıntesis, convirtiendo
el problema de selección de los descriptores en una tarea donde se deben valorar la fundamentación
y la efectividad.

En este caṕıtulo se realiza la definición de los features a emplear para representar las expresiones
faciales siguiendo la propuesta realizada por Tian [55], la cual posee sólidos argumentos teóricos
y está acompañada por resultados satisfactorios en su utilización. Se definirá además su forma de
separación en variedades para su posterior procesamiento.

Adicionalmente, se realizará un análisis de los efectos de la simetŕıa en los conjuntos resultantes
que describen la expresión, para finalmente dar algunas conclusiones generales al respecto.

4.1. Estado del Arte

En la descripción de comportamientos faciales existe una distinción importante entre el problema
de identificación de rostros y el de reconocimiento de expresiones faciales [1] [2], quedando claro
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Figura 4.1: Features mFSF

aśı que es necesario conocer el propósito y tipo de clasificación para realizar una adecuada selección
de los parámetros empleados para la representación.

Al igual que en otros problemas, la selección de estos parámetros no es única y muchas de las
propuestas existentes obedecen a consideraciones particulares del autor que no siempre tienen una
justificación y trasfondo claro [1].

En este trabajo se destacan las propuestas de Tian [55] y Rayvse [56] por su sólida funda-
mentación y resultados en problemas de representación para fines de clasificación y/o śıntesis.

En [1] se presenta el trabajo de Tian [55] como una de las propuestas más significativas y con
mejores resultados para fines de clasificación de expresiones faciales. En ésta se propone un esquema
para la descripción de las expresiones con fines de clasificación en la cual el manejo de la información
se hace directamente con las herramientas de clasificación sin realizar un procesamiento previo.

Por otra parte los resultados obtenidos por Ping [57] empleando la técnica desarrollada por
Rayvse en [56] muestran ser prometedores para la descripción dinámica de expresiones faciales,
además de que dicha técnica posee una sólida fundamentación con elaborados procesos basados en
operaciones binarias. Sin embargo, al ser dependiente en gran parte de las condiciones de ilumi-
nación puede llegar a verse afectada por el ruido y/o condiciones de entorno cambiantes.

Por esto se hará uso de la propuesta de Tian [55], adicionando features que permitirán tener
una medida de la simetŕıa de los movimientos faciales en la región facial inferir.

4.2. Definición de Parámetros

La mayor parte de los features definidos a continuación se realizan siguiendo la propuesta de Tian
[55], sin embargo se realizará una separación en variedades para dar el procesamiento posterior a la
información por medio de técnicas de reducción de dimensionalidad.

4.2.1. Alternativa Planteada

El conjunto que representa los features de forma de la región facial superior propuestos por
Tian en [55] se representarán como mFSF , éstos features se indican en la figura 4.1. Entonces dicho
conjunto se especifica como
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Figura 4.2: Features mFST

mFSF =
{
v ∈ R9

∣∣vT = [D, bri, bli, hr1, hr2, hl1, hl2, bro, blo]
}

(4.1)

El conjunto que representa los features de textura de la región facial superior propuestos por
Tian en [55] se representarán como mFST , las regiones en las cuales se calculan éstos se indican en

la figura 4.2. Éste conjunto puede definirse como

mFST =
{
v ∈ R6

∣∣vT = [fr1, fr2, fl1, fl2, nrs1, nrs2]
}

(4.2)

para definir cada uno de los componentes de este vector sean fl,fr y nrs las regiones indicadas
en la figura 4.2. Sea ζb el operador de detección de bordes cuya salida es una imagen binaria, ηcc
el operador que indica el número de componentes conexas y σ el operador que indica el valor de
la desviación estándar. De esta manera las componentes de los vectores que pertenecen a mFST se
definen como

fr1 = ηcc (ζb (fr)) , fl1 = ηcc (ζb (fl)) , nrs1 = ηcc (ζb (nrs)) (4.3)

fr2 = σ (fr) , fl2 = σ (fl) , nrs2 = σ (nrs) (4.4)

El conjunto que representa los features de forma de la región facial inferior se puede apreciar en
las figuras 4.3 y 4.4. Este conjunto de features puede definirse como mFIF

⋃
mFIS en donde

mFIF =
{
v ∈ R3

∣∣vT = [h1, h2,W ]
}

(4.5)

mFIS =
{
v ∈ R4

∣∣vT = [Dr, Dl, dsr, dsl]
}

(4.6)

en donde mFIS da una medida de las movimientos simétricos de la región facial inferior.
Por último, para el conjunto de features de textura de la región facial inferior se considera en la

figura 4.5. Éste se puede definir como

mFIT =
{
v ∈ R6

∣∣vT = [Tch1, Tch2, Tr1, Tr2, Tl1, Tl2]
}

(4.7)
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Figura 4.3: Features mFIF

donde Tch,Tr,Tl son las regiones indicadas en la figura 4.5. Empleando los operadores ζb, ηcc y σ
los componentes de los vectores que pertenecen a mFIT se describen como

Tch1 = ηcc (ζb (Tch)) , Tr1 = ηcc (ζb (Tr)) , Tl1 = ηcc (ζb (Tl)) (4.8)

Tch2 = σ (Tch) , Tr2 = σ (Tr) , Tl2 = σ (Tl) (4.9)

4.2.2. Comportamiento Dinámico: Variedades de Datos

Si bien los conjuntos de features representan caracteŕısticas esenciales de las expresiones faciales
en cada frame, su representación debe realizarse respecto de un punto inicial si se desea conocer
el comportamiento dinámico. Sea v(t) el vector de features asociado al frame t de una secuencia
de v́ıdeo de imágenes faciales de un determinado sujeto. Los conjuntos de datos que describen el
comportamiento dinámico, para un v́ıdeo con un total de q + 1 frames se representan como

M̂FSF =
{
u ∈ R9

∣∣u = v(t) − v(0), v(t),v(0) ∈ mFSF , ∧ 0 ≤ t ≤ q
}

(4.10)

M̂FST =
{
u ∈ R6

∣∣u = v(t) − v(0), v(t),v(0) ∈ mFST , ∧ 0 ≤ t ≤ q
}

(4.11)

M̂FIF =
{
u ∈ R3

∣∣u = v(t) − v(0), v(t),v(0) ∈ mFIF , ∧ 0 ≤ t ≤ q
}

(4.12)

M̂FIS =
{
u ∈ R4

∣∣u = v(t) − v(0), v(t),v(0) ∈ mFIS , ∧ 0 ≤ t ≤ q
}

(4.13)

M̂FIT =
{
u ∈ R6

∣∣u = v(t) − v(0), v(t),v(0) ∈ mFIT , ∧ 0 ≤ t ≤ q
}

(4.14)

de esta manera se podrá medir la evolución de la expresión respecto de las caracteŕısticas encon-
tradas en el primer frame.
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Figura 4.4: Features mFIS
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Figura 4.5: Features mFIT

Comportamiento Dinámico: Comparaciones de Magnitud y Separación en Variedades

En el trabajo de Tian [55] se propuso realizar la clasificación de expresiones faciales empleando
dos clasificadores diferentes para las regiones faciales inferior y superior respectivamente. Esta mis-
ma idea, se retoma en este trabajo, y se propone realizar el análisis de la información para su

reducción de dimensionalidad individualmente en M̂FSF ,M̂FST ,M̂FIF ,M̂FIS ,M̂FIT . Esto per-
mitirá analizar datos que son comparables entre śı en órdenes de magnitud, además de eliminar el
problema de hallar escalamientos para lidiar con los cambios de unidades.

En el caṕıtulo 5 se adicionarán argumentos relacionados con efectos de las grandes dimensiones
sobre la representación de los datos. Ésto reforzará aún más la idea de analizar los datos de acuerdo
a la propuesta realizada en este caṕıtulo.

Comportamiento Dinámico: Acerca de la Simetŕıa

La mayor parte de los features extráıdos representan información redundante en caso de que exista
simetŕıa en los movimientos faciales. En muchas situaciones, este es el caso. Por ello es importante
resaltar, que para fines de procesamiento de la información es necesario tener esto presente, pues
la dimensión estimada para la variedad de los movimientos no simétricos podŕıa ser mayor que la
dimensión correspondiente a una variedad de movimientos simétricos. Para ver esto considere un
elemento v de mFSF

v = [D, bri, bli, hr1, hr2, hl1, hl2, bro, blo] (4.15)

en caso de que existiesen movimientos simétricos, la siguiente aproximación seŕıa totalmente válida

[D, bri, bli, hr1, hr2, hl1, hl2, bro, blo] ≈ [D, bri, bri, hr1, hr2, hr1, hr2, bro, bro] (4.16)

es decir ya no seŕıan nueve las variables que describen el vector de representación sino cinco. Esto
bien podŕıa tener una implicación fuerte en la estimación de la dimensión intŕınseca asociada a
cada conjunto. Más aún cuando las simetŕıas, en caso de que existan, solo se registren para algunos
features.

Este argumento, brinda un soporte para el esquema de reducción de dimensionalidad propuesto
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en el caṕıtulo 5, en la cual no se generaliza la dimensión estimada de la variedad. Por el contrario se
considera como una caracteŕıstica particular asociada a cada variedad de features correspondientes
a un determinado sujeto.

4.3. Implementación

La implementación del código para la extracción de caracteŕısticas se realizó en la herramienta de
simulación Matlab. La detección de bordes se realizó empleando los operadores de Sobel.

4.4. Discusión y Conclusiones

El esquema seleccionado basado en la propuesta de Tian [55] busca recoger las beneficios obtenidos
con esta selección, pero además de ello se adiciona la extracción de los features mFIS que brindan
una medida de los movimientos asimétricos de la región facial inferior. Con esto se espera añadir
información que brinde la posibilidad de realizar discriminación entre expresiones faciales.

Si se optara por representar la variedad descriptora por medio de los niveles de gris de la zona
facial extráıda, se tendŕıa dicha variedad encajada o incrustada en RRS siendo R × S el tamaño
de la imagen. El esquema propuesto para la extracción y representación de los features, supera
enormemente esta primera opción de representación pues las variedades están encajadas en espacios
euclidianos de dimensiones fijas, y no se ven afectadas por los efectos nocivos del aumento de la
dimensionalidad a medida que RS →∞.

Es importante considerar que los conjuntos de datos M̂FSF ,M̂FST ,M̂FIF ,M̂FIS ,M̂FIT pueden
ser combinados de manera arbitraria, sin embargo la estimación de su dimensión intŕınseca puede
variar considerablemente, y más aún debido a las condiciones de simetŕıa que pueden no ser fijas
dentro de un conjunto arbitrario de secuencias de expresiones. Por esto en caṕıtulos posteriores se
realiza un procesamiento individual de cada uno de estos conjuntos sin dar una generalización de
la dimensión de la variedad sobre la cual recaen los datos.

La separación de los datos en variedades diferentes brinda un análisis más amplio y exhaustivo
de las regiones facial superior e inferior, pues Lee [58] prueba que los métodos de reducción de
dimensionalidad, que se discutirán en detalle en el caṕıtulo 5, pueden usarse con total confidencia
para datos que se encuentren encajados en espacios de dimensión N tal que N ≤ 5. En el esquema
de extracción de features que se planteó en este caṕıtulo, se garantiza en lo que se refiere a la
dimensión del espacio de representación original que se tiene un grado total de confidencia para el

procesamiento de las variedades M̂FIF ,M̂FIS que están encajadas en espacios de dimensiones 3 y

4 respectivamente, mientras que para las variedades M̂FST ,M̂FIT el grado de confidencia es alto
pues están en espacios de dimensión 6 que es apenas una unidad mayor al grado de confidencialidad.

Para el procesamiento de la variedad M̂FSF el grado de confidencia aún puede considerarse cercano
al valor óptimo. Aśı, se confirma aún más la ventaja de esta separación de la información en com-
paración con el uso directo de la información de textura, pues en este último enfoque la dimensión
RS del espacio de representación seŕıa RS � 5 y por la tanto la confidencia seŕıa muy baja.
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Reducción de Dimensionalidad

El tratamiento de la información extráıda de las expresiones faciales representa la última etapa
previa a su uso en clasificación y/o śıntesis. Ésta es de esencial cuidado, no solo porque es necesario
develar en lo posible la estructura que forman los datos que representan los patrones, sino porque
además los resultados obtenidos por varias de las distintas técnicas existentes pueden ser muy difer-
entes entre śı.

En este caṕıtulo se hace una presentación y un análisis de las técnicas más consolidadas y efi-
caces en la reducción de dimensionalidad, teniendo en cuenta el valioso estudio realizado por Lee
en [58], las demás referencias analizadas de acuerdo al estado del arte y por supuesto las carac-
teŕısticas de la información extráıda junto con el efecto de estas técnicas sobre la misma.

En primera instancia se presentarán las motivaciones tanto teóricas como prácticas para re-
alizar la reducción de dimensionalidad. Posteriormente se hará énfasis en los aspectos a explorar
en la aplicación de las distintas técnicas de reducción de dimensionalidad para los propósitos del
tratamiento de la información en este trabajo, y en seguida se hará una breve discusión del estado
del arte sobre reducción de dimensionalidad.

En la sección 5.6 se hará una presentación breve de las diferentes definiciones formales de
dimensión y los esquemas existentes para realizar su estimación práctica, en donde adicionalmente
se hará la inclusión de una nueva propuesta para realizar dicha estimación basada en algunos re-
sultados sobre variedades diferenciales. En la sección 5.7 se presentarán las técnicas de reducción
de dimensionalidad basadas en preservación de la distancia realizando un análisis detallado de cada
una y destacando sus respectivos pros y contras para su aplicación en este trabajo. En la sección
5.8 se realizará este mismo procedimiento con las técnicas basadas en preservación de la topoloǵıa.

Finalmente se presentará una sección en la cual se discuten algunos aspectos de comparación
entre las técnicas que no son tratados en la presentación teórica de cada una, y que siguen princi-
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palmente los experimentos realizados por Lee en [58].
Se presentará además una sección en donde se remarcarán las conclusiones principales sobre es-

tos métodos, y aśı concluir con el planteamiento de un esquema para la reducción dimensionalidad.
La discusión de cada una de las técnicas tanto de estimación de la dimensión como de reducción,

se acompañará de su aplicación al conjunto de datos M̂FSF empleando la información para cada
expresión y la información total correspondiente al sujeto S055 de la base de datos Cohn-Kanade [7].

Al usar M̂FSF se verifica el comportamiento de los métodos empleados con el conjunto de datos
con mayores dimensiones y es posible tener en cuenta esto para tomar una decisión en la selección
de los mismos.

5.1. Hipótesis Central

En general, y en la mayor parte de las aplicaciones cuando se extraen vectores de descripción de un
determinado patrón, se usan valores reales, de manera que los vectores de descripción pertenecen al
espacio euclidiano RN siendo N la dimensión de los vectores que representan dicho patrón [58] [53].

Todas las técnicas de reducción de dimensionalidad no lineal (NLDR) se basan en la hipótesis
de que los datos a los cuales se les quiere realizar reducción de dimensiones caen o hacen parte de
una subvariedad topológica de RN [58] [59] [60]. En particular para algunos métodos es conveniente
restringir esta hipótesis a subvariedades diferenciales y/o subvariedades Riemannianas de RN [61]
[62]. En este trabajo se consideraran vectores de descripción con componentes reales, de manera
que se asume esta misma hipótesis analizando la diferenciabilidad y la existencia de un producto
interno asociado a la variedad cuando se considera apropiado, dependiendo del método usado para
reducir la dimensionalidad.

Se representará con M̂ al conjunto de datos patrón que caen sobre la variedad M, es decir los
datos se representarán con un gorro sobre la letra o śımbolo que representa la variedad anaĺıtica de
la que según la hipótesis general, hacen parte los datos.

5.2. Motivaciones Prácticas

Lee en [58] plantea como una de las principales motivaciones prácticas para la reducción de la
dimensionalidad, la eliminación de la redundancia en la información, de tal manera que se tenga
el mı́nimo número de variables que verdaderamente describa el problema. Pero además de ello, es
inmediata la utilidad en el entendimiento, clasificación y procesamiento de la información aśı como
también las inferencias y generalizaciones que se puedan lograr por medio de este entendimiento
[58] [63] [64].

5.3. Motivaciones Teóricas

Parte de las motivaciones teóricas recaen en la visualización de los datos que representan un patrón
objetivo. En el caso de representaciones espaciales es bien conocido el problema de visualización
de datos con más de tres dimensiones, y aśı mismo la visualización de datos que además de las
dimensiones espaciales cuenten con variaciones temporales [58]. Sin embargo los efectos más crudos
y significativos de usar datos en espacios de grandes dimensiones son conocidos como The Curse of
Dimensionality y hacen referencia al fenómeno de espacio vaćıo y a la concentración de normas y
distancias [58] [63] [65].

El fenómeno de espacio vaćıo está asociado en parte a la pérdida de propiedades geométricas
y topológicas de un objeto a medida que el espacio de representación incrementa sus dimensiones.
Lee [58], Francois [63] y Demartines [65] muestran independientemente esto analizando inicialmente
el volumen de objetos geométricos simples como una esfera en N dimensiones aśı: sea Vs el volumen



5.3. MOTIVACIONES TEÓRICAS 75

de una esfera de radio r en el espacio euclidiano RN

Vs =
π
N
2 rN

Γ
(
1 + N

2

) (5.1)

si se considera r = 1, es decir una hiper-esfera de radio 1, se tiene que

Vs =
π
N
2

Γ
(
1 + N

2

) =⇒ ĺım
N→∞

Vs = 0 (5.2)

es decir a medida que aumentan las dimensiones del espacio de representación el volumen de la
esfera se reduce, y un aspecto importante para resaltar es que si se tratase de una representación
numérica de dicho volumen, eventualmente habŕıa un número finito de dimensiones a partir del cual
el volumen calculado seŕıa nulo.

Usando estos mismos argumentos Lee [58], Francois [63] y Demartines [65] muestran que los
contornos equiprobables de una distribución gaussiana en N dimensiones crecen en términos de la
desviación estándar a medida que las dimensiones se aumentan. Este mismo análisis puede realizarse
para otras representaciones geométricas.

Estos fenómenos permiten hacer alusión a un problema directamente involucrado en los procesos
de clasificación y de identificación de patrones: la pérdida de discriminación de las normas en
grandes dimensiones, es decir la distribución de normas en una distribución de puntos dada tiende
a concentrarse, esto es conocido como el fenómeno de concentración [58] [63] [65]. Éste puede
describirse por medio del siguiente teorema, presentado en [58] [65]

Teorema 1 Sea y un vector N−dimensional [y1, . . . , yd, . . . , yN ]T ; todas las componentes yd del
vector son independientes e idénticamente distribuidas (iid), con momento de orden ocho finito.
Entonces la media µ‖y‖ y la varianza σ2

‖y‖ de la norma euclidiana son

µ‖y‖ = E (‖y‖) =
√
aN − b+O

(
N−1

)
(5.3)

σ2
‖y‖ = Var (‖y‖) = b+O

(
N−

1
2

)
(5.4)

donde a y b son parámetros dependientes únicamente de los momentos centrales de orden 1,2,3 y 4
de los yi:

a = µ2 + σ2 (5.5)

b =
4µ2σ2 − σ4 + 4µµ3 + µ4

4 (µ2 + σ2)
(5.6)

donde µr es el momento central de orden r: µr = E [(yk − µ)r]. µ es la media E (yk), y σ2 la
varianza Var (yk)

con este Teorema se puede garantizar que mientras la media aumenta proporcionalmente a
√
N la

varianza permanece relativamente constante, numéricamente esto indicaŕıa que a partir de un valor
N que crece se llega a un punto donde no es posible distinguir entre µ‖y‖ y ‖y‖. Por otra parte
usando la desigualdad de chebyshev se tiene que

P
(∣∣‖y‖ − µ‖y‖

∣∣ ≥ ε
)
≤
σ2
‖y‖

ε2
(5.7)

es decir la probabilidad de que la norma de los vectores esté por fuera de un intervalo de longitud
fija es constante. Lo cual confirma este hecho.
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5.4. Aspectos a Explorar

En la selección de un método para la reducción de la dimensionalidad, es necesario tener en cuenta
caracteŕısticas como, la densidad de los datos, la cantidad de los mismos y las caracteŕısticas de
algunas de las matrices resultantes en los procesos de almacenamiento y procesamiento. Otro as-
pecto de igual importancia es el concerniente a la selección de los parámetros empelados por una
determinada técnica de acuerdo a las caracteŕısticas de los datos, ya que si bien algunas técnicas de
reducción y estimación de la dimensión pueden dar resultados satisfactorios para ciertos parámetros,
la selección de los mismos puede ser subjetiva y/o por sintonización, aspecto esencial a considerar
si se desea un procesamiento automático de la información extráıda de las expresiones faciales.

Paralelo a estos argumentos se considerará la fundamentación teórica empleada en el desarrollo
de los métodos ya que ésta puede jugar un papel esencial para establecer conexiones y mejoras entre
éstos, además de brindar un panorama de exploración para posibles trabajos futuros asociados a
estas temáticas y al análisis de expresiones faciales.

5.5. Estado del Arte

El problema de reducción de dimensionalidad y estimación de la dimensión intŕınseca de un conjunto
de datos ha despertado interés en diversas áreas incluso décadas atrás del comienzo del boom del
manejo de la información [58]. David Donoho de Stanford University presentó en [64] el problema
de manejar y desentrañar la naturaleza de datos representados en espacios de grandes dimensiones
como uno de los desaf́ıos icónicos de este siglo.

Los desarrollos en estas temáticas son variados, con diferentes grados de fundamentación y
motivados por aplicaciones en distintos campos de la ciencia. Lee desarrolla en [58] una presentación
muy completa y detallada del estado del arte de las principales técnicas asociadas al problema de
la reducción de la dimensionalidad y aśı mismo al de estimación de la dimensión intŕınseca. En esta
investigación se sigue la presentación de este estado del arte complementándolo con técnicas que
no son abordadas por Lee [58] pero que han mostrado su efectivadad en el análisis de expresiones
faciales. De esta manera la presentación de cada una de las técnicas en secciones subsecuentes
representa para esta investigación el estado del arte de técnicas de reducción de dimensionalidad y
estimación de la dimensión intŕınseca más pertinentes, relevantes y efectivas.

5.6. Dimensión Intŕınseca

La hipótesis de que los datos que representan determinado conjunto de patrones caen o hacen parte
de una variedad topológica, diferenciable y/o de Riemann, subyacen bajo la idea intuitiva de que
estos conjuntos de datos hacen parte de una estructura que es localmente similar a Rn [66] [67]. Por
medio de la estimación de la dimensión intŕınseca de dicha estructura se pretende determinar este
n.

Matemáticamente hay definiciones formales y precisas de dimensión para conjuntos que forman
distintas estructuras , pero dif́ıciles de calcular o aproximar en situaciones prácticas, como es el caso
de la dimensión de recubrimiento de Lebesgue o la dimensión de Hausdorff [68]. Sin embargo en un
intento por estimar los valores de estas dimensiones se han desarrollado otras medidas de la dimen-
sión como la dimensión de correlación, que si bien su definición estricta es aún teórica, su forma ha
permitido adaptarla para realizar cálculos en situación prácticas con mucha frecuencia [58] [68] [69].

A continuación se presentan las distintas definiciones de las diferentes dimensiones, se estable-
cerán algunas relaciones importantes entre las mismas y finalmente se planteará un esquema para
la estimación práctica de dicha dimensión teniendo en cuenta la información presentada.

Considerando los argumentos teóricos y resultados experimentales, se planteará una nueva al-
ternativa para la estimación de la dimensión que se usará en conjunto con otras formulaciones, para
estimar la dimensión de las distintas variedades que forman los conjuntos de expresiones faciales a
partir de los features descritos en el caṕıtulo 4.
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5.6.1. Dimensión de Recubrimiento

Los resultados generales sobre la dimensión de recubrimiento están dados sobre espacios topológicos
[70]. Siendo una variedad topológica un espacio topológico, se plantea en primera instancia una
definición usando estos conceptos.
El recubrimiento de un espacio topológico M es una familia A = {Aλ}λ∈Λ de subconjuntos tales
que ⋃

λ∈Λ

Aλ =M (5.8)

si cada elemento de A es abierto entonces A es llamada cubierta abierta de M, en caso de que
todos los elementos de A sean cerrados entonces será llamada una cubierta cerrada de M. Una
cubierta {Bγ}γ∈Γ se dice que es un refinamiento de la cubierta {Aλ∈Λ} si para cada γ ∈ Γ existe

algún λ ∈ Λ tal que Bγ ⊂ Aλ [70].
El orden de una familia de subconjuntos {Aλ}λ∈Λ, no todos vaćıos, de algún conjunto es el

entero más grande para el cual existe un subconjunto P de Λ con n+1 elementos tales que ∩λ∈PAλ
es no vaćıo, o es ∞ si no existe tal entero [70].

Con las anteriores definiciones se puede dar la definición de dimensión de recubrimiento en
términos de espacios topológicos de la siguiente manera, siguiendo a Pears [70]

Definición 1 La dimensión de recubrimiento dim (M) de un espacio topológico M es el mı́nimo
entero n tal que cada cubierta de M tiene un refinamiento abierto de un orden que no excede a n
o es ∞ si no existe tal entero.

Para los propósitos de este trabajo, se considerará la hipótesis adicional sobre las variedades
topológicas a las cuales pertenecen los patrones extráıdos, de ser metrizables; es decir que van a ser
variedades homeomorfas a un espacio métrico, y la métrica alĺı definida va a inducir una topoloǵıa
equivalente a la asignada a esta variedad topológica [71], o dicho de otra manera su topoloǵıa es
inducida por una métrica [70]. Lee demuestra en [71] que toda variedad diferenciable es metrizable y
en particular si la variedad es Riemanniana es posible definir esta métrica en términos de geodésicas,
aśı que la consideración adicional se enfoca en particular en el tratamiento de variedades topológicas
no diferenciales sobre las cuales pueden recaer ciertos conjuntos de patrones. Cuando se discutan
los métodos existentes para la reducción de dimensionalidad se verá que esta hipótesis es muy
adecuada puesto que varias técnicas se basan en aproximaciones de distancias medidas sobre la
variedad incrustada en el espacio original de grandes dimensiones.

La definición dada por Pears [70] se puede particularizar a espacios métricos de la siguiente
manera acorde a Robinson [72]. Sea (X, ρ) un espacio métrico, y seaM un subconjunto de X. Una
cubierta de M⊆ X es una colección finita {Uj}rj=1 de subconjuntos abiertos de X tales que

M⊆
r⋃

j=1

Uj (5.9)

el orden de una cubierta es el entero más grande n tal que existen n + 1 miembros de la cubierta
que tienen intersección no vaćıa. Un a cubierta β es un refinamiento de una cubierta α si cada
miembro de β está contenido en algún miembro de α [72]. Con esto la definición se particulariza de
la siguiente manera

Definición 2 Un subconjunto M ⊆ X tiene dimensión dim (M) ≤ n si cada cubierta tiene un
refinamiento de orden ≤ n. Un conjunto M tiene dimensión dim (M) = n si dim (M) ≤ n pero no
es cierto que dim (M) ≤ n− 1.

La dimensión de recubrimiento de un conjunto M en adelante se denotará como dim (M), ésta es
un invariante topológico, es decir es invariante a los homeomorfismos.
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5.6.2. Dimensión de Hausdorff

La presentación de la dimensión de Hausdorff se hará siguiendo a Falconer [73] [68] y Robinson [72],
quien presenta varios desarrollos teóricos sobre esta dimensión trabajando en Rn. Esto es bastante
adecuado para este trabajo pues las variedades asociadas a los distintos conjuntos de patrones están
incrustadas (embedding) en RN siendo N el número de componentes de los vectores descriptores
del patrón. Al igual que en las secciones anteriores esta definición se asocia directamente a espacios
métricos.

Si U es un subconjunto no vaćıo de Rn se define el diámetro de U como |U | = sup {|x− y| : x, y ∈ U}.
Si M⊂ ⋃i Ui y 0 < |Ui| ≤ δ para cada i, se dice que {Ui} es una δ − cubierta de M. Aśı se define

H s
δ (M) = ı́nf

{ ∞∑

i=1

|Ui|s
}

(5.10)

donde el ı́nfimo es tomado sobre todas las δ−cubiertas contables {Ui} de M. De esta manera la
medida externa de Hausdorff s−dimensional de M se obtiene haciendo δ → 0 como

H s (M) = ĺım
δ→0

H s
δ (M) (5.11)

este ĺımite existe, pero puede ser infinito [72]. La dimensión de Hausdorff dimH (M) de un conjunto
M es el valor único tal que

H s (M) =∞ si 0 ≤ s < dimH (M) , H s (M) = 0 si dimH (M) < s <∞ (5.12)

en particular si M⊆ (X, ρ) , la dimensión de Hausdorff de M es

dimH (M) = ı́nf
{
d ≥ 0 : H d (M)

}
(5.13)

siendo (X, ρ) el espacio métrico en el cual está incrustada la variedad.

5.6.3. Dimensión de Capacidad (Box-Counting Dimension)

Sea N(M, ε) que representa el mı́nimo número de bolas de radio ε con centros en M requerida
para cubrir M, la box-counting dimension de M se define como [72] [73] [68]

dimbox (M) = ĺım
ε→0

logN (M, ε)

− log ε
(5.14)

5.6.4. Dimensión de Información

Lee presenta en [58] la dimensión de información como un caso particular de una dimensión más
general conocida como q-dimension, que se expresa en términos de

Cq (µ, ε) =

∫
(µ (Bε(y)))q−1 dµ (y) (5.15)

siendo µ una medida de probabilidad de Borel sobre un espacio métrico M tal que y ∈ M. q ≥
0, ε > 0 y Bε (y) es una bola cerrada de radio ε. De manera que para todo q ≥ 0, q 6= 1 se
definen las siguientes cantidades

D−q (µ) = ĺım
ε→0

ı́nf
logCq(µ, ε)

(q − 1) log ε
(5.16)
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D+
q (µ) = ĺım

ε→0
sup

logCq(µ, ε)

(1− q) log ε
(5.17)

Si D+
q = D−q , se dice que este valor común, representado como Dq es la q−dimensión de M. Aśı la

dimensión de información se define como

dinf (M) = ĺım
q→1

Dq (µ) (5.18)

Lee muestra además como esta dimensión puede ser igual a la dimensión de capacidad (box-counting
dimension) cuando la definición de la q−dimensión se plantea desde una perspectiva f́ısica y se
realizan ciertas supuestos.

5.6.5. Dimensión de Correlación

En [58] se presenta la dimensión de correlación como un caso particular de la dimensión de infor-

mación cuando q = 2. Si M̂ = {y1, . . . ,yk, . . . ,yP } es el conjunto de puntos representativos del
patrón que caen sobre la variedad M, se define

C2 (ε) = ĺım
P→∞

1

P (P − 1)

∑

i,j=1
i 6=j

H
(
ε− ‖yi − yj‖2

)
(5.19)

siendo H(u) la función de Heaviside. Con esto la dimensión de correlación se define como

dimcorr (M) = ĺım
ε→0

logC2 (ε)

log ε
(5.20)

5.6.6. Relación entre algunas dimensiones

Robinson demuestra en [72] que para cualquier espacio métrico compacto (X, ρ) se verifica que

dim (X) ≤ dimH (X) ≤ dimbox (X) (5.21)

y Lee presenta en [58] que se cumple además la siguiente desigualdad

dimcorr (M) ≤ diminfo (M) ≤ dimbox (M) (5.22)

Un aspecto importante para resaltar de acuerdo a lo expuesto en [58] es que la dimensión de
correlación puede subestimar la dimensión real en determinados casos.

5.6.7. Estimación Práctica de la Dimensión Intŕınseca

Las dimensiones presentadas anteriormente aunque bien definidas, son extremadamente dif́ıciles de
calcular si no se cuenta con una expresión anaĺıtica que describa la variedadM sobre la cual recaen
los datos patrón [58], esto es principalmente cierto si se habla de las dimensiones de recubrimien-
to o de Hausdorff. En el caso de la box-counting dimension aunque es posible plantear métodos
aproximados para tratar numéricamente la operación de ĺımite, el costo computacional termina
convirtiéndola en inapropiada para problemas en donde existan grandes dimensiones que es donde
precisamente se busca estimar la dimensión [58]. La dimensión de correlación aunque inicialmente
es un planteamiento que requiere también de la operación de ĺımite, es atractiva desde el punto de
vista computacional [69] [58] y por lo tanto esto la convierte en una herramienta para la estimación
de la dimensión en situaciones prácticas.

Adicionalmente, existen otras técnicas consideradas aceptables en muchas aplicaciones, que
no parten de las definiciones formales de dimensión dadas anteriormente, pero que buscan exami-
nar comportamientos locales como en el caso de PCA local (PCA−`) [58], o que buscan adecuar
computacionalmente una aproximación de una dimensión teórica como en el caso de Packing Num-
bers [74]. A continuación se discuten varias de estas estimaciones prácticas.
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Dimensión de Correlación

En [58] se propone aproximar la dimensión de correlación de un conjunto finito de datos M̂ que
caen sobre la variedad M como

dcorr

(
M̂
)

=
log Ĉ2 (ε2)− log Ĉ2 (ε1)

log ε2 − log ε1
(5.23)

siendo Ĉ2 (ε) una aproximación de C2 (ε) dada por el número finito de puntos con los que se cuenta
para estimar la dimensión de la variedad. Este es un estimado de la pendiente media de una gráfica
de logC (ε) vs log ε. Los valores de ε1 y ε2 se seleccionan entre el mı́nimo y el máximo de las dis-

tancias entre puntos medidos en M̂. De acuerdo a los análisis realizados por Lee [58] los valores de
ε1,2 no deben ser demasiado pequeños ya que se obtendŕıa una dimensión cercana a cero que es la
dimensión de un conjunto aislado de puntos, e igualmente valores grandes de estos parámetros no
concuerdan con el tipo de aproximación que se quiere lograr, ya que se trata de aproximar un ĺımite
que tiende a cero.

Der Maaten [75] desarrolló un código en matlab en donde se usa el esquema propuesto por
Lee [58], usando los valores de ε1, ε2 como la mediana de las distancias y el valor máximo re-
spectivamente, obteniéndose buenos resultados dentro de las pruebas realizadas por ese autor. Sin
embargo la selección de estos valores es arbitraria y no parece haber una razón de peso para haber
seleccionado estos parámetros de esa manera.

Por otra parte Theiler en [76] encuentra de manera rigurosa y exhaustiva un criterio para la
selección de estos dos valores conocido como la regla de cinco. En este trabajo, se seguirá este cri-
terio que se describe de la siguiente manera: sea n2 el número de distancias inferior a ε2 y sea n1

el número de distancias inferior a ε1. Una vez se ha seleccionado ε2 el valor de ε1 se selecciona de
tal manera que n2/n1 ' 5; con estos valores es posible usar parte del esquema desarrollado por Der
Maaten [75], seleccionando ε2 como el valor máximo de las distancias. Este algoritmo se describe
como

1. Se computa la matriz de distancias entre pares de puntos D, para el

conjunto M̂.

2. Se selecciona ε2 = máx (D).

3. Se encuentra n2 el número de distancias menores a ε2.

4. Se calcula n1 = ceil
(
n2
5

)
como el número de distancias menores a ε1, de

manera que el valor de este término queda determinado.

5. Calcular

Ĉ2 (εα) =
1

P (P − 1)

P∑

i=1
i 6=j

H
(
εα − ‖yi − yj‖2

)
(5.24)

para α = 1, 2

6. Finalmente se calcula el estimado de la dimensión de correlación como

dcorr

(
M̂
)

=
log Ĉ2 (ε2)− log Ĉ2 (ε1)

log ε2 − log ε1
(5.25)

En la tabla 5.1 se pueden apreciar los valores estimados de la dimensión de correlación para la

información de las expresiones faciales M̂FSF del sujeto S055 de la base de datos Cohn-Kanade [7]
extráıdos con el esquema propuesto en el caṕıtulo anterior, alĺı se consigna además la cantidad de
puntos empleados para realizar dicho cálculo.
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dcorr(M̂FSF ) P
S055 01 3 12
S0055 02 3 25
S0055 03 2 9
S0055 04 2 28
S0055 05 3 45
S0055 06 2 8
S0055 all 3 127

Cuadro 5.1: Estimación de la Dimensión de Correlación de M̂FSF para el sujeto S055 de la base
de datos Cohn-Kanade [7].

PCA Local (PCA−`)

Lee presenta en [58] una técnica que se basa principalmente en determinar la dimensión usando

PCA sobre subconjuntos disyuntos del total de la información. Es decir, si M̂ = {y1, . . . ,yk, . . . ,yP }
es el conjunto de puntos que recaen sobre la variedad M. La estimación de la dimensión usando

PCA−` consiste en seleccionar una familia de subconjuntos Ã =
{
Ũ1, . . . , Ũj

}
de M̂ tales que

Ũi
⋂
Ũj = ∅ y

⋃
i Ũi = M̂ , siendo el tamaño de los Ũi uniforme. Se aplica entonces PCA sobre

cada uno de estos conjuntos para estimar su dimensión intŕınseca, aśı se obtiene un estimado de

la dimensión de la variedad M̂ graficando dicho valor como la mediana o la media de los valores
obtenidos para cada subconjunto vs el número de subconjuntos empleados para realizar cada esti-
mación.

De esta manera, la estimación estará asociada a regiones planas de la gráfica donde se estabi-
liza el valor de la dimensión. A medida que aumenta el número de ventanas la cantidad de datos
asociados a cada Uj es menor y por ello se asemeja con más propiedad al comportamiento local de
la variedad M. El valor estimado será la ordenada de la región plana de la gráfica correspondiente
a los valores más altos en cuanto al número de ventanas empleadas.

Acorde a Lee [58] esta técnica muestra ser bastante atractiva por su practicidad y además resulta
ser acertada en los estudios experimentales realizados por este autor. No obstante esta misma técnica

muestra una gran dependencia de la cantidad de datos de M̂, razón por la cual puede ser limitada
si el numero de datos es reducido. Teniendo en cuenta que en la base de datos Cohn-Kanade [7]
existen conjuntos de imágenes muy reducidos que describen el comportamiento dinámico de una
determinada expresión, una aplicación directa de este procedimiento para este tipo de información
seŕıa fuertemente cuestionable.

Por otra parte, a pesar de los grandes atractivos de esta técnica por su simplicidad y aprovechamien-
to del comportamiento local, subyace un problema que aun hoy es considerado por expertos como
abierto: la selección del número de componentes. Jolliffe realiza en [46] un análisis comparativo de
varias técnicas y criterios para realizar esta selección, sin embargo una de las principales conclusiones
obtenidas por este autor, es que aún este tema es la causa de numerosos desarrollos estad́ısticos y
matemáticos con fundamentaciones cada vez más elaboradas, pero con pocas ventajas o ninguna
sobre los procedimientos simples en la mayoŕıa de los casos prácticos, en donde se desconoce qué es-
tructura forman los datos que representan un determinado patrón.

Dentro de estas reglas simples Jolliffe [46] describe el método basado en la famosa gráfica de
los eigenvalores ordenados de mayor a menor y el cuál consiste en la ubicación del codo de la curva
trazada en esta gráfica, que va a corresponder a un punto cuya vecindad izquierda es una región
de gran pendiente (en valor absoluto) mientras que la de su derecha es casi plana. Lee menciona
esta misma técnica en [58] pero aplicando logaritmo sobre los eigenvalores. A pesar de que in-
negablemente puede existir en algunos casos, un grado de subjetividad en la selección del número
de componentes por medio de este procedimiento, ésta es igual o menor a la subjetividad de otras
técnicas más sofisticadas en casos donde no se conoce a profundidad la naturaleza de la informa-
ción [46]. Por otra parte Lee en [58] sugiere el uso del criterio AIC(Akaike’s Information Criterion)



82 CAPÍTULO 5. REDUCCIÓN DE DIMENSIONALIDAD

y/o el criterio MDL presentados por Cichocki [77] como alternativas rigurosas para este fin. En este
trabajo se propone integrar en una sola metodoloǵıa las ideas de Jolliffe [46] y Lee [58], buscando un
intermedio entre el codo de la curva en una gráfica construida empleando el criterio AIC y el criterio
AIC mismo, la presentación de esta estrategia se realizará en la sección 5.6.8 cuando se plantee la
versión modificada de PCA−`.

5.6.8. Algunos Resultados Sobre Variedades Diferenciales: Acerca de la Dimen-
sión, PCA local Modificado (PCA −`m)

De acuerdo a la definición formal de variedad topológica dada por Lee en [71]:

Definición 3 SiM es un espacio topológico, se dice queM es una variedad topológica de dimensión
n si se verifican las siguientes propiedades:

1. M es un esapcio de Hausdorff: Para cada par de puntos p, q ∈M existen subconjuntos abiertos
disyuntos U, V ⊂M tales que p ∈ U y q ∈ V .

2. M es segundo contable: Existe una base contable para la topoloǵıa de M.

3. M es localmente Euclidiano de dimensión n: Cada punto de M tiene una vecindad que es
homeomorfa a un abierto de Rn.

y a la idea intuitiva de variedad brindada por Massey en [66]:

. . . El análogo n-dimensional de una superficie es una variedad de dimensión n, la cual es un
espacio topológico con las mismas propiedades locales de un espacio euclidiano n-dimensional . . .

se puede afirmar que para todo punto de la variedadM de dimensión n existe una vecindad home-
omorfa a un subconjunto abierto de Rn, por lo tanto cualquier punto de la variedad debe brindar
información sobre la dimensión de la misma. Esto otorga un argumento sólido para la aplicación de
PCA local en la estimación de la dimensión, pues una estimación a diferentes escalas de la variedad
debe corresponder a un mismo valor.

En las situaciones prácticas será necesario tener en cuenta que solo se cuenta con un subconjun-
to de datos de esta variedad, por lo cual solo habrá un rango de escalas adecuado para la estimación
de esta dimensión. En este trabajo se propone teniendo en cuenta estas ideas una variante de PCA
local, que se denominará PCA−`m (PCA local modificado), en la cual se usan familias de subcon-

juntos de M̂ no disyuntos y aśı estimar la dimensión aplicando sobre éstos PCA para estimar la
dimensión. Ésta se plantea de la siguiente manera.

Sea M̂ = {y1, . . . ,yP } el conjunto de datos que caen sobre la variedad M
for k=1:1:P − 1

for i=1:1:P-k
d(i)= Estimación Dimensión por PCA de [yi, . . . ,yi+k];

end
df(k)=median(d);
end

La salida de este algoritmo entregará un vector df que graficado vs el tamaño de la ventana se
espera tenga distintas regiones planas. Se considerará como el estimado de la dimensión al valor de
ordenada correspondiente a la primera de estas regiones planas, ya que este representa el mı́nimo
valor al cual se estabiliza la dimensión calculada localmente (ver figura 5.1).
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Figura 5.1: Gráfica t́ıpica de df vs el tamaño de la ventana Wd en la aplicación de PCA−`m. La
primera región plana asociada a la ordenada de valor 2 indica el valor estimado de la dimensión.

Sobre el Número de Componentes usadas (¿Cuántas Componentes?)

En la presentación de PCA local se mencionó el inconveniente que aun hoy en d́ıa existe para
determinar el número de eigenvalores de tal manera que se realice una distinción adecuada entre
ruido e información esencial. En este trabajo se propone realizar esta selección integrando las ideas
de Jolliffe [46], Lee [58] y Cichoky [77].

Mientras Jolliffe propone por una parte el uso del método gráfico para buscar el codo de la
curva de los eigenvalores, Lee y Cichoki presentan el criterio AIC para realizar la distinción entre
ruido e información después de la aplicación de componentes principales. De acuerdo a este criterio
el número de componentes que representan la información viene dado por el entero n que minimiza
la función

AIC(n) = −2P (m− n) log (ρ(n)) + 2n(2m− n) (5.26)

siendo m el número de eigenvalores obtenidos mediante la aplicación de componentes principales,
P el número de datos u observaciones empleadas para construir la matriz de covarianza y ρ(n) la
función definida como

ρ(n) =
(λn+1λn+2 . . . λm)

1
m−n

1
m−n (λn+1 + λn+2 + . . .+ λm)

(5.27)

y λi el eigenvalor correspondiente al i−ésimo eigenvector .
La aplicación de este criterio asume que los vectores de representación son de media cero y las vari-
ables son independientes e idénticamente distribuidas, que son de acuerdo a Jolliffe [46] y Lee [58]
condiciones asumidas cuando se realiza la aplicación de PCA sobre un conjunto de datos.

Por otra parte la búsqueda del codo de la curva mencionado por Jolliffe [46] y Lee [58] se basa
principalmente en una observación gráfica de cambios drásticos de pendiente. En este trabajo se
cuantifica esta idea teniendo en cuenta que dicho codo posee una vecindad a su izquierda cuya
pendiente es elevada (en valor absoluto) y una vecindad a su derecha cuya pendiente es casi nula.

Aśı, la propuesta de este trabajo se basa en buscar el codo de la curva AIC(n), en caso de
que esta última función se minimice solo con el número total de eigenvalores. En la figura 5.2 se
muestran dos gráficas t́ıpicas de la unción AIC(n), en donde se evidencia que no siempre se halla
un mı́nimo local en un número menor a la cantidad total de eigenvalores, pero si existen marcados
cambios de comportamiento que son cercanos al de un mı́nimo local. Esta propuesta se describe como
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Figura 5.2: Dos comportamientos t́ıpicos en la curva AIC. Izquierda: Caso en el cual existe un n
que minimiza la función AIC(n). Derecha: Caso en el cual el valor mı́nimo de AIC se logra con el
número total de eigenvalores, pero existe un marcado cambio de comportamiento con un número
menor de los mismos

1. Sea λ = [λ1, λ2, . . . , λm] el conjunto de los eigenvalores diferentes de cero
asociados a los eigenvectores calculados empleando PCA, ordenados de
mayor a menor.

2. for ii=2:1:m-2
If |AIC(ii+ 1)−AIC(ii)| − |AIC(ii)−AIC(ii− 1)| < 0

∂̂AIC(ii) = ||AIC(ii+ 1)−AIC(ii)| − |AIC(ii)−AIC(ii− 1)|| (5.28)

else

∂̂AIC(ii) = 0 (5.29)

end
end

adicionalmente ∂̂AIC(1) = 0, ∂̂AIC(m) = 0, ∂̂AIC(m− 1) = |AIC(m− 1)−AIC(m− 2)|.

3. Encuentre el valor mı́nimo de AIC(i), i = 1, . . .m. Si dicho mı́nimo se ubica
se ubica en i = n, n < m, entonces el número de componentes seleccionado
es n y el proceso finaliza, de lo contrario vaya al paso 4.

4. Encuentre el valor máximo de ∂̂AIC. Si este valor ocurre en i = n∂, el
número de componentes seleccionadas n̂ se calcula como n̂ = n∂.

El condicional presentado en el paso 2 establece como debe ser el cambio de pendiente en el posible
punto donde se encuentra el codo de la curva, y sencillamente establece que se debe pasar de un
valor de pendiente grande (en valor absoluto) a uno pequeño (en valor absoluto).

Los datos de los resultados obtenidos sobre el conjunto M̂FSF para el sujeto S055 de la base
de datos Cohn-Kanade [7] con esta técnica son presentados en la tabla 5.2, en donde además se
encuentran también los estimados por medio de la dimensión de correlación.

5.6.9. Algunos Resultados Sobre Variedades: Sobre el Teorema de Whitney, un
Nuevo Método para la Estimación de la Dimensión (PCA− ω)

El teorema de Whitney [71], descrito en forma clásica puede expresarse como:

Teorema 2 Toda variedad diferenciable admite un embedding(encajamiento, incrustamiento) pro-
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PCA−`m
(
M̂FSF

)
dcorr

(
M̂FSF

)

S055 01 3 3
S0055 02 2 3
S0055 03 2 2
S0055 04 3 2
S0055 05 2 3
S0055 06 2 2
S0055 all 2 3

Cuadro 5.2: Estimación de la Dimensión de M̂FSF usando PCA−`m
(
M̂FSF

)
y dcorr

(
M̂FSF

)
,

para el sujeto S055 de la base de datos Cohn-Kanade [7]

pio suave en R2n+1

Y posterior al planteamiento del anterior teorema Whitney demostró un teorema mucho más fuerte

Teorema 3 Si n > 0 toda variedad suave admite un embedding(encajamiento, incrustamiento)
suave en R2n

En estos resultados se establece que es posible encajar o incrustar una variedad diferenciable de
dimensión n en el espacio R2n+1 o R2n según corresponda. Como se ha comentado anteriormente,
una técnica como PCA no tiene plenas capacidades para desenvolver las variedades formadas por
algunos conjuntos de patrones y realizar un adecuado homeomorfismo del espacio de dimensiones
originales a un espacio de la dimensión intŕınseca [58]. Sin embargo, se propone estimar la dimensión
intŕınseca de los datos aplicando PCA, de manera que aunque no se asegura la obtención de la
dimensión intŕınseca n de la variedad sobre la cual caen los datos, se puede llegar al estimado de la
dimensión del conjunto incrustado en R2n+1 o R2n según corresponda.

Acorde a Lee [71], el primero de estos teoremas brinda una respuesta al problema matemático
de cuándo una variedad abstracta es difeomorfa a una subvariedad de un espacio euclidiano y es
suficiente en muchos contextos para la solución de algunos problemas y la demostración de otros
resultados teóricos. Mientras que el segundo teorema demostrado ocho años después, y con el uso de
conceptos y herramientas matemáticas más sofisticadas es un resultado más fuerte con implicaciones
prácticas.

En este trabajo se propone una nueva técnica para la estimación de la dimensión aprovechando
estos resultados teóricos y las dos hipótesis siguientes:

1. Los vectores descriptores del patrón, expresados como vectores de N componentes caen o
hacen parte de una variedad diferenciable de dimensión n ≤ N .

2. Esta variedad sin ruido y sin la redundancia menos intrincada está incrustada en el espacio
R2n.

La primera hipótesis es común al uso de técnicas de reducción no lineal [59] [58], y la segunda
asegura que si los datos extráıdos representan un determinado patrón que está asociado a una
variedad de dimensión n, ésta debe estar incrustada en el espacio R2n si el número de componentes
N de los vectores descriptores es N >> n.

La consideración de esta segunda hipótesis sigue la interpretación de Lee en [58] del teorema

de Whitney. Éste asocia el Teorema al hecho de que se requieren a lo más 2n dimensiones para
representar la variedad de dimensión n. Adicionalmente este mismo autor en [58] sugiere como un
esquema alternativo para la reducción de dimensionalidad aplicar primero PCA a los datos y luego
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cualquier técnica de reducción de dimensionalidad que resulte adecuada dependiendo del tipo de
variedad (en caso de que sea posible extraer algunas conclusiones sobre esta estructura). Esto debido
a que PCA puede ayudar a atenuar ruido estad́ıstico en los datos y a eliminar la redundancia menos
intrincada sin una gran pérdida de información, siempre y cuando el número de componentes haya
sido seleccionado correctamente [58].

Aśı, una vez aplicado PCA se asume que se obtiene un conjunto de datos encajado o incrustado
en R2n. Si este no es estrictamente el caso y los datos obtenidos tienen dimensión de 2n−1 se puede
adicionar un vector de ceros de tal manera que los datos puedan considerarse incrustados en R2n.

En resumen esta segunda hipótesis puede resumirse como

Sea M̂ el conjunto de P vectores de N componentes extráıdos para representar un determinado
patrón. Si estos datos caen sobre una variedad M de dimensión n y N >> n, al estimar la

dimensión de M̂ usando PCA, se puede considerar que la dimensión estimada corresponde a una
incrustación o encajamiento de la variedad M en R2n. Es decir la variedad sobre la que recaen los

datos es representada respecto de la dimensión n empleando un número de variables mayor al
número máximo de variables que se requieren para ello, y el exceso de este número de variables se

puede eliminar usando PCA

En esta hipótesis se argumenta que N >> n, pero en verdad esta idea es mucho más espećıfica y es
posible establecer una relación entre estas dos cantidades.

Teniendo en cuenta que en la representación de la variedad se presume que se usan más variables
que las dadas por el número máximo necesario para dicha representación, y que de acuerdo a la
interpretación de Lee [58] del teorema de Whitney [71] este número es 2n, la anterior desigualdad se
representa ahora como N ≥ 2n. Por esto es importante contar con una estimación de la dimensión,
que no se requiere sea exacta, pero que brinde una idea de qué tan lejana es la dimensión intŕınseca
de la dimensión original de los datos.

Aśı, el algoritmo planteado para realizar dicha estimación es el siguiente

1. Sea M̂ el conjunto de datos que caen sobre la variedad M de dimensión n.

2. Se realiza una estimación de la dimensión usando PCA− `m y dimensión de

correlación sobre M̂ y se selecciona este valor como

n̂ =




PCA− `m
(
M̂
)

+ dcorr

(
M̂
)

2




(5.30)

3. Si 2n̂ ≤ N entonces vaya al paso 4, de lo contrario se aborta la
estimación.

4. Usar PCA sobre el conjunto M̂ para estimar su dimensión k ∈ N.

5. Si k = 2n con n ∈ N entonces la dimensión estimada es PCA− ω
(
M̂
)

= k
2,

de lo contrario haga PCA− ω
(
M̂
)

= k+1
2 .

En el paso 3 se pretende establecer si las dimensiones originales de los vectores patrón poseen
un número mayor al número de 2n de dimensiones que a lo más se requieren para incrustar la
variedad de dimensión n. Si esto se verifica se procede a aplicar PCA para eliminar el ruido y
la redundancia menos intrincada, de manera que se llega a una representación usando el número
máximo de variables que se requieren para ello. Para estimar la dimensión en el paso 4 se emplea
el criterio basado en AIC presentado en la sección anterior y usado en PCA−`m.
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Figura 5.3: De izquierda a derecha: El rollo suizo, El Toro, La botella de Klein, La banda de Möbius.

PCA−`m
(
M̂FSF

)
dcorr

(
M̂FSF

)
PCA−ω

(
M̂FSF

)

S055 01 3 3 2
S0055 02 2 3 4
S0055 03 2 2 2
S0055 04 3 2 2
S0055 05 2 2 3
S0055 06 2 2 2
S0055 all 2 3 3
Swiss Roll 2 3 2
Klein Bottle 2 4 2
Torus 2 3 2
Mobius Strip 2 3 2

Cuadro 5.3: Estimación de la Dimensión de M̂FSF usando PCA−`m
(
M̂FSF

)
, dcorr

(
M̂FSF

)
y

PCA−ω
(
M̂FSF

)
para el sujeto S055 de la base de datos Cohn-Kanade [7]

Comparación con Otros Métodos

Se realiza la constrastación de la dimensión estimada por esta nueva técnica, con la dimensión
de correlación y con la dimensión obtenida por PCA − `m. Las pruebas se muestran sobre los

datos M̂FSF para el sujeto S055 de la base de datos Cohn-Kanade [7] y sobre cuatro variedades
benchmark (ver figura 5.3), las cuales están descritas por una distribución de 2000 puntos ubicados
aleatoriamente sobre la variedad por medio de una distribución uniforme. Cada componente de la
descripción original se contamina con ruido generado por una distribución uniforme cuya magnitud
vaŕıa entre ±10 % de los valores máximos asociados a cada coordenada. Se agregan tres compo-
nentes adicionales de ruido con valores alrededor de ±0,01, de manera que la variedad resultante
está incrustada en R6.

Los resultados obtenidos con esta propuesta para estimar la dimensión, pueden observarse en
la tabla 5.3, en donde además se presentan los valores estimados empleando la dimensión de cor-
relación. Éstos son cercanos a los obtenidos por los otros estimadores de la dimensión, y aprovecha
las ventajas asociadas a PCA, junto con el criterio basado en AIC para la selección del número
de componentes. Por esto se pondrá a consideración el uso de esta técnica a fin de contar con un
estimado adicional de la dimensión intŕınseca.
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Otras Estimaciones prácticas de la Dimensión

Se han desarrollado diversas propuestas para realizar la estimación práctica de la dimensión, sin
embargo algunas de ellas aun con muchos aspectos por detallar y mejorar. Una de las más prom-
etedoras, fué desarrollada por Kegl [74] denominada Packing Numbers, la cual se basa en una
aproximación de la dimensión de capacidad, similar a la que se realiza para estimar la dimensión
de correlación. Según los experimentos realizados por Kegl [74] esta técnica muestra una mayor ro-
bustez frente a ciertos niveles de ruido en comparación con la dimensión de correlación, sin embargo
su correcto funcionamiento depende de la selección de dos parámetros, para los cuales no existe un
criterio óptimo de selección. Esto es particularmente inconveniente si se desea abordar el problema
de una estimación automática. Por esta razón no se considerará para este trabajo.

Por otra parte Levina [78] propone el uso del principio de máxima similitud, para analizar las
distancias entre vecinos cercanos, a fin de dar un estimado de la dimensión intŕınseca. Esta prop-
uesta es usada en algunas implementaciones [75], sin embargo los resultados obtenidos dependen
fuertemente de algunos parámetros para los cuales no existen criterios de selección óptima, en al
análisis de conjuntos arbitrarios de datos. Por esta razón no se considerará para este trabajo.

Relación entre Estimaciones Prácticas

La primera de las desigualdades presentadas en la sección 5.6.6, demostrada por Robinson en [72]
relaciona de manera rigurosa la dimensión topológica, la dimensión de Hausdorff y la box-counting
dimension. Sin embargo éstas son de carácter teórico y no se pueden aplicar directamente para
analizar conjuntos finitos de datos que recaen sobre variedades diferenciales.

La desigualdad propuesta por Lee [58] es un tanto más cercana a la práctica ya que está en
términos de la dimensión de correlación, para la cual pueden obtenerse valores aproximado. De
acuerdo a esta desigualdad es posible que el valor obtenido para esta dimensión sea menor a la
dimensión topológica de la variedad sobre la cual recaen los datos.

Por otra parte, teniendo en cuenta la fundamentación teórica asociada a PCA−`m que se basa
en análisis local, se cuenta con un valor que no sobreestimará la dimensión de la variedad, de alĺı que
los resultados experimentales mostrados en la tabla 5.2 sean semejantes entre śı.

De acuerdo a los resultados experimentales es adecuado considerar estas dos técnicas y PCA−ω
cuando se requiera un análisis automático de la dimensión para un conjunto dado de puntos.

5.7. Técnicas Basadas en Preservación de la Distancia

5.7.1. Distancia Euclidiana

A continuación se presentan las distintas técnicas cuyo principio es la conservación de la distancia
euclidiana entre los datos en el espacio original de representación.

Multidimensional Scaling (MDS)

Existe una gran cantidad de variantes de ésta técnica, pero en este trabajo sólo se discutirá la
versión clásica del método [58]. Éste puede describirse por medio del siguiente algoritmo [79] [58]

1. Si Y = [y1, . . . ,yP ] es la matriz de N × P dimensiones formada por los datos

M̂ que recaen sobre la variedad M. Se computa la matriz de productos
internos

S = YTY (5.31)
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2. Se calcula la descomposición espectral

S = UΛUT (5.32)

siendo U la matriz cuyos vectores columna están formados por los primeros
n eigenvectores de la matriz S con mayor valor de sus respectivos
eigenvalores, y Λ la matriz diagonal cuyos elementos son estos
eigenvalores ordenados de mayor a menor valor.

3. La representación en el espacio n−dimensional se obtiene como

X = In×PΛ
1
2 UT (5.33)

En este trabajo de acuerdo a los esquemas planteados se cuenta con un conjunto de datos M̂ que
recae sobre una variedad; sin embargo en muchas de las aplicaciones de MDS se cuenta inicialmente
con una matriz de distancias DP×P entre los diferentes puntos, en ese caso el primer paso se
reeplazaŕıa por el siguiente

1. Calcular

S = −1

2

(
D− 1

P
1P1TP −

1

P
1P1TPD +

1

P 2
1P1TPD1P1TP

)
(5.34)

en donde 1P representa un vector columna cuyas todas componentes son iguales a 1, este proceso
es conocido como de doble centrado [79] [58].

Aśı, MDS opera preservando los productos internos euclidianos de los vectores de datos rep-
resentativos del patrón, y es equivalente a usar PCA. Por lo tanto se pueden asociar las mismas
ventajas y desventajas que posee esta última técnica, como por ejemplo el hecho de que se asume una
relación lineal entre la información original y la información resultante [58], es decir una relación
lineal entre las variables originales y las variables latentes de la variedad, lo cual resulta a nivel
general altamente insatisfactorio.

Por otra parte esta misma semejanza con PCA posee dos enormes ventajas, es simple y ro-
busto; además es el concepto del uso de distancias el que permitió lograr una generalización de
MDS conocida como Isomap (se discutirá más adelante) que emplea aproximación de distancias
geodésicas y no distancias Euclidianas.

Lee [58] realiza pruebas de MDS para las benchmark manifolds: rollo suizo y la caja abierta.
Como se esperaba de una técnica que asume una relación lineal, los resultados obtenidos no son
satisfactorios pues no se logra una representación adecuada de estas variedades en dos dimensiones.

Los resultados de emplear esta técnica sobre M̂FSF para el sujeto S055 de la base de datos
Cohn-Kanade [7] se pueden apreciar en la tabla 5.4, alĺı se muestra la dimensión en la cual se in-
crustan los datos conservando el 98 % de la enerǵıa de los eigenvalores y se compara con el estimado
de la dimensión de correlación (que también puede verse en la tabla 5.1). Teniendo en cuenta esto
se puede asegurar que un encajamiento en un espacio de menores dimensiones es insatisfactorio
debido a la lejańıa entre la dimensión de correlación y la dimensión necesario para preservar las
cualidades esenciales de la información con esta técnica (e.g 98 %), ya que si bien la aproximación
de la dimensión de correlación puede ser un subestimado de la dimensión real de la variedad sobre
la cual caen los datos, la diferencia es demasiado grande.

Por estas razones MDS no es atractivo para realizar la reducción dimensionalidad de los
datos representativos de las expresiones faciales. Sin embargo, acorde a Lee [58] es posible e incluso
conveniente usar PCA-MDS en caso de que la cantidad de datos sea demasiado escasa.

Sammon’s Nonlinear Mapping (NLM)

En el mapeo no lineal de Sammon, se plantea mapear los puntos patrón extráıdos del espacio
euclidiano N−dimensional a un espacio euclidiano de dimensión n preservando las distancias por
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dimensión (≥ 98 %) dimcorr

(
M̂FSF

)
P

S055 01 5 3 12
S0055 02 7 3 25
S0055 03 6 2 9
S0055 04 4 2 28
S0055 05 10 2 45
S0055 06 5 2 8
S0055 all 11 3 127

Cuadro 5.4: Estimación de la dimensión usando MDS sobre M̂FSF para el sujeto S055 de la base
de datos Cohn-Kanade [7]. La dimensión estimada se basa en conservar el 98 % de la enerǵıa de los
eigenvalores

medio de la minimización de una función de estrés definida como [80] [58]

ENLM =
1

c

P∑

j=2

(
j−1∑

i=1

(dy(i, j)− dx(i, j))2

dy(i, j)

)
(5.35)

donde dy(i, j) es la distancia euclidiana entre yi y yj en el espacio N−dimensional, y dx(i, j) es
la distancia euclidiana entre los mapeos de yi y yj en el espacio n−dimensional. La constante c
está definida como [80] [58]

c =
P∑

j=2

(
j−1∑

i=1

dy(i, j)

)
(5.36)

de acuerdo a Lee [58] y Sammon [80] este algoritmo se puede plantear como

1. Se calculan los pares de distancias dy(i, j) en el espacio euclidiano
N−dimensional.

2. Se inicializan los puntos xi en el espacio n−dimensional, esta
inicialización puede ser aleatoria, o aplicando PCA y tomando los
primeros n eigenvectores de acuerdo a la energı́a asociada a sus
autovalores.

3. Se actualiza

xi(k)←− xi(k)− α
∂ENLM
∂xi(k)∣∣∣∂2ENLM
∂xi(k)2

∣∣∣
(5.37)

donde de acuerdo con Sammon [80] el valor de α se puede asignar cercano a
0,5 [81].

4. Se computa

ENLM =
1

c

P∑

j=2

(
j−1∑

i=1

(dy(i, j)− dx(i, j))2

dy(i, j)

)
(5.38)

5. Si ENLM < ∆err se termina el proceso, de lo contrario se regresa al paso
3. Donde ∆err es el lı́mite del error deseado.
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el procedimiento de minimización de la función de estrés, expresando en el paso 3 es conocido como
Cuasi-Newton [80] [58], y los términos de primera y segunda derivada se calculan como

∂ENLM
∂xi(k)

=
∂ENLM
∂dx(i, j)

∂dx(i, j)

∂xi(k)
(5.39)

donde
∂dx(i, j)

∂xi(k)
=

xi(k)− xj(k)

dx(i, j)
(5.40)

de manera que

∂ENLM
∂xk(i)

= −2

c

P∑

j=1
j 6=i

dy(i, j)− dx(i, j)

dy(i, j)

(xi(k)− xj(k))

dx(i, j)
(5.41)

la segunda derivada puede expresarse como

∂2ENLM
∂x2

k(i)
= −2

c

P∑

j=1
j 6=i

(
dy(i, j)− dx(i, j)

dy(i, j)dx(i, j)
− (xi(k)− xj(k))2

d3
x(i, j)

)
(5.42)

los resultados de aplicar esta técnica a los datos M̂FSF del sujeto S055 de la base de datos Cohn-
Kanade [7] se pueden ver en la figura 5.4. Cada conjunto de features es representado en un espacio

de dimensión igual a la dimensión estimada n̂ = dimcorr

(
M̂FSF

)
.

En la figura 5.4 se evidencia que en algunos casos de secuencias individuales de datos de ex-
presiones, hay solapamiento de la información respecto del espacio dado por la estimación de la
dimensión de correlación. Sin embargo cuando se analiza la variedad que incluye todos los compor-
tamientos no hay intersecciones entre las distintas trayectorias que representan los distintos tipos
de expresiones, ya que el espacio en cuestión tiene la dimensión más alta de las estimadas para
cada variedad analizada por expresión. Esto indica que dicho solapamiento se podŕıa atribuir a una
subestimación de la dimensión.

De acuerdo a la presentación de estos resultados para los conjuntos de features obtenidos, podŕıa
considerarse que los mismos son satisfactorios, sin embargo Lee analiza en [58] el comportamiento
de esta técnica sobre las variedades rollo suizo y caja abierta obteniendo resultados no satisfacto-
rios respecto de la dimensión real de estas variedades. Pues si bien Sammon’s nonlinear mapping
es más capaz de lidiar con la no linealidad en comparación de técnicas como PCA y MDS, no es
recomendable si la variedad posee grandes radios de curvatura [58].

Lee menciona en [58] además el inconveniente de que a función de estrés en la que se basa este
método no se puede garantizar que sea siempre cóncava, por lo cual se podŕıa caer en un mı́nimo
local. Esta técnica se comparará con las analizadas en secciones subsiguientes.

Curvilinear Component Analysis (CCA)

De manera similar a NLM, Curvilinear Component Analysis (CCA) se basa en la preservación de
las distancias por medio de la minimización de la función de estrés [82] [65] [58]:

ECCA =
1

2

N∑

i=1
j=1

(dy(i, j)− dx(i, j))2 Fλ (dx(i, j)) (5.43)

donde dy(i, j) es la distancia euclidiana entre los puntos yi y yj en el espacio RN y dx(i, j) es la
distancia euclidiana de entre los puntos mapeados en el espacio Rn. La función Fλ es escogida para
preservar prioritariamente las distancias cortas sobre las largas. Consecuentemente Fλ es selecciona-
da usualmente como una función monótona decreciente de su argumento [82] [65]. Además dado
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Figura 5.4: Resultados de aplicar NLM sobre M̂FSF para el sujeto S055 de la base de datos
Cohn-Kanade [7], empleando la dimensión de correlación. Algoritmo de Vesanto [81]
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que el método opera sobre un conjunto finito de datos, esta función también es escogida como aco-
tada, de tal manera que no existan problemas para manejar distancias demasiado cortas o incluso
nulas [82]. Lee [58] muestra que esta función se selecciona como

Fλ (dx(i, j)) = e−
dx(i,j)
λ (5.44)

El método CCA puede describirse como [82] [65] [58]

1. Compute todas las distancias mutuas dy(i, j) en el espacio euclidiano RN.

2. Se inicializan las coordenadas en el espacio n−dimensional de todos
los puntos xi ya sea aleatoriamente o usando PCA. Se hace q = 1 (q es el
número de época o iteración).

3. Se actualiza el valor de α y λ para el número de época q.

4. Se selecciona un punto xj y se actualizan los demás acorde a
for i=1:1:P

xj ← xj − α∇xjE
i
CCA

← xj − αβ(i, j)
xi − xj
dx(i, j)

(5.45)

(5.46)

end

5. Retorne al paso 4 hasta que cada punto xi haya sido seleccionado al menos
una vez por época.

6. Incremente el valor de q, y si la convergencia no se ha logrado retorne
al paso 3.

En el tercer paso se hace referencia a la actualización de los valores de α y λ. Éstos pueden ser
actualizados de distintas maneras, sin embargo Vesanto en [83] ha encontrado adecuado realizar
estas actualizaciones como

αl = α0

(
αF
α0

) l−1
qmáxP−1

(5.47)

λl = λ0

(
λF
λ0

) l−1
qmáxP−1

(5.48)

para l = 1, . . . , qmáxP . En particular, en [83] se muestra que se encuentran resultados satisfactorios

para una gran variedad de problemas seleccionando α0 = 0,5, αF = α0
100 , λ0 = máx

{
3σdy(i,j)

}

tomando las desviaciones correspondientes a las distancias finitas y λF = 0,01. Donde qmáx es el
número máximo de iteraciones o épocas.

En el paso 4 se plantean las ecuaciones de actualización para cada uno de los puntos xj . Éstas
se basan en un planteamiento propuesto en [82] [65]. La idea básica es realizar la minimización de
la función de estrés usando el método de descenso por el gradiente. Para esto se usa la derivada de
la función de estrés respecto de cada una de las coordenadas de los puntos en el espacio Rn:

∇xiECCA =
∂ECCA
∂xi(k)

=
∂ECCA
∂dx

∂dx
∂xi(k)

=

P∑

j=1

(dy − dx)
(

2Fλ(dx)− (dy − dx)F
′
λ(dx)

) xj(k)− xi(k)

dx

(5.49)
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de manera que la actualización de cada uno de los xi usando descenso por el gradiente, se da de la
siguiente forma

xi ← xi − α∇xiECCA (5.50)

siendo α una tasa positiva de aprendizaje seleccionada teniendo en cuenta las condiciones de Robins-
Monro [58]. Demartines demostró en [82] [65] que esta actualización poséıa algunos inconvenientes
asociados al estancamiento en mı́nimos locales, por lo cual propuso realizar dicho proceso desacop-
lando la información de la función de estrés. Esto se hace teniendo en cuenta que:

ECCA =

P∑

i=1

E
(i)
CCA (5.51)

donde

E
(i)
CCA =

1

2

P∑

j=1

(dy(i, j)− dx(i, j))2 Fλ (dx(i, j)) (5.52)

aśı en el nuevo procedimiento se realiza la actualización en todos los xj para cada i como:

xj ← xj − α∇xjE
(i)
CCA = xj − αβ(i, j)

xi − xj
dx(i, j)

(5.53)

es decir primero se actualizan todos los xj para i = 1, luego se realiza la actualización de todos los
xj para i = 2 y aśı sucesivamente. El término β(i, j) se define como

β(i, j) = (dy − dx)
(

2Fλ(dx)− (dy − dx)F
′
λ(dx)

)
(5.54)

los resultados de aplicar esta técnica a los datos M̂FSF del sujeto S055 de la base de datos Cohn-
Kanade [7] se pueden ver en la figura 5.5, cada conjunto de features es representado en un espacio

de dimensión igual a la dimensión estimada n̂ = dimcorr

(
M̂FSF

)
. Como se evidencia en esta

gráfica hay solapamiento de la información en el espacio respecto al cual se ha dado la reducción
de dimensionalidad aunque esto también puede deberse al igual que en el método anterior a una
subestimación de la dimensión en el cálculo de la dimensión de correlación ya que cuando se analiza
toda la información como parte de una sola variedad la dimensión estimada es de tres, y alĺı no se
evidencia solapamiento.

Lee [58] analiza el comportamiento de CCA aplicándolo sobre las variedades rollo suizo y ca-
ja abierta, encontrando resultados superiores a los obtenidos con NLM. Además de ésto Lee [58]
muestra que CCA trata de estirar la variedad en casos en los que NLM la aplasta superponiendo
la información.

Desde el punto de vista computacional, CCA muestra ser mucho más rápido que NLM, sin
embargo con la desventaja de que en CCA hay una gran dificultad para interpretar el error puesto
que la función Fλ está cambiando en el proceso de iteración y el hecho de que el proceso de con-
vergencia depende fuertemente de la actualización de α y λ. Esta técnica se comparará con otras
técnicas que se presentarán más adelante.

5.7.2. Técnicas Basadas en Distancias de Grafo

A continuación se presentan las técnicas de conservación de la distancia en donde se emplean
aproximaciones de geodésicas por medio de las distancias de grafo.

Isometric Mapping (Isomap)

Isomap es una técnica basada en MDS pero en la cual se usan aproximaciones de las geodésicas
que unen los datos que recaen sobre la variedad M, por medio de distancias de grafo [84] [58]. Aśı,



5.7. TÉCNICAS BASADAS EN PRESERVACIÓN DE LA DISTANCIA 95

S055_01 S055_02 S055_03

S055_04 S055_05 S055_06

S055_ALL S055_ALL
S055_ALL

Figura 5.5: Resultados de aplicar CCA sobre M̂FSF para el sujeto S055 de la base de datos Cohn-
Kanade [7], empleando la dimensión de correlación. Algoritmo de Vesanto [83]
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el manejo de la no linealidad usando Isomap reside únicamente en el hecho de emplear aproxi-
maciones de distancias geodésicas. Acorde a Lee [58] y Tenenbaum [84] este procedimiento puede
describirse como

1. Construya un grafo en el espacio RN con los puntos Y = [y1 . . . ,yP ].

2. Asigne a cada arista del grafo un peso dado por la distancia euclidiana
entre los vértices del mismo.

3. Se calculan las distancias de grafo entre los puntos del mismo, por
ejemplo usando el algoritmo de Dijkstra, y se almacenan en la matriz D.

4. Realice doble centrado sobre la matriz D̃, siendo D̃ij = D2
ij, obteniendo la

matriz S.

5. Se realiza la descomposición espectral

S = UΛUT (5.55)

siendo U la matriz cuyos vectores columna están formados por los primeros
n eigenvectores de la matriz S con mayor valor de sus respectivos
eigenvalores, y Λ la matriz diagonal cuyos elementos son estos
eigenvalores ordenados de mayor a menor valor.

5. Finalmente se computa la representación en el espacio n−dimensional como

X = In×PΛ
1
2 UT (5.56)

Para conocer el efecto de tomar un número n de eigenvectores, o estimar la dimensión intŕınseca de
la variedad se analiza la varianza residual por medio de la ecuación [84] [58]

σ2
n = 1− r2

ij

(
dx(i, j), L̃

yj
yi

)
(5.57)

siendo rij el coeficiente de correlación sobre los ı́ndices i y j, y L̃
yj
yi la distancia de grafo entre yi

y yj . Para identificar la dimensión de los datos se realiza un análisis similar al que se hace para
encontrar la dimensión intŕınseca usando PCA, es decir se busca gráficamente dónde se ubica un
punto de la gráfica a cuya derecha se encuentre una región casi plana y a la izquierda una región de
elevada pendiente (en valor absoluto), ordenando las varianzas de mayor a menor [58] [84]. Lee [58] y
Jolliffe [46] llaman a esto el codo de la curva, este procedimiento se puede apreciar en la presentación
de PCA−`m (ver sección 5.6.8) en donde se emplea para la selección del número de componentes
a fin de estimar correctamente la dimensión intŕınseca.

Isomap muestra ser de acuerdo a los análisis realizados por Lee en [58] y a parte de los resultados
experimentales de Ping en [57], una técnica más poderosa para manejar la no linealidad que las técni-
cas que se han presentado anteriormente. Sin embargo, Isomap solo tiene su mejor comportamiento

cuando los datos M̂ que representan el patrón caen o hacen parte de una variedad desarrollable
M, y además de ello existe una isometŕıa entre M y un espacio euclidiano convexo [58] [59] [84].
Es decir, sea L

yj
yi la distancia geodésica sobre M de dimensión n, encajada en RN entre los puntos

yi y yj , y sea E ⊂ Rn convexo de dimensión n tal que xi,xj ∈ E son los puntos asociados a yi y yj
por medio de Isomap respectivamente, dx(i, j) es la distancia euclidiana entre los puntos xi y xj .
Se dice que Isomap permite recuperar la estructura original de los datos si ∃C ∈ R tal que

L
yj
yi = Cdx(i, j) ∀i, j (5.58)

Por otra parte, Bernstein muestra en [85] que a pesar del cumplimiento de las anteriores condi-
ciones para asegurar un buen comportamiento de Isomap, debe considerarse la calidad de la aprox-
imación de las distancias geodésicas por medio de las distancias de grafo. Berstein [85] demuestra
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Figura 5.6: Gráfica para encontrar el valor óptimo de K propuesta por Shao [86] para los datos

M̂FSF del sujeto S055 de la base de datos Cohn-Kanade [7] construyendo el grafo a partir de
distancias euclidianas, el valor óptimo seŕıa de 12

que la curvatura de la variedad sobre la cual se asume que caen los datos patrón juega un papel
importante para establecer la calidad de esta aproximación y adicionalmente la densidad de los
datos también juega un papel fundamental.

A partir de este último argumento y a los análisis hechos por Lee en [58] se concluye que seŕıa
seriamente cuestionable emplear Isomap para una cantidad reducida de datos.

Por esto, se pondrá a consideración el uso de Isomap realizando su aplicación asumiendo que
las variedades MFSF ,MFST ,MFIF ,MFIT ,MFIS sobre las cuales recaen los datos patrón, están
constituidas por todas las expresiones de un determinado individuo para garantizar una mayor can-
tidad de datos y con ello una posible mayor densidad de los mismos.

Otro aspecto a mencionar de suma importancia es la selección de los parámetros para la con-
strucción de los grafos, en concreto el valor K que define la construcción del grafo por medio de los
K−vecinos. Aunque algunos autores como Lee [58] proponen realizar una sintonización emṕırica de
este valor observando los resultados, Shao propone en [86] una alternativa más rigurosa para esta
selección, teniendo en cuenta las caracteŕısticas de los datos a tratar sin realizar el mapeo al espacio
de la dimensión estimada. Sea D(K) la matriz en donde se almacenan las distancias de grafo, para
un grafo construido con una valor de K empleando la técnica de los K−vecinos, Shao [86] propone
analizar la función

f(K) =

P∑

i,j=1

D(K) (i, j) (5.59)

y encontrar en ella el punto donde se registre un descenso abrupto en el comportamiento de f(K).
Esta gráfica se presenta por practicidad desde el primer valor de K donde f(K) alcanza su máximo
global. En la figura 5.6 se muestra el valor de K óptimo para la construcción del grafo empleando los

datos M̂FSF para todas las expresiones faciales del sujeto S055 de la base de datos Cohn-Kanade [7].
Para realizar este cálculo de manera automática se adopta un procedimiento similar al empleado en
la búsqueda del codo de la curva empleado en PCA, pero con modificaciones respecto a los cambios
de pendiente.

Entonces, para realizar la ubicación sistemática de este punto en el gráfico de f(K) vs K se
emplea el siguiente algoritmo

Sea Q el máximo tama~no de vecindad considerado, si no existe un estimado se
puede hacer Q = P.

1. for ii=Kfmax + 1:1:Q-1
if |f(ii+ 1)− f(ii)| − |f(ii)− f(ii− 1)| > 0

f∂(ii) = ||f(ii+ 1)− f(ii)| − |f(ii)− f(ii− 1)|| (5.60)
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end
end
f∂(1 : Kfmax) = 0

2. Se busca el ii = iimax en el cual f∂(ii) alcanza su valor máximo.

3. Se calcula el valor óptimo de K como K = iimax

siendo K = Kfmax el valor en el cual f(K) alcanza su máximo global.

como se aprecia en este algoritmo los cambios de pendiente en donde se considera que se puede
asociar el valor óptimo de K, serán los puntos cuya vecindad derecha tenga una gran pendiente (en
valor absoluto) mientras que la izquierda una pendiente pequeña (en valor absoluto).

En las figura 5.7 se aprecian los resultados de emplear Isomap sobre la variedad M̂FSF para
el sujeto S055 de la base de datos Cohn-Kanade [7] visualizando los datos en 2 o 3 dimensiones
dependiendo del comportamiento de la varianza.

Isomap se comparará con las demás técnicas empleadas para la reducción de dimensionalidad.

Supervised Isomap (s−Isomap)

Geng propone en [87] una variante de Isomap denominada Supervised Isomap en la cual se busca
principalmente reducir la sensitividad de Isomap al ruido, y brindar ventajas para fines de clasifi-
cación. La propuesta de Geng se basa en realizar esta mejora empleando una matriz de disimilaridad
en la construcción del grafo teniendo en cuenta la clase o categoŕıa a la que pertenecen los datos [87].
Sea dy(i, j) la distancia euclidiana entre los puntos yi y yj que caen o hacen parte de la variedad
M. Se representarán como Aθ, θ = 1, 2, . . . las distintas clases a las que pertenecen los datos. La
matriz de disimilaridad propuesta por Geng se define como [87]

D(yi,yj) =





√
1− e−

d2y(i,j)

β Si yi,yj ∈ Aθ
∧

√
e
d2y(i,j)

β − α ≥
√

1− e−
d2y(i,j)

β√
e
d2(i,j)
β −α+

√
1−e−

d2(i,j)
β

2 Si yi,yj ∈ Aθ
∧

√
e
d2y(i,j)

β − α <
√

1− e−
d2y(i,j)

β√
e
d2y(i,j)

β − α Si yi ∈ Aθ′ ,yj ∈ Aθ
∧

√
1− e−

d2y(i,j)

β ≤
√
e
d2y(i,j)

β − α√
e
d2(i,j)
β −α+

√
1−e−

d2(i,j)
β

2 Si yi ∈ Aθ′ ,yj ∈ Aθ
∧

√
e
d2y(i,j)

β − α >
√

1− e−
d2y(i,j)

β

(5.61)
Siendo β seleccionada como el promedio de las distancias euclidianas dy(i, j) y α una constante

seleccionada con un valor cercano a 0,5. De acuerdo a Geng [87] el uso de esta matriz en lugar de
la matriz de distancias euclidianas presenta tres grandes ventajas

F Cuando la distancia Euclidiana entre dos puntos de la variedad es cero o cercana a ser cero, la
disimilaridad entre elementos de diferente clase (interclase) es mayor a la disimilaridad entre
elementos de la misma clase (intraclase), lo cual permite lograr diferenciación geométrica entre
secuencias de datos de distinta naturaleza sobre una misma variedad.

F Cada función de disimilaridad es monótona creciente respecto a la distancia euclidiana lo que
permite conservar las cualidades esenciales de la información, es decir su estructura geométrica
esencial se preserva.

F Dado que la disimilaridad interclase es ≥ 1−α y la disimilaridad intraclase es ≤ 1 es posible
analizar sin mayores inconvenientes datos con niveles de ruido dentro de rangos más amplios
que con Isomap original.
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Figura 5.7: Resultados de aplicar Isomap sobre M̂FSF para el sujeto S055 de la base de datos Cohn-
Kanade [7], usando K = 12 seleccionado con el criterio asociado a f(K). Algoritmo de Tenenbaum
[84]
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F Con el crecimiento de la distancia ecuclidiana la disimilaridad interclase aumenta mucho más
rápido que la disimilaridad intraclase, Geng describe este aspecto como una capacidad de
D (yi,yj) para distinguir entre la información y el ruido.

Teniendo en cuenta estas caracteŕısticas, es claro que esta nueva versión de Isomap es mucho
más robusta frente al ruido que la versión original, y esto brinda ventajas tanto para fines de vi-
sualización como de clasificación. Ping [57] obtiene resultados altamente satisfactorios para fines
de clasificación empleando s−Isomap en conjuntos de expresiones faciales obtenidos de la base de
datos Cohn-Kanade [7]. Este algoritmo puede presentarse como

1. Construya un grafo en el espacio RN con los puntos Y = [y1 . . . ,yP ].

2. Asigne a cada arista del grafo un peso dado por la matriz de
disimilaridad D(yi,yj) correspondiente a los vértices del mismo. Esta
matriz se calcula empleando la ecuación 5.61

3. Se calculan las distancias de grafo entre los puntos del mismo, por
ejemplo usando el algoritmo de Dijkstra, y se almacenan en la matriz D.

4. Realice doble centrado sobre la matriz D̃, siendo D̃ij = D2
ij, obteniendo la

matriz S.

5. Se realiza la descomposición espectral

S = UΛUT (5.62)

siendo U la matriz cuyos vectores columna están formados por los primeros
n eigenvectores de la matriz S con mayor valor de sus respectivos
eigenvalores, y Λ la matriz diagonal cuyos elementos son estos
eigenvalores ordenados de mayor a menor valor.

5. Finalmente se computa la representación en el espacio n−dimensional como

X = In×PΛ
1
2 UT (5.63)

Geng [87] compara s−Isomap con Isomap y otras de sus variantes encontrando resultados muy
superiores para los propósitos de visualización. Adicionalmente Geng [87] demuestra que s−Isomap
es una técnica robusta para fines de clasificación, de hecho ésta muestra ser ligeramente más robusta
dentro de los experimentos realizados que otras técnicas de clasificación ya consolidadas como SVM
(support vector machines).

Los resultados de aplicar s−Isomap a M̂FSF empleando la totalidad de las expresiones para
el sujeto S055 de la base de datos Cohn-Kanade [7] se pueden apreciar en la gráfica 5.8 usando los
parámetros α = 0,5,K = 11, en donde K se seleccionó siguiendo el procedimiento propuesto por
Shao [86]. Teniendo en cuenta todos estos argumentos sobre s−Isomap, y los resultados obtenidos

sobre M̂FSF , resulta evidente su ventaja para aplicaciones de reducción de dimensionalidad, ésta
se comparará con las demás técnicas presentadas.

Geodesic NLM(GNLM)

GNLM se basa en la minimización de la función de estrés de Sammon presentada en la sección
5.7.1, pero emplea la aproximación de las distancias geodésicas en el espacio original en el cual se
encuentran los datos [58]. De esta manera la función de estrés para esta técnica puede expresarse
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S055_ALL

Figura 5.8: Resultados de aplicar s−Isomap sobre la variedad M̂FSF para el sujeto S055 de la base
de datos Cohn-Kanade [7], usando K = 11 seleccionado con el criterio asociado a f(K). Algoritmo
Geng-Tenebaum [87]
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como

EGNLM =
1

c

P∑

j=2



j−1∑

i=1

(
L̃yj
yi − dx(i, j)

)2

L̃yj
yi


 (5.64)

siendo L̃yj
yi la aproximación de la distancia geodésica sobreM entre los puntos yi,yj ∈ M̂ por medio

de las distancia de grafo, y al igual que en secciones anteriores dx(i, j) es la distancia euclidiana
entre los mapeos de los puntos yi,yj al espacio de dimensión intŕınseca. La constante c se calcula
como

c =
P∑

j=2

(
j−1∑

i=1

L̃yj

yi

)
(5.65)

Al igual que en Isomap, la construcción de un grafo involucra el problema de seleccionar un
valor de óptimo de K en la regla de los K−vecinos. Dado que la propuesta de Shao [86] menciona-
da anteriormente hace referencia a la calidad de la aproximación de las distancias geodésicas sin
necesidad de involucrar el mapeo o encajamiento en el espacio de dimensión intŕınseca, se propone
emplear esta misma regla para dicha selección.

El procedimiento de optimización asociado sigue siendo idéntico al asociado a NLM, de manera
que el algoritmo que describe esta técnica se puede presentar como [58]

1. Construya un grafo en el espacio RN con los puntos Y = [y1 . . . ,yP ].

2. Asigne a cada arista del grafo un peso dado por la distancia euclidiana
correspondiente a los vértices del mismo.

3. Se calculan las distancias de grafo entre los puntos del grafo, por
ejemplo usando el algoritmo de Dijkstra, y se almacenan en la matriz D.

4. Se inicializan los puntos xi en el espacio n−dimensional, esta
inicialización puede ser aleatoria, o aplicando PCA y tomando los
primeros n eigenvectores de acuerdo a la energı́a asociada a sus
autovalores.

5. Se actualiza

xi(k)←− xi(k)− α
∂EGNLM
∂xi(k)∣∣∣∂2EGNLM
∂xi(k)2

∣∣∣
(5.66)

donde de acuerdo con Sammon [80] el valor de α se puede asignar cercana
al intervalo entre 0,3 y 0,4.

6. Se computa

EGNLM =
1

c

P∑

j=2



j−1∑

i=1

(
L̃yj
yi − dx(i, j)

)2

L̃yj
yi


 (5.67)

5. Si EGNLM < ∆err se termina el proceso, de lo contrario se regresa al
paso 3. Donde ∆err es el lı́mite del error deseado.

Lee [58] menciona como una desventaja de la técnica el problema de la selección del valor óptimo
de K− en la construcción del grafo y la dependencia de la técnica de los valores de otros parámetros
como α. Sin embargo, al tener en cuenta la propuesta de Shao [86] para conocer el valor óptimo de
K, el primer aspecto deja de ser un problema y solo queda por analizar el comportamiento depen-
diente de α que de acuerdo a Vesanto [81] puede seleccionarse con un valor de 0,5 de tal manera
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que se obtengan resultados satisfactorios para amplias variedades de datos.
Otras limitantes de GNLM están relacionadas, al igual que en Isomap, con la calidad de

aproximación las distancias geodésicas sobre la variedad M por medio de las distancias de grafo,

descritas a partir de los datos M̂. Como se mencionó anteriormente Bernstein en [85] demostró que
tanto la densidad de los datos como el radio de curvatura de la variedad sobre la cual caen éstos,
afecta de manera significativa la calidad de la aproximación de las distancias geodésicas dadas por
las distancias de grafo. Por ello aplicar esta técnica a conjuntos reducidos de datos seŕıa bastante
cuestionable.

Por otra parte GNLM tiene la ventaja de manejar la no linealidad por medio de las distancias
de grafo como lo hace Isomap y además por medio de la minimización de una función de estrés. Lee
en [58] realiza pruebas con esta técnica sobre las variedades rollo suizo y caja abierta obteniendo
resultados altamente satisfactorios, y por supuesto GNLM tiene un mejor comportamiento que
Isomap para variedades que no son desarrollables, pues no tiene restricciones al respecto.

Considerando las enormes ventajas que representó para el uso de Isomap, la introducción por
parte de Geng [87] de una matriz de disimilaridad en el manejo del ruido en la construcción del
grafo, se propone usar una nueva versión de GNLM denominada s−GNLM en donde se emplea
esta matriz de disimilaridad para la construcción de este grafo. En teoŕıa esto permitirá manejar
mayores niveles de ruido y evidenciar mejoŕıas como las que se logran en s−Isomap. Entonces el
procedimiento asociado a s−GNLM puede describirse como

1. Construya un grafo en el espacio RN con los puntos Y = [y1 . . . ,yP ].

2. Asigne a cada arista del grafo un peso dado por la matriz de
disimilaridad D(yi,yj) entre los vértices del mismo, esta matriz se
calcula empleando la ecuación 5.61

3. Se calculan las distancias de grafo entre los puntos del mismo, por
ejemplo usando el algoritmo de Dijkstra, y se almacenan en la matriz D.

4. Se inicializan los puntos xi en el espacio n−dimensional, esta
inicialización puede ser aleatoria, o aplicando PCA y tomando los
primeros n eigenvectores de acuerdo a la energı́a asociada a sus
autovalores.

5. Se actualiza

xi(k)←− xi(k)− α
∂EGNLM
∂xi(k)∣∣∣∂2EGNLM
∂xi(k)2

∣∣∣
(5.68)

donde de acuerdo con Sammon [80] el valor de α se puede asignar cercano
al intervalo entre 0,3 y 0,4.

6. Se computa

EGNLM =
1

c

P∑

j=2



j−1∑

i=1

(
L̃yj
yi − dx(i, j)

)2

L̃yj
yi


 (5.69)

5. Si EGNLM < ∆err se termina el proceso, de lo contrario se regresa al
paso 3. Donde ∆err es el lı́mite del error deseado.

En la figura 5.9 se muestran los resultados de aplicar GNLM y s−GNLM sobre el conjunto M̂FSF

para el sujeto S055 de la base de datos Cohn-Kanade [7] empleando la totalidad de las expresiones,
y como puede verse los resultados son altamente satisfactorios para s−GNLM, pues se logra una
separación entre los flujos de información correspondientes a cada expresión, sin solapamientos.
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Figura 5.9: Resultados de aplicar GNLM y s−GNLM sobre M̂FSF , empleando la dimensión de
correlación. Con K = 12, 11 respectivamente, seleccionado con el criterio asociado a f(K)
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Son enormes las fortalezas de s−GNLM al permitir manejar mayores niveles de ruido de los
que se pueden manejar con GNLM, y además las ventajas de GNLM en śı mismo permiten dar
como una excelente opción para su aplicación en el análisis del comportamiento dinámico de las
expresiones faciales. Ésta técnica se contrastará con otras técnicas presentadas.

Curvilinear distance Analysis (CDA)

Lee [88] [89] presenta CDA como una versión mejorada de CCA en donde se emplea la aproxi-
mación de las distancias geodésicas en el espacio en el cual se encuentran los datos en la función
de estrés correspondiente a CCA. De esta manera la función de estrés asociada a CDA se escribe
como [88] [89] [58]

ECDA =
1

2

∑

i=1
j=1

(
L̃
yj
yi − dx(i, j)

)2
Fλ (dx(i, j)) (5.70)

y el proceso de actualización se realiza de la misma manera que se planteó para CCA. Teniendo en
cuenta eso, el algoritmo para CDA se presenta como

1. Construya un grafo en el espacio RN con los puntos Y = [y1 . . . ,yP ].

2. Asigne a cada arista del grafo un peso dado por la distancia euclidiana
entre los vértices del mismo.

3. Se calculan las distancias de grafo entre los puntos del grafo, por
ejemplo usando el algoritmo de Dijkstra, y se almacenan en la matriz D.

4. Se inicializan las coordenadas en el espacio n−dimensional de todos
los puntos xi ya sea aleatoriamente o usando PCA. Se hace q = 1 (q es el
número de época o iteración).

5. Se actualiza el valor de α y λ para el número de época q.

6. Se selecciona un punto xj y se actualizan los demás acorde a
for i=1:1:P

xj ← xj − α∇xjE
i
CDA

← xj − αβ(i, j)
xi − xj
dx(i, j)

(5.71)

(5.72)

end

7. Retorne al paso 4 hasta que cada punto xi haya sido seleccionado al menos
una vez por época.

8. Incremente el valor de q, y si la convergencia no se ha logrado retorne
al paso 3.

En el paso 6 la actualización se realiza igual que en CCA, empleando las ecuaciones 5.53 y
5.54. En tanto los valores de α, λ se actualizan empleando 5.47 y 5.48. Este planteamiento de CDA
se basa en las ideas originales del método publicado en el año 2000 [88]. No obstante Lee propone
en [58] (año 2007) algunos cambios respecto de la actualización e inicialización del valor de λ par-
tiendo de una versión modificada de CCA propuesta por Demartines [82] en la que se asocia a
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CCA una función de estrés para comportamiento local y otra para comportamiento global [58]. En
este trabajo no se adopta este último enfoque, ya que no se introducen cambios sustanciales en la
técnica.

Teniendo en cuenta que en esta técnica se requiere de la construcción de un grafo y de la aprox-
imación de las distancias geodésicas sobre el mismo, CDA podŕıa poseer limitaciones similares a las
asociadas inicialmente a Isomap y GNLM respecto de la calidad de aproximación de las geodésicas
por medio de las distancias de grafo. Por lo tanto es una técnica inadecuada si se cuenta con una
baja cantidad y densidad de datos, y adicionalmente existe una dependencia del radio de curvatura
de la variedad sobre la cual caen los datos patrón.

Su similaridad con GNLM e Isomap permite adecuar el planteamiento de Geng [87] a CDA
como se hizo para presentar s−GNLM. Por ello, en este trabajo se propone construir el grafo
empleando la matriz de disimilaridad creada por Geng para s−Isomap, de esta manera resulta el
algoritmo que se denominará en adelante s−CDA, el cual describe como

1. Construya un grafo en el espacio RN con los puntos Y = [y1 . . . ,yP ].

2. Asigne a cada arista del grafo un peso dado por la matriz de
disimilaridad D(yi,yj) entre los vértices del mismo, esta matriz se
calcula empleando la ecuación 5.61.

3. Se calculan las distancias de grafo entre los puntos del mismo, por
ejemplo usando el algoritmo de Dijkstra, y se almacenan en la matriz D.

4. Se inicializan las coordenadas en el espacio n−dimensional de todos
los puntos xi ya sea aleatoriamente o usando PCA. Se hace q = 1 (q es el
número de época o iteración).

5. Se actualiza el valor de α y λ para el número de época q.

6. Se selecciona un punto xj y se actualizan los demás acorde a
for i=1:1:P

xj ← xj − α∇xjE
i
CDA

← xj − αβ(i, j)
xi − xj
dx(i, j)

(5.73)

(5.74)

end

7. Retorne al paso 4 hasta que cada punto xi haya sido seleccionado al menos
una vez por época.

8. Incremente el valor de q, y si la convergencia no se ha logrado retorne
al paso 3.

Al igual que en GNLM y s−GNLM la selección del valor del K óptimo para la construcción
del grafo empleando la regla de los K−vecinos se hace usando la propuesta de Shao [86] por las
mismas razones expuestas en la presentación de GNLM y s−GNLM. Los resultados de aplicar

CDA y s−CDA sobre el conjunto M̂FSF para el sujeto S055 de la base de datos Cohn-Kanade [7]
se evidencian en la figura 5.10, y como puede verse también los resultados obtenidos son altamente
satisfactorios pues se logra una separación interclase sin solapamiento, y se aprecia una gran similitud
entre éstos y los obtenidos usando s−GNLM.

Esta técnica se contrastará con otras técnicas presentadas.
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Figura 5.10: Resultados de aplicar CDA y s−CDA sobre el conjunto M̂FSF para el sujeto S055 de
la base de datos Cohn-Kanade [7], usando K = 12, 11 respectivamente seleccionado con el criterio
asociado a f(K)
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5.7.3. Otras Técnicas

Una técnica sobre la cual se han realizado un número considerable de aportes es, KPCA(Kernel
PCA). A pesar de su sólida fundamentación matemática y de su potencial capacidad para el manejo
de datos que hagan parte de variedades altamente no lineales, posee un serio talón de aquiles para
enfrentar problemas con datos de naturaleza arbitraria, la selección del kernel [90] [58]. Acorde a
Lee [58] no hay una estrategia clara y consolidada, por el momento, para seleccionar este Kernel a
fin de tratar conjuntos arbitrarios de datos. Por estas razones no se empleará esta técnica, pero la
misma puede representar para futuro una estrategia valiosa.

Otra técnica destacada, es SDE (semidefinite embedding). Una fuerte desventaja de este método
es la ausencia de un criterio para la determinación del valor de K en la construcción del grafo
empleando los K−vecinos, ya que en esta selección juega un papel la isometŕıa local que busca
garantizar este método. Por lo tanto, la propuesta de Shao [86] no seŕıa pertinente para aplicarse,
porque hace alusión a la calidad de la aproximación de las distancias geodésicas y no a qué tan
bien se está preservando dicha isometŕıa local. Sumado a esto, se tiene que incluso para conjuntos
pequeños de datos, pero con grandes dimensiones una selección satisfactoria por sintonización de
K puede implicar un exagerado costo computacional [58]. Por estas razones no se empleará SDE
en este trabajo, aunque puede ser una alternativa acorde a los análisis realizados por Lee en [58],
valiosa para ser explorada en trabajos futuros cuando se hayan realizado mejoras a la misma.

Grimes desarrolla en [59] una variante de Isomap denominada Piecewise Isomap en la cual la
idea es la aplicación de Isomap a nivel local para lograr tratar con mayor éxito los comportamientos
locales y ensamblar todas las incrustaciones al final en un resusltado global. Sin embargo esta misma
propiedad es recogida en HLLE, y aunque se aprovecha el comportamiento local de la variedad,
Isomap es cuestionable para conjuntos reducidos de datos lo cual puede poner muy en duda los
resultados obtenidos.

5.8. Técnicas Basadas en Preservación de la Topoloǵıa

A continuación se presentan y discuten las técnicas basadas en preservación de las propiedades
topológicas de las variedad sobre la cual recaen los datos patrón.

5.8.1. Ret́ıcula definida por Datos

En esta sección se presentan las técnicas de preservación de la topoloǵıa más usadas para realizar la
reducción de dimensionalidad, usando la contrucción de una ret́ıcula de acuerdo al comportamiento
de los datos sin restricciones anteriores al uso de los mismos.

Locally Linear Embedding (LLE)

LLE se plantea como un método de preservación de la topoloǵıa por medio de la conservación de
los ángulos a nivel local usando mapeos conformes [91] [92]. Éste puede presentarse como

1. for i=1:1:P

• Encuentre los K− vecinos más cercanos de yi

• Calcule la matriz Gi como

Gi(r, s) = (yi − νr)T (yi − νs) (5.75)

siendo νr el r−ésimo vecino de yi
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• Aplique el proceso de regularización

G = G +
∆2Tr(G)

K
I (5.76)

seleccionando ∆ como un valor peque~no en comparación con Tr(G).

• Se calcula

ω
(r)
i =

∑K
s=1

(
G−1
i

)
r,s∑K

r,s=1

(
G−1
i

)
r,s

(5.77)

end

2. Se construye la matriz W empleando ωi que representa los elementos no
nulos del renglón i, y además teniendo en cuenta que

• W(i, j) = 0 si yi y yj no son K−vecinos.

3. Calule la matriz
M = (I−W)T (I−W) (5.78)

4. Se realiza la descomposición en eigenvalores y eigenvectores de la matriz
M, de manera que la representación en el espacio n−dimensional se
obtiene tomando los n eigenvectores con menores eigenvalores comenzando
desde el segundo más peque~no.

La deducción de las ecuaciones empleadas está relacionada en primera instancia con la minimización
de

E (W) =
P∑

i=1

∥∥∥∥∥∥
yi −

∑

j∈K(i)

W(i, j)yj

∥∥∥∥∥∥

2

(5.79)

siendo K(i) el conjunto de K−vecinos de yi. Esta ecuación representa una medida del error asociado
a qué tan parecido es yi respecto a susK−vecinos, por lo cual al minimizar E(W) se espera encontrar
los valores W(i, j) que representen a nivel de estos K−vecinos las propiedades de la variedad sobre
la cual recaen los datos patrón [91] [92]. Esta minimización se realiza teniendo en cuenta que

W(i, j) = 0 si yi y yj no son K−vecinos.

∑P
j=1 W(i, j) = 1

Los valores de W asociados a un determinado punto, tienen la propiedad de ser invariantes a
transformaciones afines; de manera que éstos solo representan propiedades geométricas intŕınsecas
de la variedad [58].

Ahora, empleando los valores de W se minimiza la función

Φ
(
X̂
)

=

P∑

i=1

∥∥∥∥∥∥
x̂i −

∑

j∈K(i)

W(i, j)x̂j

∥∥∥∥∥∥

2

(5.80)

en este caso se busca encontrar los puntos x̂i que minimicen la función Φ
(
X̂
)

teniendo en cuenta

las propiedades geométricas esenciales de la variedad, sintetizadas en los coeficientes W(i, j) [91].
Para realizar la minimización de estas funciones se hace primero un calculo directo para los

valores de W teniendo en cuenta que el aporte de un punto yi a la función de error E(W) se puede
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escribir como [92]

Ei (W ) =

∥∥∥∥∥∥
yi −

∑

j∈K(i)

W(i, j)yj

∥∥∥∥∥∥

2

(5.81)

que puede ser reformulado como [58]

Ei (ωi) =

∥∥∥∥∥yi −
K∑

r=1

ωi(r)ν(r)

∥∥∥∥∥

2

=

∥∥∥∥∥
K∑

r=1

ωi(r) (yi − ν(r))

∥∥∥∥∥

2

=
K∑

r,s=1

ωi(r)ωi(s)Gi(r, s) (5.82)

de manera que los valores de ωi(r) pueden ser hallados aśı [91] [92] [58]

ωi(r) =

∑K
s=1

(
G−1
i

)
r,s∑K

r,s=1

(
G−1
i

)
r,s

(5.83)

En ocasiones la matriz G obtenida es singular o mal condicionada, por lo cual debe aplicarse el
proceso de regularización empleando la ecuación 5.76.

Una vez se cuenta con los valores de W y teniendo en cuenta que ωi representa las entradas no

nulas del renglón i de la matriz W, se puede proceder a la minimización de Φ
(
X̂
)

considerando

que [91] [92]:

Φ
(
X̂
)

=

P∑

i=1

∥∥∥∥∥∥
x̂i −

∑

j∈K(i)

W(i, j)x̂j

∥∥∥∥∥∥

2

=

P∑

i=1

∥∥∥∥∥∥
∑

j∈K(i)

W(i, j) (x̂i − x̂j)

∥∥∥∥∥∥

2

=

P∑

i,j=1

M(i, j)
(
x̂Ti x̂j

)

(5.84)
de manera que los valores por determinar M(i, j) corresponden a la matriz

M = (I−W)T (I−W) (5.85)

LLE aprovecha propiedades de tipo local para lograr la reducción de dimensionalidad, por lo
cual es una técnica que aprovecha los conceptos esenciales de variedades para preservar la topoloǵıa.
Además de ello, su fundamentación teórica es muy sólida lo cual la convierte en una técnica con
grandes atractivos; pero aun aśı posee una seria desventaja para el análisis automático de datos
arbitrarios, la variabilidad de comportamiento respecto a K y ∆ [58] [92]. Lee demuestra en [58]
que la selección de éstos parámetros debe sintonizarse cuidadosamente para obtener resultados
satisfactorios, no existiendo por el momento criterios para la selección óptima de los mismos; y de
hecho pueden obtenerse representaciones totalmente distintas para valores de parámetros cercanos
entre śı. Este mismo comportamiento se evidencia en la figura 5.11 en donde para un valor dado de
∆ se llega a representaciones muy distintas usando diferentes valores de K.

Teniendo en cuenta estos dos últimos aspectos, en este trabajo se reconoce el potencial de esta
técnica pero no se usará ya que el análisis que se haga para un tipo particular de información, a fin
de seleccionar los parámetros, no será de utilidad para conjuntos de datos arbitrarios.

Los resultados de emplear esta técnica sobre los datos M̂FSF para al sujeto S055 de la base de
datos Cohn-Kanade [7] se pueden apreciar en la figura 5.11 para distintos valores de K. Se observa
el comportamiento de la reducción de dimensionalidad que es extremadamente sensible con relación
a los cambios en K.

Laplacian Eigenmaps (LE)

Laplacian Eigenmaps se basa en la hipótesis central de que los datos patrón a los cuales se les
va a aplicar reducción de dimensionalidad caen o hacen parte de una variedad Riemanniana [62].
A partir de esto se emplea la adaptación o aproximación del operador de Laplace-Beltrami en la
variedad, sobre grafos [62] [58]. El algoritmo de este método puede presentarse como [62]
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Figura 5.11: Resultados de aplicar LLE sobre M̂FSF para el sujeto S055 de la base de datos
Cohn-kanade [7], empleando la dimensión de correlación. Algoritmo de Roweis [91]
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1. Compute las distancias entre pares de puntos dy(i, j)∀i, j.

2. Construya en grafo asignando a cada arista del mismo un peso dado por

W(i, j) = e−
d2y(i,j)

t (5.86)

siendo t ∈ R un valor constante asignado.

3. Se calulan las matrices D y L como

D(j, j) =
P∑

i=1

W(i, j), D(i, j) = 0 ∀i 6= j (5.87)

L = D−W (5.88)

en donde L es llamada la matriz laplaciana, que de acuerdo a Belkin [62]
pude ser vista como un operador sobre funciones definidas en los vértices
del grafo construido.

4. Se soluciona el problema de eigenvalores y eigenvectores generalizado

Lf = λDf (5.89)

5. Teniendo en cuenta que los eigenvalores obtenidos son 0 = λ0 ≤ λ1, . . . , λP−1

y sus respectivos eigenvalores f0, f1, fP−1. Los datos en el espacio
n−dimensional se representaran considerando los eigenvectores
correspondientes a los eigenvalores λ1, . . . λn, n ≤ P − 1 como




x1

x2
...
xi
...

xP




=




f1(1), f2(1), . . . , fn(1)
f1(2), f2(2), . . . , fn(2)

...
f1(i), f2(i), . . . , fn(i)

...
f1(P ), f2(P ), . . . , fn(P )




(5.90)

En el paso 4 en donde se soluciona el problema generalizado de eigenvalores y eigenvectores es
posible realizar, si se desea, una normalización de L [58], como

L
′

= D−
1
2 LD−

1
2 (5.91)

y aśı el problema se trasladaŕıa al de hallar los eigenvalores y eigenvetores de L
′
, teniendo en cuenta

que los eigenvalores son los mismos que los del problema generalizado y los nuevos eigenvectores ui
guardan la siguiente relación con los originales [58]

uTi = D
1
2 fi (5.92)

Lee en [58] y Belkin en [62] muestran que el valor de los parámetros t en el kernel de la función
empleada en la construcción del grafo y el valor de K empleado en la regla de los K−vecinos juega
un papel dramático en los resultados de la reducción de la dimensionalidad. Actualmente no existen
procedimientos o reglas que permitan seleccionar un valor óptimo para los mismos, y ésta selección
debe hacerse por sintonización [58].

Por otra parte, Lee [58] también demuestra que el planteamiento de LE puede reformularse de
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Figura 5.12: Resultados de aplicar LE sobre M̂FSF para el sujeto S055 de la base de datos Cohn-
Kande [7], empleando la dimensión de correlación. Algoritmo de Belkin [62]

manera equivalente al de minimizar la función de estrés

ELE =
1

2

P∑

i,j=1

W(i, j) ‖xi − xj‖2 (5.93)

la cual evidencia minimización de distancias entre vecinos, que puede conducir a comprimir ex-
cesivamente los datos llevando a encajamientos pobres, pero esto a su vez convierte esta técnica
en conveniente para clustering de datos [58] [62]. Estos aspectos convierten a LE en una técnica
con una fundamentación que permitiŕıa abrir nuevas rutas en la investigación sobre reducción de
dimensionalidad, pero altamente inadecuada. Además en la figura 5.12 se evidencian los pobres
resultados obtenidos con los datos empleados en este trabajo asociados a la variedad MFSF para
el sujeto S055 de la base de datos Cohn-Kanade [7].

Adicionalmente, un aspecto esencial encontrado por Lee [58] en esta técnica es que LE tiende
a curvar la variedad en el espacio de dimensión intŕınseca, lo que produce fuertes cuestionamientos
sobre la misma.

Con todos estos argumentos, en este trabajo no se empleará LE. Los resultados de aplicar

esta técnica al conjunto M̂FSF para el sujeto S055 se pueden apreciar en la figura 5.12, como se ve
los resultados no son satisfactorios.

Hessian Eigenmaps (HLLE)

Donoho y Grimes en [59] [61] desarrollan HLLE como un método intermedio entre LLE y LE. Del
primer método toma la idea de preservar una propiedad a nivel local, y de LE el hecho de basar la
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descripción de esta propiedad por medio de la estimación de una cantidad asociada a la variedad,
el Hessiano. El desarrollo de esta técnica se basa en la hipótesis de que los datos caen sobre una
variedad Riemanniana, y se busca lograr una isometŕıa a nivel local. El algoritmo de esta técnica
puede presentarse como [61]

1. Para cada punto yi encuentre los K−vecinos más cercanos K(i).

2. Se construyen las matrices K(i)

for i=1:1:P

K(i)(:, j) = yj −


 1

|K(i)|

|K(i)|∑

r=1

yr


 (5.94)

end
siendo |K(i)| la cantidad de elementos en K(i).

3. Se realiza la descomposición en valores singulares para cada matriz K(i)

K(i) = UDV (5.95)

4. Empleando la anterior descomposición se construyen las matrices

X (i) =
[
1,U,u2

1, . . . ,u
2
n,u1u2, . . . ,urur+s, . . .

]
, r = 1, . . . , n s = 1, . . . n− r (5.96)

5. Se realiza el proceso de ortonormalización de Gram-Schmidt sobre las

columnas de X (i) obteniendo X̃
(i)
.

6. El estimado del Hessiano para K(i) se obtiene como

H(i) =
[
X̃

(i)
(:, n+ 1 :→)

]T
(5.97)

es decir la transpuesta de X̃
(i)

considerando los datos solamente desde la
columna n+ 1

7. Se ensamblan estos estimados en la matriz W como

W

(
(i− 1)

n(n+ 1)

2
+ j, ζi(2 : K + 1)

)
= H(i)(j, :) (5.98)

en donde el vector ζi contiene el orden de cercanı́a de todos los puntos
al punto i. Ası́ ζi(2 : K + 1) indica los K puntos más cercanos al i−ésimo
punto. La matriz W contiene ceros en las entradas no especificadas.

8. Se calculan los eigenvectores de la matriz G = WTW correspondientes a
los n+ 1 eigenvalores más peque~nos 0 ≤ λ0 ≤ . . . λn. Con los eigenvectores
VG = [vg1, . . . ,vgn] asociados a los eigenvalores λ1, . . . , λn se calcula

R = PVGVG
T (5.99)

9. La representación en el espacio n−dimensional se obtiene como

X =
√
PVG

TR−
1
2
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En el paso 4 es necesario tener en cuenta que

U = [u1,u2, . . . ,un] (5.100)

Grimes [59] considera el problema de reducción de dimensionalidad como un problema de
reparametrización. Es decir si M es la variedad de dimensión n encajada en RN sobre la cual
caen los datos y1, . . . ,yP , se asume que existe un conjunto abierto N ⊂ Rn y que además existe
ψ : N →M, tal que ψ (N ) =M siendo ψ un encajamiento suave localmente isométrico1. El prob-
lema se plantea entonces como el de encontrar un homeomorfismo f :M→N , tal que se preserven
las propiedades esenciales de la variedad. De acuerdo a Grimes [59] es posible encontrar una base
para dicha representación analizando el funcional

H (f) =

∫

M
‖Hf (m)‖2 dm (5.101)

que brinda una medida de la curvatura promedio inducida2 porM sobre f . De hecho Grimes [59] [61]
demuestra como H(f) posee un espacio nulo de n + 1 dimensiones, lo cual implica que es posible
recuperar la estructura original de los datos (e.g recuperar N ) salvo por un movimiento ŕıgido.

Una clara fortaleza de esta técnica es el aprovechamiento de una propiedad de tipo local, y su
sólida fundamentación en conceptos precisos sobre variedades Riemannianas, pero por otra parte
evidencia una de las mismas debilidades de LLE, la selección de un valor óptimo de K para la
construcción del grafo empleando la regla de los K−vecinos. Como se ve en la figura 5.13, en donde

se aplica HLLE sobre M̂FSF para el sujeto S055 de la base de datos Cohn-Kanade [7], diferentes
valores de K incluso cercanos entre śı, pueden llevar a resultados completamente diferentes.

Por otra parte en [61] [59] se evalúa el comportamiento de HLLE con respecto a Isomap, LLE
y LE dejando entrever la superioridad de HLLE para variedades no desarrollables y no convexas.

Teniendo en cuenta estos aspectos, en este trabajo se considera que aunque HLLE es una
técnica promisoria con una sólida fundamentación que puede ser extremadamente útil para análisis
no automáticos de la información, presenta una limitante para la selección de un valor óptimo de K
que resulte adecuado a los datos que se emplearán en este trabajo, los cuales son en general escasos,
dispersos, y de naturaleza cambiante de un sujeto a otro. Por todo ello no se empleará.

Otras Técnicas

Lee y Verleysen proponen en [94] [95] Isotop como una técnica de preservación de la topoloǵıa en
la que se emplean, al igual que en métodos anteriores, las distancias de grafo a fin de aproximar las
distancias geodésicas. Sin embargo, la forma en como se construye la representación n−dimensional
es totalmente nueva, ya que una vez construido el grafo con la información en el espacio de repre-
sentación original se busca actualizar una inicialización de los puntos xi asignados a cada vértice
del grafo, teniendo en cuenta la aproximación de las geodésicas y usando Kernels Gaussianos aso-
ciados a cada xi. En [58] los resultados obtenidos por Lee son los mejores para un conjunto de
variedades benchmark en comparación con otros métodos, sin embargo no hay un suficiente nivel
de detalle como para realizar una implementación de esta técnica. El autor de esta investigación
contactó directamente con el doctor Lee [58], quien facilitó un código desarrollado en febrero de
2010, con algunas modificaciones substanciales. Por ejemplo en éste ya no se realiza la construcción
de un grafo y se integran las ideas de técnicas como SNE(stochastic neighbor embedding). El doctor
Lee [58] afirma que el nuevo código representa un algoritmo de much́ısima más calidad, y con resul-
tados superiores a los que se obtienen con el algoritmo original. Sin embargo, en virtud de que no
existen publicaciones en las cuales se plasmen claramente las diferencias de este nuevo algoritmo,
con el que se presenta en [58], en esta investigación no se realiza el uso de esta técnica. No habŕıa
coherencia en hacer alusión a un marco teórico bien definido, pero representado en un código que
no sigue estrictamente estas ideas. Se puede afirmar que para trabajos futuros esta técnica muestra
ser promisoria, en tanto se publiquen en detalle las modificaciones realizadas usando SNE al código

1ver [93]
2En [61] se usa la palabra curviness para referirse a esto
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Figura 5.13: Resultados de aplicar HLLE sobre M̂FSF para el sujeto S055 de la base de datos
Cohn-Kanade [7], empleando la dimensión de correlación. Algoritmo de Grimes [59]
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original de Isotop.
Zhang presenta en [96] LTSA, como una técnica que busca aprovechar el concepto de espa-

cio tangente a una variedad diferencial, considerando los puntos originales con un nivel de ruido
asociado. En ésta se busca representar la geometŕıa local usando espacios tangentes construidos aju-
stando un subespacio af́ın en una vecindad de cada punto. Dichos espacios tangentes son alineados
y a partir de una descomposición espectral se propone el encajamiento en el espacio de dimensión
intŕınseca. En virtud de esto, posee una enorme cercańıa con LLE y HLLE, pero aśı mismo com-
parte con éstas la desventaja de que no existe un criterio automático para conjuntos arbitrarios de
datos, que permita seleccionar el valor de K en la selección de los K− vecinos más cercanos para
la construcción de los espacios tangentes. Acorde a los resultados obtenidos en [96] esta selección
juega un papel crucial y es particularmente dif́ıcil si los datos están contaminados con ruido y/o si
la variedad sobre la cual recaen los datos posee un gran radio de curvatura. Por estas razones no se
empleará LTSA, sin embargo se deja claro que es una de las técnicas con mejor fundamentación,
y sobre la cual se han indicado de manera precisa limitaciones y posibles mejoras, por esto puede
representar en un futuro una alternativa a considerar.

Brun propone en [97] LogMaps como una técnica para la reducción de dimensionalidad. Ésta se
basa en la representación de la información por medio de coordenadas Riemannianas normales [93].
Aunque su fundamentación teórica es sólida, posee una seria desventaja para el manejo de ruido
dentro de los datos, puesto que la misma solo ha sido probada con éxito con niveles de ruido prácti-
camente nulos [97]. Por otra parte, para la construcción del sistema de coordenadas normales se
requiere de la selección de un punto sobre la variedad, y esta selección juega un papel cŕıtico en
los resultados. Actualmente no existe un criterio para la localización adecuada de dicho punto para
un conjunto arbitrario de datos. Por ello esta técnica no se empleará en esta investigación, pero
se presenta como una técnica promisoria para futuros análisis del comportamiento dinámico de las
expresiones faciales.

5.9. Comparación de los Métodos

En esta sección se especifican las técnicas que serán empleadas en el esquema de reducción de
dimensionalidad general. Se hace alusión a aspectos discutidos en secciones anteriores y se retomarán
brevemente los comentarios adecuados respecto a cada selección.

5.9.1. Estimación de la Dimensión

Teniendo en cuenta los argumentos teóricos correspondientes a cada una de las técnicas presentadas
para realizar la estimación de la dimensión, y los resultados experimentales obtenidos se afirma que
los métodos más adecuados para los fines de esta investigación son

Dimensión de Correlación. Procede de una definición formalmente construida en el campo
de la geometŕıa fractal, ha sido ampliamente usada con resultados satisfactorios [58] [69], y
además de ello existe un criterio establecido de manera rigurosa (la regla del cinco [76]) para
definir sus parámetros.

PCA − `m. Aprovecha las ventajas esenciales de PCA−`, pero se adecua bien a conjuntos
de datos reducidos. Teniendo en cuenta el criterio propuesto basado en la búsqueda del codo
de la curva AIC se puede afirmar que existe un criterio bien definido para la selección del
número de eigenvalores.

PCA−ω. Considera la interpretación del teorema de Whitney cuando el número de variables
asociadas a la descripción original del patrón supera enormemente la dimensión intŕınseca
estimada por correlación y/o PCA− `m. Brinda un estimado teniendo en cuenta que existe
un número máximo de variables necesario para la representación, por encima del cual existe
redundancia que puede ser fácilmente eliminada por PCA. Los resultados experimentales
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muestran su cercańıa a los valores de las otras dimensiones, y al usar el criterio basado en la
búsqueda del codo de la curva AIC se puede garantizar que existe un criterio bien definido
para la selección de los eigenvalores.

Para los fines de estimación de la dimensión se emplearán estas tres técnicas, dando como valor
final estimado un valor promedio de éstas, redondeado al entero más cercano.

5.9.2. Reducción de Dimensionalidad

Teniendo en cuenta los argumentos teóricos correspondientes a cada una de las técnicas presentadas

anteriormente, y los resultados experimentales obtenidos sobre los datos M̂FSF para el sujeto S055
de la base de datos Cohn-Kanade [7], se puede afirmar que los métodos con mejores resultados y
caracteŕısticas en reducción de dimensionalidad para los propósitos de esta investigación son

s−Isomap. Aunque no se puede garantizar que la variedad sobre la cual recaen los datos sea
desarrollable, la posible distorsión del espacio original es aceptable siempre y cuando no haya
solapamiento de información. Además existe un criterio para la selección óptima del valor de
K en la construcción del grafo empleando la regla de los K−vecinos. En caso de considerarse
varias clases sobre una misma variedad, al usar s−Isomap se logran manejar niveles de ruido
considerables.

s−GNLM. Permite manejar la no linealidad por medio de las distancias de grafo y la mini-
mización de una función de estrés. No produce deformaciones del mismo grado que se producen
por Isomap en variedades no desarrollables. Y posee plenas capacidades para reducir dimen-
siones sobre variedades con nudos y lazos esenciales, acorde a los experimentos realizados por
Lee en [58]. La misma regla empleada en Isomap para la selección óptima del valor de K
en la construcción del grafo aplica para este método. El uso de la matriz de disimilaridad de
Geng [87] permite manejar niveles de ruido considerables.

s−CDA. Permite manejar la no linealidad por medio de las distancias de grafo y la mini-
mización de una función de estrés. No produce deformaciones del mismo grado que se producen
en Isomap. Según los resultados de Lee en [58], la deformación es incluso menor a la pro-
ducida por GNLM. Además posee incluso mejores capacidades que GNLM para reducir
dimensiones sobre variedades con nudos y lazos esenciales [58]. La misma regla empleada en
Isomap para la selección óptima del valor de K en la construcción del grafo aplica para este
método. El uso de la matriz de disimilaridad de Geng [87] permite manejar niveles de ruido
considerables.

Los resultados obtenidos sobre los datos M̂FSF usando estas técnicas, fueron los mejores dentro
de las métodos presentados, puesto que se logró la mejor separación interclase sin solapamiento de
información en un espacio euclidiano de la dimensión intŕınseca estimada.

5.10. Esquema propuesto para la Reducción de Dimensionalidad

Teniendo en cuenta, como se mencionó en secciones anteriores, que la baja densidad y cantidad de
datos puede hacer cuestionables los resultados de la aplicación de técnicas de reducción de dimen-

sionalidad, el esquema planteado considera que los conjuntos M̂FSF ,M̂FST ,M̂FIF ,M̂FIS ,M̂FIT

están formados por los datos correspondientes a todas las expresiones de un determinado sujeto, es
decir la variedad sobre la cual recaen estos puntos es una variedad interclase.

Sea F̂i,ξ
ν,n̂ el arreglo de los datos obtenidos después de la reducción de dimensionalidad sobre los

features M̂ν , ν = FSF, FST, FIS, FIF, FIT , empleando la técnica ξ = s−CDA, s−GNLM, s−
Isomap correspondiente al sujeto i. El esquema propuesto se puede apreciar en la figura 5.14.
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Figura 5.14: Esquema General de Reducción de Dimensionalidad

De esta manera la información total de salida del esquema de reducción de dimensionalidad
es un arreglo de 15iT elementos cada uno de los cuales es un vector de dimensión n̂. Siendo iT la
cantidad total de sujetos empleados en el proceso de extracción de información. Estos datos tendrán
una dimensión n̂ que no necesariamente será igual para todos los individuos, a menos que se trate
de expresiones faciales con patrones muy similares entre śı.

5.11. Implementación

5.11.1. Estimación Dimensión Intŕınseca

La dimensión de correlación se calcula empleando parte del código desarrollado por Maaten [75],
mientras que las demás técnicas son desarrollos propios del autor de esta investigación, realizados
en Matlab.

5.11.2. Reducción de Dimensionalidad

Para realizar la implementación de las técnicas propuestas para la reducción de dimensionalidad
se usa la herramienta de simulación Matlab. El código de s−CDA es construido empleando parte
del código desarrollado por Tenenbaum [84] para la construcción del grafo con cálculos relacionados
y empleando parte del código desarrollado por Vesanto [83] dedicado a CCA. Para computar la
matriz de disimilaridad empleada se usa el código de desarrollado por Geng [87].

En la construcción del código de s−GNLM se emplea parte de un programa desarrollado por
Vesanto [81] para el cómputo de NLM. Mientras que el código desarrollado por Tenenbaum [84] es
empleado para el manejo del grafo con cantidades relacionadas. Al igual que en s−CDA se emplea
el código de Geng [87] para el cálculo de la matriz de disimilaridad.

El código de s−Isomap empleado es desarrollado por Tenenbaum [84] y adecuado por Geng [87]
para trabajar con la matriz de disimilaridad. En este trabajo se realizó la una revisión detallada del
mismo, logrando aśı realizar una corrección en este código en los umbrales establecidos para definir
la matriz de disimilaridad.
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5.12. Discusión y Conclusiones

En este caṕıtulo se abordó el problema de determinar los métodos más pertinentes y/o adecuados
para realizar la reducción de dimensionalidad en el seguimiento automático de las expresiones faciales
en una secuencia de v́ıdeo. Se realizó un análisis teórico de las técnicas más empleadas en el análisis
de información facial, teniendo en cuenta desarrollos anaĺıticos y resultados experimentales de otros
autores, aśı como resultados y consideraciones propias que dan como consecuencia el planteamiento
del esquema de la figura 5.14.

Algunas técnicas no seleccionadas, cuentan con caracteŕısticas que las hacen promisorias para
trabajos futuros en tanto se sigan realizando investigaciones sobre éstas.

Además, como parte de la contribución propia de este trabajo de investigación se realizó una
propuesta para estimar la dimensión intŕınseca teniendo en cuenta el teorema de Whitney para
variedades diferenciales y un criterio basado en la búsqueda del codo de la curva AIC.
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Resultados Generales

En este caṕıtulo se da una presentación de los códigos entregados como productos asociados a los
resultados del proyecto de investigación. Se discutirán a grandes rasgos los principales archivos, su
manejo y datos de salida dejando la presentación de los mismos para los apéndices. Adicionalmente
se delimita el escenario de aplicación de este desarrollo, para aśı puntualizar las alcances del mismo,
y los aspectos a mejorar y/o desarrollar en trabajos futuros.

6.1. Escenario de Aplicación

Los resultados de este proyecto de investigación, están asociados al seguimiento dinámico de la
información que representa las expresiones faciales, dentro de un escenario dado por los alcances de
las herramientas desarrolladas.

El esquema de detección de rostro propuesto aprovecha las fortalezas de Adaboost, teniendo en
cuenta en el caso de las imágenes a color, regiones más acotadas dadas por la segmentación cromática
propuesta. Y si bien el detector de rostro de Viola y Jones [10] es una solución contundente para
condiciones controladas, no lo es para condiciones extremas y arbitrarias de iluminación. Por lo
tanto

1. El software desarrollado se aplica a v́ıdeos o secuencias de imágenes en ambientes controlados
de iluminación adecuados para el estudio y análisis de expresiones faciales
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Los Active Appearance Models (AAM) bajo los argumentos presentados en el caṕıtulo 3, brindan

la mejor opción para la localización de puntos faciales. Ésta debe estar asociada a conjuntos de
imágenes de sujetos cuya correlación con las imágenes de entrenamiento sea alta. Por ello una de
las caracteŕısticas del escenario de aplicación es la siguiente

2. El software desarrollado se aplica para realizar el seguimiento de expresiones faciales en v́ıdeos
o secuencias de imágenes, asociadas a sujetos de los que se cuenta con algunas imágenes para
realizar el entrenamiento del mismo

es decir se debe contar con unas cuantas imágenes del sujeto para el entrenamiento, y la herramienta
permitirá realizar el seguimiento dinámico de las expresiones de este mismo sujeto en secuencias de
v́ıdeo arbitrarias.

Es particularmente importante, aclarar que este mismo escenario es semejante al de entrenar
un sistema para lograr el reconocimiento facial.

Por otra parte, el análisis de esta información no se realiza en tiempo real. A pesar de que la
extracción de la información se realiza frame por frame, el tratamiento en la reducción de dimen-
sionalidad se realiza con la totalidad de la información extráıda de la secuencia de v́ıdeo. Este hecho
permite, dar más confiabilidad a los métodos de reducción de dimensionalidad como se mencionó en
el caṕıtulo 5, y con ello más certeza de las conclusiones extráıdas a partir de este seguimiento. Esto
se sintetiza como

3. El software desarrollado se aplica para extraer conclusiones de una secuencia de v́ıdeo real-
izando un análisis y procesamiento de los frames en bloque

No existen restricciones sobre la cantidad de datos mı́nima o máxima sobre la cual puede
aplicarse el esquema de reducción de dimensionalidad desarrollado en el caṕıtulo 5. No obstante,
debe tenerse en cuenta que uno de los aspectos que brinda confiabilidad en la aplicación de cualquiera
de estas técnicas es la cantidad y densidad de datos con los que se cuenta. Considerando los aspectos
discutidos en el caṕıtulo 5 se plantea que

4. Una medida de la confiabilidad de los resultados finales en la reducción de dimensionalidad,
está dictada por la cantidad de secuencias de v́ıdeo analizadas por sujeto, la cantidad de
frames de los mismos y la tasa de muestreo. Entre mayores sean estas cantidades mucho más
confiables serán los resultados obtenidos

6.2. Productos Entregados

6.2.1. Art́ıculos de Divulgación

1. Fast Object Detection using Colour Segmentation. Código ISSN: 2145-812X. Tercer
Congreso Internacional de Ingenieŕıa Mecatrónica. Bucaramanga 2011.

2. Face Detection using Adaboost and Color Centroid Segmentation with Compre-
hensive Color Image Normalization. Aceptado para revisión en Diciembre de 2010. Aún
en espera de las indicaciones para su env́ıo definitivo a la revista de Ingenieŕıa y Ciencia de
la Universidad EAFIT.

3. A New Facial Point Detector using Active Appearance Models. Código ISSN: 2145-
812X. Tercer Congreso Internacional de Ingenieŕıa Mecatrónica. Bucaramanga 2011.

4. Intrinsic Dimensionality Estimation of Data using PCA and The Whitney Theo-
rem. En Construcción.

5. Supervised Nonlinear Dimensionality Reduction over the Manifold of Facial Ex-
pressions with GNLM and CDA. En Construcción.
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Face Detection Facial PointDetection

Nonlinear Dimensionality Reduction
Seguimiento Dinámico

Feature Extraction

Figura 6.1: Esquema General de Seguimiento Dinámico
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6.2.2. Códigos

En esta sección se brinda una descripción de los códigos desarrollados, aśı como de sus principales
caracteŕısticas y parámetros a fin de realizar el seguimiento dinámico de la información.

6.2.3. Detección de Rostro

Para hacer la detección de rostro en un conjunto de imágenes correspondientes a una secuencia de
v́ıdeo, se emplea el siguiente código

N my facedetect6.m En el cual se ejecutan los algoritmos de segmentación cromática, y el
programa realizado en C++ basado en Adaboost para la detección por textura.

N y8.cpp Codigo en C++ basado en Adaboost que se ejecuta dentro de my facedetect6.m.

de esta manera es posible realizar la detección de rostro sobre la pila de frames que conforman la
secuencia de v́ıdeo. Entregando como salida los archivos de imagen con la detección realizada.

6.2.4. Localización de Puntos Faciales y Extracción de Caracteŕısticas

Para la localización y extracción de puntos faciales se ejecuta el archivo my searchvideo.m, en el
cual a su vez se ejecutan los archivos:

N my SearchModel 2.m Con el cual se realiza el proceso de búsqueda en la imagen objetivo
por medio los AAM, y

N extract data.m Con el cual se realiza la extracción de la información correspondiente a
cada uno de los frames.

6.2.5. Reducción de Dimensionalidad

Para realizar la reducción de dimensionalidad se ejecuta el código my NDR.m, en donde a su vez se
ejecutan los siguientes archivos

N my corrdim.m (Adaptación de Maaten [75])Empleado para calcular la dimensión intŕınseca
de los datos por medio de correlación.

N my localPCA.m Empleado para calcular la dimensión intŕınseca de los datos usando PCA−`m.

N my AIC MDL.m Empleado para seleccionar el número de eigenvectores en la estimación de
la dimensión intŕınseca usando PCA.

N my KoptIsomap.m Empleado para calcular el valor óptimo de K en la construcción del
grafo empleando la regla de los K−vecinos, en técnicas en las que se aproximan las distancias
geodésicas por medio de las distancias de grafo.

N cda.m Empleado para realizar la reducción de dimensionalidad usando CDA.

N GNLM.m Empleado para realizar la reducción de dimensionalidad usando GNLM.

N IsomapII.m (Desarrollado por Tenenbaum [84])Empleado para realizar la reducción de
dimensionalidad usando Isomap.
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Construcción y Entrenamiento de los AAM

Para realizar la construcción de los AAM se requiere la ejecución de los archivos

N my alineacion.m Empleado para realizar el análisis de Procrustes o alineación de forma,
y construir el modelo estad́ıstico.

N my takedata2.m Usando para realizar la normalización de los niveles de gris de las imágenes
y la construcción del modelo estad́ıstico de textura.

N my combined PCAmodel.m Con el cual se realiza la construcción del modelo combinado de
forma y textura.

N my PCA g.m Programa para realizar descomposición en eigenvalores y eigenvectores de la
matriz de covarianza asociada a la textura, ya que su tamaño obliga a realizar una proyección
auxiliar.

N my Rmatrix obain.m Con el cual se realiza el proceso de entrenamiento mediante la con-

strucción de la matriz R̂.

6.2.6. Códigos Auxiliares

N my warpping.m Empleado para realizar el image warping dos formas triangulares.

N L2 distance.m (Desarrollado por Tenenbaum [84])Empleado para computar la matriz de
distancias euclidianas entre pares de puntos.

N dis distance.m (Desarrollado por Geng [87])Usado para computar la matriz de disimi-
laridad, usada en la reducción de dimensionalidad supervisada.
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Conclusiones, Discusión y Trabajos Futuros

En este caṕıtulo se consignan las conclusiones asociadas a la investigación y los resultados obtenidos.
Se dan comentarios generales para luego emitir conceptos particulares propios de cada temática.
En la sección 7.2 se consigna un comentario respecto a la dirección y enfoque de las investigaciones
posteriores a corto plazo, teniendo en cuenta la perspectiva y la visión adquirida durante la real-
ización de este proyecto.

Finalmente se presentan las recomendaciones para trabajos futuros, dando inicialmente un con-
cepto general, para entrar luego en las particularidades de cada temática.

7.1. Conclusiones

En este trabajo fueron desarrolladas herramientas computacionales que permiten realizar el seguimien-
to dinámico de las expresiones faciales en una secuencia de v́ıdeo, teniendo en cuenta los desarrollos
más relevantes en la materia. Estas herramientas están enmarcadas en un esquema en el cual se
busca el aprovechamiento de la riqueza en la información dinámica, aún poco explorada.

Dicho paquete de herramientas consta de un detector de rostro, un localizador de puntos fa-
ciales, un extractor de features y un reductor de dimensionalidad que permitirán extraer los flujos
de información para su posterior uso, ya sea en clasificación o śıntesis.

7.1.1. Detección de Rostro

1. El esquema de detección facial planteado aprovechó las fortalezas de Adaboost, buscando una
localización más acertada del rostro con la ayuda de segmentación cromática basada en CCS
y CCIN. Si bien el problema de segmentación por color se enfoca en la distribución cromática
de la piel, este mismo esquema puede emplearse para la detección de otros objetos.

2. La técnica empleada para la corrección de iluminación brinda una alternativa robusta para
lidiar con las variaciones en el espacio de color, de la distribución de la piel. Sin embargo
debe siempre buscarse un escenario de buena calidad para la toma de las secuencias de v́ıdeo,
en donde existan fondos de colores bien diferenciados respecto de esta distribución y que no
produzcan modificaciones severas en los espacios de representación.
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7.1.2. Localización de Puntos Faciales

1. El uso de los AAM en la localización de puntos faciales brinda una alternativa sólida para este
fin, ya que es una teoŕıa consolidada en la cual se conocen bien sus alcances y limitaciones,
que están asociados a los requerimientos de correlación entre las imágenes objetivo y las de
entrenamiento.

7.1.3. Extracción de Caracteŕısticas

1. El esquema para realizar la extracción de caracteŕısticas evita los efectos de tratar datos
en grandes dimensiones, pues no se consideran directamente las imágnes sino parámetros
extráıdos a partir de las mismas empleando propuestas consolidadas para dicha extracción.
Adicionalmente con este esquema se tiene una medida de las simetŕıas en los movimientos
faciales, y la separación de los datos en variedades diferentes brinda un análisis más amplio y
exhaustivo de las regiones facial superior e inferior.

2. Teniendo en cuenta que las asimetŕıas en las expresiones pueden producir una variación de
la dimensión intŕınseca estimada, se extrae la información sin dar una generalización de la
dimensión intŕınseca de la variedad sobre la cual recaen los datos. Esto evita pérdida de
información o inclusión de dimensiones adicionales innecesarias para realizar un posterior
procesamiento.

3. Si se optara por representar la variedad descriptora por medio de los niveles de gris de la
zona facial extráıda, se tendŕıa dicha variedad encajada o incrustada en RRS siendo R × S
el tamaño de la imagen. El esquema propuesto en esta investigación para la extracción y
representación de los features, supera enormemente esta primera opción de representación
pues las variedades están encajadas en espacios euclidianos de dimensiones fijas, y no se ven
afectadas por los efectos nocivos del aumento de la dimensionalidad a medida que RS →∞.

7.1.4. Reducción de Dimensionalidad

1. Las técnicas seleccionadas por sus propiedades para la reducción de dimensionalidad se basan
en el empleo de las distancias de grafo como aproximaciones de las geodésicas. En el capt́iulo
5 se indicó que dicha calidad de aproximación depende de la cantidad y densidad de los datos
tratados, razón por la cual debe buscarse en lo posible analizar una cantidad de expresiones
amplia, en secuencias de v́ıdeo con una cantidad de frames que sea lo mayor posible junto
con una alta tasa de muestreo. Sumado a esto se encuentra que es más conveniente considerar
las distintas expresiones de un sujeto sobre una misma variedad a considerar cada expresión
individual sobre una variedad diferente.

2. Se realizó la propuesta de las técnicas PCA− `m y PCA−ω como alternativas para realizar
la estimación intŕınseca de la dimensión, aprovechando los conceptos y desarrollos teóricos
asociados a variedades diferenciales. Los resultados obtenidos por medio de éstas son com-
parables a los que se obtienen empleando dimensión de correlación, y se espera que sienten
un punto de discusión en una temática aún en desarrollo en donde no existen ni métodos ni
soluciones definitivas para ningún problema.

3. Teniendo en cuenta que s−Isomap tienen su mejor comportamiento sobre variedades desar-
rollables, los resultados contenidos en

F̂i,ξ=s−Isomap
ν,n̂

pueden representar versiones deformadas de los resultados asociados a

F̂i,ξ=s−CDA
ν,n̂ , y F̂i,ξ=s−GNLM

ν,n̂
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pero con valiosos aportes para lograr la discriminación entre las diferentes clases que recaen
sobre la variedad.

4. Lee [58] prueba que los métodos de reducción de dimensionalidad pueden usarse con total
confidencia para datos que se encuentren encajados en espacios de dimensión N , con N ≤ 5.
En el esquema de extracción de features que se planteó en el caṕıtulo 4, se garantiza en lo que
se refiere a la dimensión del espacio de representación original, que se tiene un grado total de

confidencia para el procesamiento de las variedades M̂FIF ,M̂FIS que están encajadas en es-

pacios de dimensiones 3 y 4 respectivamente. Mientras que para las variedades M̂FST ,M̂FIT

el grado de confidencia es alto pues están en espacios de dimensión 6 que es apenas una unidad

mayor al umbral de confidencia. Para el procesamiento de la variedad M̂FSF , encajada en R9

el grado de confidencia aún puede considerarse cercano al valor óptimo en comparación con
procesar la totalidad de la información en un solo bloque.

Con esto se confirma aún más la ventaja de esta separación de la información, en com-
paración con el uso directo de la información de textura a partir de la imagen, pues en este
último enfoque la dimensión RS del espacio de representación seŕıa RS � 5 y por la tanto la
confidencia seŕıa muy baja.

5. Por medio del uso de la matriz de disimilaridad propuesta por Geng [87] se lograron mejores
resultados que los obtenidos sin el empleo de la misma, con las técnicas de reducción de di-
mensionalidad CDA,GNLM e Isomap, ya que el uso de ésta permite separar la información
de distintas clases que recaen sobre una misma variedad.

El uso de esta matriz con Isomap fué propuesto por Geng [87], y en este trabajo se anal-
izó y se concluyo que era posible, debido a su planteamiento, aplicarla en CDA y GNLM,
con resultados potencialmente mejores que los obtenidos con Isomap pues estas dos últimas
técnicas manejan la no linealidad tanto con aproximaciones de distancias geodésicas como con
la minimización de una función de estrés.

7.2. Discusión

Sin duda alguna el procesamiento de la información extráıda de las expresiones faciales, depende
y se ve fuertemente afectada por los métodos de reducción de dimensionalidad y las técnicas em-
pleadas para realizar la estimación intŕınseca de la variedad. Esto implicaŕıa que las investigaciones
realizadas a futuro deben centrar la mayor parte de sus esfuerzos en realizar contribuciones en estas
temáticas pues su repercución será directa en el análisis dinámico de patrones faciales. Aunque esto
podŕıa desviar un poco la atención de la finalidad esencial, se lograŕıan contribuciones no solo en
esta temática sino en el análsis de información en general.

7.3. Recomendaciones sobre Trabajos Futuros

Ya que en este trabajo se realiza el seguimiento dinámico de las expresiones faciales, se propone
realizar una investigación en la cual se estudien los procesos de clasificación y śıntesis, considerando

la información extráıda F̂i,ξ
ν,n̂ con el esquema desarrollado en este trabajo, a fin de encontrar la

herramienta de clasificación que aproveche mejor la riqueza de esta información.
Aunque en esta investigación los tiempos de cómputo no jugaron un papel esencial, se sugiere

el desarrollo de un proyecto en el cual se realice una implementación en C++ de la totalidad de las
herramientas que hacen parte del esquema.

7.3.1. Detección de Rostro

1. Buscando ampliar los ĺımites de aplicación de los desarrollos logrados, se propone realizar una
investigación en donde se aborden imágenes con oclusiones y grandes rotaciones craneales,
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siguiendo los trabajos de Ichikawa [11] y Huang [12] en donde se emplea también Adaboost
para lidiar con estos problemas.

7.3.2. Localización de Puntos Faciales

1. Buscando disminuir el grado de correlación entre las imágenes objetivo y las imágenes de
entrenamiento empleadas en los AAM, se recomienda integrar los AAM junto con la propuesta
de Valstar [40]. Esta integración debe hacerse una vez sean conocidos los detalles de ese
desarrollo, para delimitar con precisión el escenario de aplicación.

7.3.3. Extracción de Caracteŕısticas y Reducción de Dimensionalidad

1. Si bien el planteamiento de los features para describir el comportamiento de las expresiones
faciales es el resultado de una investigación profunda realizada por Tian [55], se sugiere estu-
diar y diseñar el planteamiento de un conjunto de features que mantenga las caracteŕısticas
esenciales de esta propuesta, pero que recaiga sobre una variedad de geometŕıa conocida, a fin
de aplicar con mucha más precisión los métodos de reducción de dimensionalidad.

2. Se sugiere realizar una investigación a fin de llegar al planteamiento de criterios para la
selección óptima de los parámetros en el uso de técnicas como LLE, HLLE y LTSA en la
reducción de dimensionalidad y MLE para realizar la estimación de la dimensión intŕınseca,
las cuales poseen fuertes cimientos teóricos.

3. A pesar de que la propuesta de usar PCA−`m y PCA−ω para la estimación de la dimensión
intŕınseca aprovecha conceptos de variedades diferenciales y asocia resultados sobre la selección
del número de componentes, ésta no se plantea como una solución definitiva en un campo
donde aún los desarrollos se basan en hipótesis razonables pero no siempre comprobables. Se
sugiere, realizar una investigación en donde se realicen pruebas más allá de las consignadas
en este trabajo, que si bien siguen exactamente las pruebas de otros trabajos, no muestran un
comportamiento con conjuntos de datos propios de otras disciplinas.

4. Teniendo en cuenta las ventajas de los desarrollos realizados en torno a las series de tiempo, se
sugiere explorar el uso de estas herramientas para modelar la información de las expresiones
faciales una vez realizada la reducción de dimensionalidad, a fin de obtener beneficios tanto
para clasificación como para śıntesis.

5. Si bien la base de Datos Cohn-Kanade [7] brinda una excelente alternativa para contrastar
resultados con otros autores, se sugiere como un proyecto a largo plazo la creación de una
base de datos de secuencias de expresiones faciales que posean mejores condiciones de ilumi-
nación, mejor calidad de imágenes, fondos con colores lejanos a la distribución de la piel y
una mejor tasa de frames por segundo, a fin de mejorar la infomación disponible para estas
investigaciones.

7.4. Comparación con el Trabajo de Otros Autores

En el caṕıtulo 5, por medio de las pruebas realizadas sobre M̂FSF se evidenció y se comprobó la
hipótesis de la existencia de expresiones bien diferenciadas entre śı para un individuo dado. La visu-
alización de estos resultados es comparable a la realizada por Ping en [57], en donde con un esquema
de extracción de caracteŕısticas diferente se logró establecer por medio de visualización, la diferencia
entre distintas expresiones en espacios de representación euclidianos de 2 y/o 3 dimensiones.
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