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RESUMEN

TITULO: SEGUIMIENTO DINAMICO DE EXPRESIONES FACIALES USANDO TRATAMIEN-
TO DIGITAL DE IMAGENES

AUTOR# ALEJANDRO PARADA MAYORGA

PALABRAS CLAVE: Expresiones Faciales, Tratamiento Digital de Imagenes, Deteccion de Ros-
tro, Localizacion de Puntos Faciales, Extraccion de Caracteristicas, features, Reduccién de dimen-
sionalidad, Comportamiento Dindmico, Modelos de Apariencia Activa.

DESCRIPCION:

En este trabajo se aborda el problema de seguimiento dindmico de las expresiones faciales usando
tratamiento digital de imagenes. Se trata inicialmente el problema de la deteccién de rostro emple-
ando las técnicas maés efectivas para dicho fin de acuerdo al estado del arte, integrando herramientas
cromaticas y de textura.

Con esto como punto de partida, se realiza la deteccién de puntos faciales empleando los Active
Appearance Models, dando una descripcién detallada de su construccién, entrenamiento y validacién
con imagenes faciales pertenecientes a la base de datos Cohn-Kanade.

La extracciéon de caracteristicas es abordada siguiendo las propuestas més consolidadas de la
literatura, dando como resultado una coleccién de cinco conjuntos de features encajados en espacios
euclidianos de dimensiones fijas, cada uno de los cuales se procesa por separado.

Como etapa final se realiza un analisis a fin de determinar las técnicas mas apropiadas para
realizar la estimacién de la dimension y la reduccién de dimensionalidad de la informacion extraida.
Se plantea un esquema de reduccion considerando las técnicas méas apropiadas para los fines de esta
investigacién considerando calidad de reduccién, fundamentacion tedrica y seleccion de pardmetros.

Finalmente se presentan los resultados generales de la investigacién, consignando las principales
conclusiones y delimitando un escenario de aplicacién para los desarrollos logrados, dando ademas
recomendaciones para futuras investigaciones.

!Proyecto de Grado de Maestria
2Facultad de Ingenierfas Fisico-Mecénicas. Escuela de Ingenierfa Eléctrica, Electrénica y Telecomunicaciones. Di-
rector: Arturo Plata Gémez. email: alejandro_parada.m@hotmail.com



SUMMARIZE

TITLE: DYNAMIC TRACKING OF FACIAL EXPRESSIONS USING DIGITAL IM-
AGE PROCESSING

AUTHOR{| ALEJANDRO PARADA MAYORGA

KEY WORDS: Facial Expressions, Digital Image Processing, Face Detection, Facial Point Detec-
tion, Feature Extraction, Nonlinear dimensionality reduction, dynamic behavior, Active Appearance
Models.

DESCRIPTION:

This paper addresses the problem of dynamic tracking of facial expressions using digital image pro-
cessing. Initially addressing the problem of face detection using the most effective techniques for
this purpose according to the state of the art, integrating color and texture tools.

With this as a starting point, we make the facial point detection using the Active Appearance Mod-
els, giving a detailed description of its construction, training and validation using facial images
belonging to the database Cohn-Kanade.

The feature extraction is treated according to the most important proposals of the literature,
resulting in a collection of five sets of textit features embedded in Euclidean spaces of fixed dimen-
sions, each of which is processed separately.

As this, final analysis is performed to determine the most appropriate techniques for estimating
the size and dimensionality reduction of the extracted information. We propose a reduction scheme
considering the most appropriate techniques for the purposes of this research considering the quality
of reduction, theoretical foundation and parameter selection.

Finally, we present the overall results of the research, detailing the main findings and outlining
an application scenario for the developments, besides giving recommendations for future research.

3Master Thesis
4Physics Mechanical Engineering Faculty. Electric, Electronic and Telecommunications School. Director:Arturo
Plata Gémez. email: alejandro_parada.m@hotmail.com



Indice general

[2.2. HEsquema Seleccionado| . . . . . . ...

[2.2.1.  Comprehensive Colour Image Normalization (CCIN)|. . . . . ... ... ...
[2.2.2.  Centroid Color Segmentation (CCS) . . . . . ... ... ... .. ... ....

[2.3. Implementacion| . . . . . . . . . L

[2.3.1.  Comprehensive Color Image Normalization (CCIN)| . . . . . ... ... ...
[2.3.2.  Color Centroids Segmentation (CCS)| . . . . . .. ... .. ... .. ... ...

19
20
20
20

23
23
25
25
25
27
30
30
31
31
31
31



10 INDICE GENERAL

[3.5. Discusion y Conclusiones| . . . . . .. .. .. L L 48

4. Extraccion de Descriptores| 65
4.1, Bstadodel Artel . . . . . oL Lo 65
(4.2, Definicién de Pardmetrod . . . . . . . . . .. 66
421, Alternativa Planteadal . . . . . .. ... ..o o000 66

[4.2.2. Comportamiento Dinamico: Variedades de Datos| . . . . . . . .. .. ... .. 68

4.3. Implementacion| . . . . . . . . . L 71
[4.4. Discusion y Conclusiones| . . . . . . . . . .. L 71
6._Reduccién de Dimensionalidadl 73
[5.1. Hipodtesis Central| . . . . . . . . . . o 74
h.2. Motivaciones Practicasl . . . . . . . . ..o o 74
3. Motivaciones Teoricasl . . . . . . . . ..o 74
[5.4. Aspectos a Explorar| . . . . . ... 76
Bh.h. Bstadodel Artel . . . . . . . oL 76
[5.6. Dimension Intrfnsecal . . . . . . . . ..o 76
[H.6.1. Dimension de Recubrimientol . . . . . . . .. . .. ..o 7

h.6.2. Dimension de Hausdorffl . . . . . . . .. . ..o oo oo 78

[5.6.3. Dimension de Capacidad (Boz-Counting Dimension)| . . . . . . . . . ... .. 78

[6.6.4. Dimension de Informacionl . . . . . . . . . ..o oL oo 78

[H.6.5. Dimension de Correlacion| . . . . . . . . . .. ..o 79

[>.6.6. Relacion entre algunas dimensiones|. . . . . . . .. .. ... ... .. ..... 79

(.6.7. Estimacién Practica de Ia Dimensién Intrinsecal . . . . . . . . .. ... .. .. 79

[5.6.8.  Algunos Resultados Sobre Variedades Diferenciales: Acerca de la Dimension, |

[ PCA local Modificado (PCA —fm)|. . . . . . . ... 82
[5.6.9.  Algunos Resultados Sobre Variedades: Sobre el Teorema de Whitney, un Nue- |

[ vo Método para la Estimacion de la Dimension (PCA —w)[ . . . .. ... .. 84
[b.7. Técnicas Basadas en Preservacion de la Distancial . . . . . . .. ... ... ... ... 88
1. Distancia Buclidianal . . . . . . . ..o oo 88

b.7.2. Técnicas Basadas en Distancias de Grafo . . . ... ... ... ... ... .. 94

B3, Otras Téenicas . . . . . . . o o o v e 108

[5.8. Técnicas Basadas en Preservacion de la Topologia] . . . . ... ... ... ... ... 108
[>.8.1. Reticula definida por Datos| . . . . . .. ... . ... ... .. ... .. ..., 108

[5.9. Comparacion de los Métodos| . . . . . . . . ... 117
H.9.1. FEstimacion de la Dimensionl . . . . . . .. ..o o000 117




INDICE GENERAL

[5.10. Esquema propuesto para la Reduccion de Dimensionalidad|. . . . . . ... ... ...

[5.11. Implementacion| . . . . . . ... ... ... ...

[5.12. Discusion y Conclusiones| . . . . .. ... ...

6. Resultados Generales|

[6.1. HEscenario de Aplicacién| . . . . . . . ... ...

16.2. Productos Entregados| . . . . ... .. ... ..
[6.2.1.  Articulos de Divulgacion|. . . . . . . ..
[6.2.2. Codigos| . . . . ... ... ... ... ..

[7.3.3. Extraccion de Caracteristicas y Reduccion de Dimensionalidad| . . . . . . . .

[7.4. Comparacion con el Trabajo de Otros Autores|

11

118
119
119
119
120

121
121
122
122
124
124
124
124
125

127
127
127
128
128
128
129
129
129
130
130
130

131



12

INDICE GENERAL



Indice de cuadros

13

B.I Resultados AAMI . . . . . . . . . 49

|5.1. Estimacién de la Dimensién de Correlacion de M pgr para el sujeto S055 de la base |

| de datos CON-Kanade [7]]. - - - - « o v oo v oot e e 81
5.2. Estimacién de la Dimension de ]\/ZFSF usando PCA—/m (]\/IFSF> Y deorr (]\/ZFSF>,

| para el sujeto S055 de la base de datos Cohn-Kanade |7 . . . . . . . ... ... ... 85
5.3. Estimacion de la Dimensién de ./\//\IFSF usando PCA—/m (.//\/\IFSF), deorr (M\FSF)

vy PCA—w (M\FSF> para el sujeto S055 de la base de datos Cohn-Kanade 7p| A 1
|5.4. Estimacién de la dimension usando M DS sobre M pgr para el sujeto S055 de la base
de datos Cohn-Kanade ||7|] La dimension estimada se basa en conservar el 98 % de la

energia de los eigenvalores| . . . . . . .. ... L o 90



14

INDICE DE CUADROS



Indice de figuras

[2.1. Esquema Propuesto para la Deteccion de Rostro] . . . . . . ... .. ... ... ... 24
|2.2. Izquierda: Imagen Original Z; ;. Derecha: Imagen Normalizada Iif ;nal ......... 26
[2.3. Transformacién del espacio RGB aR?.|. . . . . . . . ... ... . ... ........ 26
[2.4. Distribucion de la Piel en el plano (6,r). Hay 517880 pixeles de Piel tomadas de
las bases de datos: FERET [29] [30], Cohn-Kanade |7 y PIE [31] junto con una
miscelania de 100 imagenes extraidas de Internet| . . . . . . . . ... ... ... 28
|2.5. Izquierda: Il-”?rm““”d. Derecha: Segmentacién sobre Iﬁj‘?rma““d usando CCS, con los |
umbrales especiicados en 2.3} [2.90 2.10] . . . . . .. .o oo oo oo 29
[2.6. Deteccion de Rostro usando Adaboost sobre una imagen de la base de datos FERET |
129] [30]. Algoritmo de Viola y Jones [10[|. . . . . . . .. ... ... ... ... ... 31
[2.7. Esquema general de Resultados Finales. Imagen de la base de datos FERET [29] [30]| 32
[2.8. Resultados Finales. Imagenes Base de Datos Cohn-Kanade [|7'|]] ............. 33
[2.9. Resultados Finales. Imdgenes Base de Datos Cohn-Kanade [7]] . . . . .. .. ... .. 34
[2.10. Resultados Finales. Imdgenes Base de Datos Cohn-Kanade [7] . . . . ... ... ... 35
[2.11. Resultados Finales. Imdgenes Base de Datos Cohn-Kanade [|7'|]] ............. 35
[3.1. Izquierda: Conjunto de marcas asignadas con el estandar de la base de datos Cohn- |
Kanade m Derecha: Conjunto de marcas asignadas siguiendo el esquema de Cootes [1]| 40
[3.2. Diagrama que Ilustra el Image Warping, en donde x, es una version deformada de x,| 42
[3.3. Deizquierda a derecha: a) Imagen Original, b)Imagen con Marcas asignadas, ¢c)Enmallado
construido usando las marcas, d)Textura en el interior del convex hull del enmallado
mapeada sobre la forma media usando image warping | . . . . ... ... L. 44
|3.4. De izquierda a Derecha: a)Valor del modelo haciendo ¢; = =\, ¢ =0 Vi>1,
b)Textura media, sobre la forma media (Mean Shape) c)Valor del modelo hacien-
doci = VA1, ¢ =0 Vi > 1, d)Representacion de los cambios de forma por la
variacion de ¢; (Azul: Mean Shape, Verde: ¢; = /A1, Rojo: ¢1 = —/ A1) . . . . . .. 45
[3.5. Resultados Imagenes 1-7. Para cada renglon, la primera columna muestra el sujeto

con la ubicacion inicial de la forma media, la segunda columna muestra el mean

shape en la posicion inicial, la tercera columna muestra el enmallado final después

del proceso de minimizacion sobre la imagen objetivo, la cuarta columna muestra la

textura final del modelo sobre la imagen y por ultimo la quinta columna muestra la

1mmagen original. Los datos de error final y nimero de iteraciones asociadas a estas

figuras se encuentran consignados en la tablaf3.1) . . . . ... .. ... ... ... 50

15



16

INDICE DE FIGURAS

B35

Resultados Imagenes 8-14. Para cada renglon, la primera columna muestra el sujeto

con la ubicacion inicial de la torma media, la segunda columna muestra el mean

shape en la posicion inicial, la tercera columna muestra el enmallado final después

del proceso de minimizacion sobre la imagen objetivo, la cuarta columna muestra la

textura final del modelo sobre la imagen y por ultimo la quinta columna muestra la

1mmagen original. Los datos de error final y nimero de iteraciones asociadas a estas

figuras se encuentran consignados en la tablaf3.1) . . . .. ... ... ... 0.

[3.7.

Resultados Imagenes 15-21. Para cada renglon, la primera columna muestra el sujeto

con la ubicacion inicial de la forma media, la segunda columna muestra el mean

shape en la posicion inicial, la tercera columna muestra el enmallado final después

del proceso de minimizacion sobre la imagen objetivo, la cuarta columna muestra la

textura final del modelo sobre la imagen y por ultimo la quinta columna muestra la

1mmagen original. Los datos de error final y nimero de iteraciones asociadas a estas

figuras se encuentran consignados en la tablaf3.1) . . . . . ... ... ... 0.

[3.8.

Resultados Imagenes 22-28. Para cada renglon, la primera columna muestra el sujeto

con la ubicacion inicial de la forma media, la segunda columna muestra el mean

shape en la posicion inicial, la tercera columna muestra el enmallado final después

del proceso de minimizacion sobre la imagen objetivo, la cuarta columna muestra la

textura final del modelo sobre la imagen y por ultimo la quinta columna muestra la

1mmagen original. Los datos de error final y nimero de iteraciones asociadas a estas

figuras se encuentran consignados en la tablaf3.1) . . . . . ... ... ... ...

[3.9.

Resultados Imagenes 29-35. Para cada renglon, la primera columna muestra el sujeto

con la ubicacion inicial de la forma media, la segunda columna muestra el mean

shape en la posicion inicial, la tercera columna muestra el enmallado final después

del proceso de minimizacion sobre la imagen objetivo, la cuarta columna muestra la

textura final del modelo sobre la imagen y por ultimo la quinta columna muestra la

1mmagen original. Los datos de error final y nimero de iteraciones asociadas a estas

figuras se encuentran consignados en la tablaf3.1) . . . . . ... ... ... ...

[3.10.

Resultados Imagenes 36-42. Para cada renglon, [a primera columna muestra el sujeto

con la ubicacion inicial de la torma media, la segunda columna muestra el mean

shape en la posicion inicial, la tercera columna muestra el enmallado final después

del proceso de minimizacion sobre la imagen objetivo, la cuarta columna muestra la

textura final del modelo sobre la imagen y por ultimo la quinta columna muestra la

1mmagen original. Los datos de error final y nimero de iteraciones asociadas a estas

figuras se encuentran consignados en la tablaf3.1) . . . . . ... ... ... ...

BT

Resultados Imagenes 43-49. Para cada renglon, la primera columna muestra el sujeto

con la ubicacion inicial de la forma media, la segunda columna muestra el mean

shape en la posicion inicial, la tercera columna muestra el enmallado final después

del proceso de minimizacion sobre la imagen objetivo, la cuarta columna muestra la

textura final del modelo sobre la imagen y por ultimo la quinta columna muestra la

1mmagen original. Los datos de error final y nimero de iteraciones asociadas a estas

figuras se encuentran consignados en la tablaf3.1) . . . . . ... ... ... ... ...

B17.

Resultados Imagenes 50-56. Para cada renglon, la primera columna muestra el sujeto

con la ubicacion inicial de la forma media, la segunda columna muestra el mean

shape en la posicion inicial, la tercera columna muestra el enmallado final después

del proceso de minimizacion sobre la imagen objetivo, la cuarta columna muestra la

textura final del modelo sobre la imagen y por ultimo la quinta columna muestra la

1mmagen original. Los datos de error final y nimero de iteraciones asociadas a estas

figuras se encuentran consignados en la tablaf3.1) . . . . . ... ... ... ...




INDICE DE FIGURAS

17

[3.13.

Resultados Imagenes 57-63. Para cada renglon, la primera columna muestra el sujeto

con la ubicacion inicial de la torma media, la segunda columna muestra el mean

shape en la posicion inicial, la tercera columna muestra el enmallado final después

del proceso de minimizacion sobre la imagen objetivo, la cuarta columna muestra la

textura final del modelo sobre la imagen y por ultimo la quinta columna muestra la

1mmagen original. Los datos de error final y nimero de iteraciones asociadas a estas

figuras se encuentran consignados en la tablaf3.1) . . . .. ... ... ... 0.

B4

Resultados Imagenes 64-70. Para cada renglon, la primera columna muestra el sujeto

con la ubicacion inicial de la forma media, la segunda columna muestra el mean

shape en la posicion inicial, la tercera columna muestra el enmallado final después

del proceso de minimizacion sobre la imagen objetivo, la cuarta columna muestra la

textura final del modelo sobre la imagen y por 1ultimo la quinta columna muestra la

imagen original. L.os datos de error final y nimero de iteraciones asociadas a estas

figuras se encuentran consignados en la tabla|3.1) . . . . . . . ... ... ... ..

[3.15.

Resultados Imagenes 71-77. Para cada renglon, la primera columna muestra el sujeto

con la ubicacion inicial de la forma media, la segunda columna muestra el mean

shape en la posicion inicial, la tercera columna muestra el enmallado final después

del proceso de minimizacion sobre la imagen objetivo, la cuarta columna muestra la

textura final del modelo sobre la imagen y por ultimo la quinta columna muestra la

1mmagen original. Los datos de error final y nimero de iteraciones asociadas a estas

figuras se encuentran consignados en la tabla|3.1) . . . . . . ... ... ... ... ..

[3-16.

Resultados Imagenes 78-84. Para cada renglon, la primera columna muestra el sujeto

con la ubicacion inicial de la forma media, la segunda columna muestra el mean

shape en la posicion inicial, la tercera columna muestra el enmallado final después

del proceso de minimizacion sobre la imagen objetivo, la cuarta columna muestra la

textura final del modelo sobre la imagen y por 1ultimo la quinta columna muestra la

imagen original. L.os datos de error final y nimero de iteraciones asociadas a estas

figuras se encuentran consignados en la tabla|3.1) . . . . . . . ... ... ...

[3.17.

Resultados Imagenes 85-91. Para cada renglon, la primera columna muestra el sujeto

con la ubicacion inicial de la torma media, la segunda columna muestra el mean

shape en la posicion inicial, la tercera columna muestra el enmallado final después

del proceso de minimizacion sobre la imagen objetivo, la cuarta columna muestra la

textura final del modelo sobre la imagen y por ultimo la quinta columna muestra la

1mmagen original. Los datos de error final y nimero de iteraciones asociadas a estas

figuras se encuentran consignados en la tabla|3.1) . . . . . . ... .. ... ... ...

[3-18.

Resultados Imagenes 92-98. Para cada renglon, la primera columna muestra el sujeto

con la ubicacion inicial de la forma media, la segunda columna muestra el mean

shape en la posicion inicial, la tercera columna muestra el enmallado final después

del proceso de minimizacion sobre la imagen objetivo, la cuarta columna muestra la

textura final del modelo sobre la imagen y por 1ultimo la quinta columna muestra la

imagen original. L.os datos de error final y nimero de iteraciones asociadas a estas

figuras se encuentran consignados en la tabla|3.1) . . . . . . ... ... ... ..

[3.19.

Resultados Imagenes 99-100. Para cada renglon, la primera columna muestra el sujeto

con la ubicacion inicial de la torma media, la segunda columna muestra el mean

shape en la posicion inicial, la tercera columna muestra el enmallado final después

del proceso de minimizacion sobre la imagen objetivo, la cuarta columna muestra la

textura final del modelo sobre la imagen y por ultimo la quinta columna muestra la

1mmagen original. Los datos de error final y nimero de iteraciones asociadas a estas

figuras se encuentran consignados en la tabla|3.1) . . . . . . ... .. ... ... ...

[4.1.

Features mpgr| . . . . . e e




18 INDICE DE FIGURAS
4.2. Features mpop| . . . . . . . e e e 67
4.3. Features mprp| . . . . .. e e 68
4.4, Features mprgl . . . . . . e e e e e 69
4.5, Features mperp| . . . . e e 70
[5.1.  Grafica tipica de df vs el tamano de la ventana Wd en la aplicacion de PCA —/m. La

primera region plana asociada a la ordenada de valor 2 indica el valor estimado de la

dimension. . . . . . ... L e e 83
[5.2. Dos comportamientos tipicos en la curva AIC". lzquierda: Caso en el cual existe un

n que minimiza la funciéon AIC(n). Derecha: Caso en el cual el valor minimo de

AIC se logra con el numero total de eigenvalores, pero existe un marcado cambio de

comportamiento con un numero menor de los mismos| . . . . . . ... ... 84
[5.3. De izquierda a derecha: El rollo suizo, El Toro, La botella de Klein, La banda de |

Mobiusd . . . . . e 87
|5.4. Resultados de aplicar NLM sobre M pgr para el sujeto S055 de la base de datos |

Cohn-Kanade ﬂ?ﬁ), empleando la dimension de correlacién. Algoritmo de Vesanto [81]] 92
|5.5. Resultados de aplicar CCA sobre Mpgr para el sujeto S055 de la base de datos |

Cohn-Kanade ﬂ?ﬁ empleando la dimension de correlacion. Algoritmo de Vesanto |83| 95
[5.6. Grafica para encontrar el valor 6ptimo de K propuesta por Shao [86] para los datos

Mrpgr del sujeto S055 de la base de datos Cohn-Kanade 7|] construyendo el grafo a

partir de distancias euclidianas, el valor optimo seriade 12| . . . . . . ... ... .. 97
|5.7. Resultados de aplicar Isomap sobre M pgpr para el sujeto 3055 de la base de datos

Cohn-Kanade ﬂﬁ, usando K = 12 seleccionado con el criterio asociado a f(/). Al-

goritmo de Tenenbaum [84]| . . . . . ... .. o 99
|5.8. Resultados de aplicar s—Isomap sobre la variedad M pgr para el sujeto S055 de la

base de datos Cohn-Kanade [7], usando K = 11 seleccionado con el criterio asociado

a f(K). Algoritmo Geng-Tenebaum [87]| . . . . . . . .. ... ... .. L. 101
|5.9. Resultados de aplicar GNLM y s—GNLM sobre M pgr, empleando la dimensién

de correlacion. Con K = 12,11 respectivamente, seleccionado con el criterio asociado

a ). o o e 104
|5.10. Resultados de aplicar CDA y s—CDA sobre el conjunto M pgp para el sujeto S055

de la base de datos Cohn-Kanade [7], usando K = 12, 11 respectivamente seleccionado

con el criterio asociado a f(K)| . . . . . . . ..o 107
|5.11. Resultados de aplicar LLE sobre M pgr para el sujeto S055 de la base de datos |

Cohn-kanade [7], empleando la dimension de correlacion. Algoritmo de Roweis [91]] . 111
|5.12. Resultados de aplicar LE sobre M pgr para el sujeto S055 de la base de datos Cohn- |

Kande [7], empleando la dimension de correlacion. Algoritmo de Belkin [62]] . . . . . 113
|5.13. Resultados de aplicar HLLE sobre Mpgr para el sujeto S055 de la base de datos |

Cohn-Kanade [ﬁf, empleando la dimension de correlacion. Algoritmo de Grimes [59[[. 116
|p.14. Esquema General de Reduccion de Dimensionalidad| . . . . . ... ... ... .. .. 119
|6.1. Esquema General de Seguimiento Dinamico| . . . . . . .. .. ... ... ... .... 123




1

Introduccion

La extraccién y procesamiento de informacién asociada a expresiones faciales es un problema
que despierta interés en diversas areas . Distintos desarrollos han sido realizados para la ex-
traccion, representacion y andlisis de dicha informacién, sin embargo la mayor parte de éstos se
enfocan en un manejo estatico asociado a un determinado instante de tiempo, quedando asi por
explotar aiin mucha de la riqueza existente en el comportamiento dindamico .

En esta tesis se aborda el problema de realizar el seguimiento dindmico por medio de herramien-
tas computacionales a las expresiones faciales, en donde la hipdtesis central es

Existen conjuntos de expresiones faciales por individuo, para las cuales es posible
afirmar que: el comportamiento dindmico estd bien diferenciado de una expresion a
otra

es decir las trayectorias en el espacio de evolucién de la informacion son diferentes y disjuntas entre
si.

Para probar esta hipdtesis, se aborda el problema de la extraccién de informacién lidiando
primero con la deteccién de rostro, la localizacién de puntos faciales y la extracciéon de los descrip-
tores para finalmente tratar en forma detallada la reducciéon de dimensionalidad.

En este capitulo se da un panorama de las consideraciones generales involucradas en la inves-
tigacién, dando primero una presentacién de las hechos que motivan el desarrollo de la misma.
Finalmente se dara una descripcién de la organizacién del documento.
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1.1. Motivacion

La descripcion y analisis de la informacién contenida en las expresiones faciales de un determinado
individuo, ha sido de interés en areas que van desde la psicologia 3] hasta dreas mds recientes
como la de comunicaciones futuras en donde el principal interés recae en la interaccién hombre-
méquina [1].

El estudio de estos patrones faciales se ha desarrollado en primera instancia alrededor de un
manejo estético [1], sin embargo contribuciones recientes indican la riqueza para descripcién y rep-
resentacién que puede encontrarse en un andlisis dindmico [2].

El trabajo de investigadores como Goleman [3] en donde se destaca la importancia de lo que
hoy es conocido como la inteligencia emocional, generan un gran interés en pro de emitir conceptos
con informacién que va mas alld de un solo instante de tiempo, y asi tener en cuenta el proceso de
evolucién de una expresién en si misma. Ekman [4] [5] por su parte, ha realizado marcadas con-
tribuciones gracias a las cuales ha sido posible entre otras cosas, establecer conclusiones generales
y con caracter de universalidad sobre los patrones faciales de los individuos y sus respuestas a de-
terminados estimulos. Estos resultados estan basados en profundos analisis dentro de las ciencias
de la psicologia, sin embargo brindan un soporte riguroso para el andlisis y extraccién automatico
de informacién de los patrones faciales con un enfoque dinamico, pues tanto las estrategias de re-
conocimiento como de clasificacién se centran en la identificacién de las AU (Action Units) que
hacen parte del sistema FACS (Facial Action Coding System) desarrollado por Ekman [6], teniendo
cada una de las mimas un grado de evolucién diferente dentro de cada expresién [1] [2].

En torno a estas ideas se realiza esta investigacién, buscando el desarrollo de herramientas para
cuantificar la dindmica de los patrones faciales en un determinado sujeto, teniendo como finalidad
lograr un seguimiento dindmico de la expresién que sea confiable para fines de clasificacién y/o
sintesis.

1.2. Consideraciones Generales

El problema de la deteccion de rostro se aborda considerando condiciones controladas. Es de-
cir, es posible manejar distintas condiciones de iluminacién para cada una de las imagenes pero no
tratando situaciones extremas que puedan ser consideradas oclusiones. Adicionalmente, se consid-
eran imagenes de sujetos cuya informacion facial no es interferida por aspestos fisionémicos como
la barba, anteojos y accesorios que puedan ser causantes de algin tipo de oclusién.

Si bien el interés de la investigacion es en la descripcion dindmica de la informacion, se analiza
en bloque la totalidad de la informacién contenida en una secuencia de video, de manera que no se
aborda el problema de procesamiento en tiempo real.

1.3. Organizaciéon del Documento

En el capitulo 2 se presenta el problema de la deteccién de rostro planteando un esquema de solu-
cién basado en segmentacién cromética y de textura. Se da una descripcién detallada de cada una,
asi como una presentacién de los resultados obtenidos con las imagenes a Color de la base de Datos
Cohn-Kanade [7].

En el capitulo 3 se aborda el problema de la deteccién de puntos faciales. Se presenta una solu-
cién basada en Active Appearance Models (AAM), dando una descripcién completa de estos modelos.
Se dan los detalles de cdmo se realiza la construccién y el entrenamiento de los mismos, asi como
los resultados obtenidos con una miscelania de imégenes de la base de datos Cohn-Kanade [7].

La extraccién de descriptores es abordada en el capitulo 4 planteando un esquema que inte-
gra las propuestas mas relevantes de la literatura y modificaciones adicionales a fin de dar una
descripcién méas completa. Se dan a conocer en detalle los descriptores empleados y la forma como
se maneja esta informacion para su posterior procesamiento.
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En el capitulo 5 se aborda el problema de la reduccién de dimensionalidad, presentando las
técnicas con mejores resultados para dicho fin. Se da una descripcién de las mismas a fin de conocer
en detalle sus fortalezas y debilidades dentro de un andlisis automatico de la informacién extraida
de las expresiones faciales. Esto brinda un analisis riguroso en una etapa critica en el seguimiento,
ya que el uso inadecuado de una técnica puede conducir a resultados sin sentido. Més aun, los
resultados obtenidos por dos técnicas distintas pueden diferir de manera considerable si las técnicas
o la seleccién de sus parametros no son las adecuadas. Es un capitulo en el que se da prioridad a la
rigurosidad y no a la brevedad, siendo su papel crucial en los resultados y posibles aplicaciones de
los mismos. Ademds se da una presentacién de una contribucién realizada para estimar la dimensién
intrinseca de los datos que se asumen recaen sobre una variedad diferencial.

Los resultados generales del esquema de seguimiento dinamico de la expresion son finalmente
presentados en el capitulo 6, en el que ademas se describen los productos entregados en las investi-
gacion y se presenta el escenario para su aplicacion.

Finalmente en el capitulo 7, se consignan las conclusiones de la investigacién. Se presentan
ademads las recomendaciones para trabajos futuros.
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Deteccion de Rostro

L

La localizacion o deteccion de rostro en una imagen facial juega un papel esencial en el analisis del
comportamiento dindmico de las expresiones. Si bien existen algunas herramientas como los Active
Appearance Models (AAM) , que permiten en principio la segmentacién detallada del rostro ,
su buen funcionamiento depende fuertemente de qué tan cercana sea la condicién inicial de dichos
modelos al rostro ubicado en la imagen objetivo. La mejor forma de lograr dicha condicién es
localizando lo méas aproximado posible el rostro.

En este captitulo se presenta el esquema empleado para realizar la deteccién de rostro, con el
cual se busca mejorar las condiciones para la construccién y aplicacién de los Active Appearance
Models (AAM) en la localizacién de puntos faciales. Inicialmente se realiza un breve cometario del
estado del arte sobre la deteccién de rostro, mencionando las técnicas que se consideraron mas
relevantes y/o pertinentes para esta investigacion.

En la seccién 2.2] se presenta en detalle el esquema seleccionado mencionando las principales
propiedades y caracteristicas de cada técnica, y finalmente se presentardn los resultados de la misma
para dar algunas de las conclusiones parciales del empleo de este esquema.

2.1. Estado del Arte

En se evidencia que existen dos grandes enfoques para la deteccién de rostro. El primero
de ellos se basa en el uso de informacién de textura y features obtenidos a partir de la misma para
localizar la regién facial, mientras que el segundo se basa en el uso de la informacién a color para
identificar regiones con piel y después discriminar con textura u otro criterio.

En tanto la técnicas basadas en textura son atractivas por su robustez , las técnicas
cromaticas los son por su bajo costo computacional representando un atractivo para implementa-
ciones en dispositivos de bajas caracteristicas de hardware ﬂgﬂ

23



24 CAPITULO 2. DETECCION DE ROSTRO

I(r:%gre Comprehensive. col.our Color Cent;oi d Color to
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Figura 2.1: Esquema Propuesto para la Deteccién de Rostro

Teniendo en cuenta estas ideas, en este trabajo se propone realizar una integracién de estos dos
grandes enfoques, considerando los andlisis realizados por Zli [1] [2] segtin los cuales, la deteccién de
rostro basada en Adaboost, desarrollada por Viola y Jones [10], ha mostrado ser la mejor solucién
para la deteccién de rostro en condiciones controladas. Sumado a esto se consideran los resultados
obtenidos por Ichikawa [11] y Huang [12] en los cuales se muestra un alto grado de robustez de
ésta técnica para lidiar con problemas de detecciéon facial incluso con oclusiones severas y grandes
angulos de rotacion.

A fin de mejorar el grado de aproximacién del detector de Viola y Jones [10], se emplea seg-
mentacion cromatica siguiendo las ideas plasmadas en [13] [14] [15] en donde se emplea parte del
detector de Viola y Jones adicionando informacién de tipo cromaético para mejorar el proceso de
deteccion.

Los trabajos realizados sobre segmentacion cromdtica para deteccion de rostros son variados,
como se evidencia en [1] [2]. La razén de esto recae en gran medida en el hecho de que las imégenes
a color pueden representarse en distintos espacios, que pueden ser adecuados o no segun la distribu-
ci6én de color de piel empleada para la construccién del cluster [1] |16]. Los espacios més empleados
para estos fines son el Y C,C,. [17] [18] [19] y el espacio HSV [20] [21], combinados con procesos de
discriminacion adicionales basados en features extraidos de la imagen en escala de grises. En algunos
trabajos como en [22] [23] [24] se emplea simultdneamente la informacién correspondiente a varios
espacios de color, pero obteniendo pocas o ninguna ventaja sobre el empleo de un solo espacio.

La idea comun a todos estos desarrollos sobre segmentacién cromatica de rostros, es la de
encontrar una regién adecuada en un espacio de color que contenga la distribucién de colores corre-
spondiente a las zonas de piel de una determinada imagen facial [1]. El uso del espacio Y C},C,. aunque
busca disminuir la dependencia de la iluminacién al considerar para la segmentacién los planos CyC,,
no logra completamente dicho fin pues el plano Y involucra informacién cromatica [25]. Al usar otros
espacios este problema sigue existiendo pues el cluster empleado para realizar la segmentacién de-
penderd fuertemente de la iluminacién de las imédgenes usadas para construir la distribucién [25].

Como parte de una solucién a este problema King [26] desarrolla una técnica que incluye las
ideas basicas de segmentacién cromatica mencionadas anteriormente, pero adicionando una poderosa
técnica de correccién de iluminacién desarrollada por Finlayson [27]. Los resultados son extremada-
mente satisfactorios pues por medio de esta técnica de correcciéon de iluminacion se logra estabilizar
la distribucién que representa el color de la piel sea cual sea el espacio que se use para representar-
la [26].

Por otra parte Zhang [28] desarrolla una técnica de segmentaciéon por color capaz de lidiar
por si sola con algunos defectos de iluminacion, y con la propiedad de separar satisfactoriamente
la distribucion de colores de la piel de las distribuciones de color de otros objetos no facilmente
separables por medio de otras técnicas.

En este trabajo se emplea la técnica de iluminacién desarrollada por Finlayson [27] junto con
la técnica propuesta por Zhang [28], para finalmente usar el detector de rostro de Viola y Jones [10]
basado en Adaboost. Con esta propuesta se busca seguir las principales tendencias en el estado del
arte, teniendo en cuenta la calidad de los desarrollos y su pertinencia para este trabajo.El esquema
planteado se puede apreciar en la figura [2.1
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2.2. Esquema Seleccionado

2.2.1. Comprehensive Colour Image Normalization (CCIN)

Una imagen bajo diferentes condiciones de iluminaciéon puede aparecer con diferentes valores en
su representacion en el espacio RGB, ya sea debido a la geometria de la iluminacién o a el illumi-
nant color [25]. Por esto una técnica de normalizacién del color es necesaria para un segmentacion
cromdtica de mayor precisién. Finlayson [27] ha desarrollado una técnica de tipo iterativo para
la normalizacién de imagenes a color. Este autor prueba que usando sucesivamente las ecuaciones
clésicas para compensar la geometria de la iluminacién, es posible encontrar una imagen que es
idempotente y Unica, y por tanto el proceso es siempre convergente. Ademads la rata de convergen-
cia es alta, tipicamente es alcanzada entre cinco y seis iteraciones.

Sea Z; ; j = R,G, B una imagen en el espacio de color RGB, i es el pixel. Sea R el operador
normalizador de renglones definido como

I .
R(Zi;)= =21 —— (2.1)
" Zk:R,G,B Lk
y sea C el operador normalizador de columnas, definido como
NT: :
C(Lij) = my o (2.2)
32 k=1 Trj

N es el nimero total de pixeles en la imagen.
El método propuesto por Finlayson [27] puede presentarse como

3 o g 34 0 Qe o
1. Inicializacién: Tome Ii(j) =17;; como el valor inicial en el proceso
) 2.
iterativo.

2. Paso de Iteracién: Haga IZ.(,TJ.H) =C (R (If?))

3. Paso de Finalizacién: Si Ii(TjH) =IZ.(§) detenga el proceso y haga IZ]?Tm“”ZGd =
ORI
Ii,j , 81 no vaya al paso 2.

Una vez la convergencia es alcanzada es necesario hacer un escalamiento de los valores de la imagen
resultante. En este trabajo se propone realizar este escalamiento como

final _ 7(0) rnormalized
L =LijLij (2:3)
Ebner ha mostrado en [25], que este no es el tinico camino para realizar este escalamiento pero es
uno de los mas usados y uno de los que permite obtener mejores resultados.

En la figura se muestra un ejemplo de los resultados obtenidos para una imagen de la base
de datos FERET [29] [30]. La principal diferencia no estd en la apariencia de las imégenes sino en
la relaciéon que tiene cada pixel con sus vecinos en la imagen. Esta diferencia se remarcara en los
espacios de color de representacién.

2.2.2. Centroid Color Segmentation (CCS)

Zhang [28| ha propuesto una nueva técnica para la segmentacién de color basada en una transfor-
macién del espacio RGB a un espacio de dos dimensiones usando un nuevo sistema de coordenadas



26 CAPITULO 2. DETECCION DE ROSTRO

Figura 2.2: Izquierda: Imagen Original Z; ;. Derecha: Imagen Normalizada Iif ;nal

Image RGB

(rgb)y (uwv)

(r.8b)

Figura 2.3: Transformacién del espacio RGB a R2.

y el centroide de un triangulo. En la figura se muestra esta transformacién, en donde cada
componente del vector (Z; r,Z; ¢, Z; B) = (r,g,b) es mapeada a un nuevo sistema de ejes, en el cual
cada uno de los ejes esta separado por 120 grados. El nuevo eje R esta a 90 grados de la horizontal.
Entonces, se construye un triangulo con los vértices asociados a los valores de los pixeles en este
nuevo sistema coordenado, y éste tendra un centroide (u,v), donde (u,v) es el punto en el nuevo
espacio de representacion. Algebraicamente, esto se puede expresar de la siguiente manera:

Sea T : R3 — RR? el operador de transformacién del espacio RGB a R?. La transformacién
esta definida como

T (Zi;) = uiéx + viéy (2.4)

donde )
u; = 3 [L‘,B cos (%) —TI; G cos (%)] (2.5)
v; = % {I@R —7; psin <%) —7; gsin (%)} (2.6)

éx, €y son los vectores unitarios en las coordenadas x,y de R2. Acorde a Zhang |\ después de que
se hace esta transformacion, se representan los datos en coordenadas polares (6,r), de manera que
la regién en la cual se espera que se encuentren los datos asociados al color de la piel es definida
como

{(07 r)|re [Tmina rmaw]a 0 e [Gmin; emax]} (2.7)

En este trabajo se representard la region de distribucién de los pixeles de color de la piel,
delimitando adin maés la regién de interés como el interior de un poligono. En la figura [2.4] se
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muestra la distribucién de pixeles de piel en el espacio (6, ) con 517880 pixeles de piel tomadas de
las bases de datos: FERET [29] [30], Cohn-Kanade [7] y PIE [31] junto con una miscelania de 100
imagenes extraidas de Internet. La region de interés se delimita por medio de las ecuaciones:

r— 54,84 < —1,2758(0 — 54,24) (2.8)
r— 54,84 < 2,2074(0 — 54,24) (2.9)
r>25 (2.10)

Esta regién se denomina 9, C R?, de tal manera que la regién de distribucién de la piel es
{(0,7)(8,7) € M} (2.11)

Asi, se espera obtener un modelo flexible pero que elimine muchas zonas en la imagen cuyo color no
es cercano a la distribuciéon de la piel. Se obtiene esta descripcion matematica de manera empirica,
de acuerdo a lo propuesto por Zhang [28], quién tomé algunos valores empiricos para delimitar 6 y
r. La mdscara resultante de esta umbralizacién es

‘ o 1 Si Ii,j S 9)?5
Lisces = { 0 En caso contrario (2.12)

Después de la umbralizacién, es necesario hacer un proceso de correccién no lineal. Zhang [28]
realiza este proceso de la siguiente manera:
Sea Z; gray la versién en escala de grises de Z; ;, entonces la correccién no lineal es

7 (14 2557 gray)
Hbinary = kT (1 + 255)

donde k£ = 2. Con este proceso el ruido es reducido. El valor de k, indica el nimero de clusters en
la imagen resultante. Luego, la mascara de segmentacién se obtiene como

(2.13)

Ii,masc = Ii,ccsILbinary (214)
Después de esto, se llenan los agujeros de Z; 45 Luego la méscara final de segmentacion es
Ii,Fmasc = Ffnnoles (Ii,masc) (215)

donde Fpoles €s el operador de llenado de huecos. En la figura [2.5 se muestran los resultados de
usar segmentacion CCS sobre la imagen normalizada, obtenida en el proceso de normalizacién de
color.

2.2.3. Adaboost

Viola y Jones han propuesto y desarrollado en [10] un detector de rostro robusto basado en Adaboost,
logrando con éste grandes tasas de reconocimiento. Acorde a Zli [1] [2] éste es de lejos el mejor
detector de rostro para entornos controlados.

El funcionamiento de esta propuesta se basa principalmente en el uso de features extraidos con
funciones tipo Haar, y el uso de una cascada de clasificadores. Usando Adaboost, los clasificadores
débiles son disenados de tal manera que se obtiene un clasificador fuerte como una superposicion
de los primeros, y la cascada de clasificaciéon aumenta por etapas su poder de discriminacion.

Para hacer este entrenamiento eficiente Viola y Jones introducen el concepto de imagen integral,
por medio de la cual es posible obtener eficientemente todos los features de la imagen en una
nueva computada de la original usando sumas acumulativas. Si se denota con 7y la imagen integral
calculada a partir de la imagen en escala de grises Z, se tiene que

Ti(r,s)= Y ZI(m,n) (2.16)

Los principales aspectos acerca del algoritmo de Adaboost, pueden resumirse de la siguiente man-
era [10] [1]
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Figura 2.4: Distribucién de la Piel en el plano (6, ). Hay 517880 pixeles de Piel tomadas de las bases
de datos: FERET [29] [30], Cohn-Kanade [7] y PIE [31] junto con una miscelania de 100 imagenes
extraidas de Internet
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Figura 2.5: Izquierda: I”‘"’m““ze‘i Derecha: Segmentacién sobre I”‘”“mal”‘ed usando CCS, con los

umbrales especificados en . 2.9 2.10]
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Una vez que todos los clasificadores han sido disenados. La cascada de clasificadores llamada atten-

tional cascade es usada para llevar a cabo una bisqueda eficiente en la imagen. Cada clasificador usa

un nimero creciente de features. De tal manera que los primeros juegan un papel importante para

descartar regiones que no contengan informacion facial y las regiones con la informacién mas rica

son analizadas con los clasificadores més elaborados y aceptadas como regiones faciales. Para todos

los detalles acerca de este procedimiento el autor refiere al lector al trabajo de Viola y Jones .
En la figura [2.6] se muestran los resultados de deteccién de rostro empleando Adaboost.

2.3. Implementacién

2.3.1. Comprehensive Color Image Normalization (CCIN)

Comprehensive colour image normalization (CCIN) es implementada en Matlab. Debido al bajo
costo computacional, del orden de mili segundos, el lenguaje de programacién no juega un papel
central.
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[

Figura 2.6: Detecciéon de Rostro usando Adaboost sobre una imagen de la base de datos FERET

. Algoritmo de Viola y Jones

2.3.2. Color Centroids Segmentation (CCS)

Como en el caso anterior, la implementacion de CCS es realizada en Matlab. El programa se realiza
haciendo uso de operaciones vectoriales, de tal manera que el costo computacional es muy bajo, del
orden de mili segundos.

2.3.3. Adaboost

Una de las implemantaciones mas populares del detector de rostro de Viola y Jones basada en
Adaboost se encuentra disponible en la libreria openCV para C++, y se ejecuta en el orden de los
mili segundos. Masnadi ha realizado una implementacién de ésta técnica para Matlab, pero no
es la mejor opcién debido al enorme costo computacional, que puede llegar a ser de varios minutos
para una imagen de baja resolucién. Por lo tanto en este trabajo se usara la implementacién que se
encuentra en la librerfa openCV.

2.4. Resultados

En la figura se muestra un diagrama que ejemplifica el esquema general de deteccién de rostro
discutido, sobre una de las imagenes de la base de datos FERET , mientras que en las
figuras y se muestran los resultados sobre una imagen en escala de grises y todas
las imégenes a color de la base de datos Cohn-Kanade [7]. Los resultados de deteccién son exitosos
salvo por dos casos en la figura La tasa de localizacion en imégenes en escala de grises es la
misma que en puesto que las iméagenes de este tipo son tratadas directamente por medio del
detector de Viola y Jones (ver figura .

2.5. Conclusién

El uso de segmentacion cromadtica es un buen enfoque para obtener resultados més aproximados
en el empleo de un detector de rostro basado en Adaboost. La contribucién méas importante en
esta seccion del trabajo es la combinacion de la técnica propuesta por Finlayson con la técnica
de segmentacién por centroides desarrollada por Zhang junto con Adaboost. La integracion de
estas dos técnicas crométicas ha mostrado ser una excelente alternativa para la segmentacién de
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Normalized Colour Image

Adaboost

Face Detection

Figura 2.7: Esquema general de Resultados Finales. Imagen de la base de datos FERET [29] [30]

otros objetos en imégenes de color en si misma y podria usarse con otro tipo de técnica posterior
distinta de Adaboost.
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Figura 2.8: Resultados Finales. Imégenes Base de Datos Cohn-Kanade [7]
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S160_006_00000001

Figura 2.9: Resultados Finales. Imdgenes Base de Datos Cohn-Kanade |[7]
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Figura 2.11: Resultados Finales. Imdgenes Base de Datos Cohn-Kanade |7]
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Localizacion Automatica de Puntos Faciales

La localizacién automaética de puntos faciales representa uno de los mayores desafios en el andlisis
automatico de expresiones, cualquiera sea su finalidad . Extraer la informacién a partir de estos
puntos brinda la posibilidad de analizar los patrones mas relevantes involucrados en la imagen facial,
sin necesidad de realizar encajamientos en espacios de mayor dimension.

En este capitulo se presenta el esquema disefiado para la deteccidon de puntos faciales, que se
apoya y depende fuertemente del esquema de deteccién de rostros presentado en el capitulo anterior.
Se escogen los Active Appearance Models (AAM) para llevar a cabo este propdsito teniendo en cuenta
sus ventajas y el hecho de que representan informacién consolidada para este fin.

En primera instancia se presenta una breve descripcién del estado del arte en esta tematica,
mencionando los trabajos mas importantes y/o relevantes para los propdsitos de esta investigacién.
Posteriormente se dedicaran las demas secciones a la discusién de los detalles sobre la construccion
y proceso de busqueda con los AAM.

Finalmente se dara una presentacién de los resultados obtenidos.

3.1. Estado del Arte

El problema de la deteccién de puntos faciales esa atin hoy en dia un problema abierto, en donde
existen diferentes propuestas que se consolidan con el pasar de los afios y las investigaciones ,
pero que no ofrecen soluciones definitivas al problema.

Desde trabajos como los realizados por Chen en donde se aprovechan argumentos de tipo
probabilista a fin de conocer las regiones méas probables para la ubicaciéon de un punto facial con

37
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base en un conjunto de imégenes de entrenamiento, hasta trabajos como el de Yun [34] en donde se
busca emplear herramientas de clasificaciéon de tipo estadistico para localizar los puntos faciales de
acuerdo a los features asociados a una vecindad con centro en dicho punto, y pasando por trabajos
como el de Hu [35] en donde se usan combinaciones lineales de modelos de rostro prototipo para la
localizacion de las marcas faciales; los argumentos y propuestas son diversos. Sin embargo existen
dos grandes enfoques que despiertan cada vez més el interés de los investigadores. El primero de
éstos basado en Active Appearance Models (AAM), como se evidencia en los trabajos [36] [37] [33],
mientras que el segundo, donde destacan los trabajos de Pantic [38], Kozakaya [39] y recientemente
Valstar [40], en los cuales la localizacién de cada punto facial es independiente de la localizacién de
otro dentro de un mismo esquema.

El primer enfoque retoma las fortalezas y debilidades de los AAM, pero con el valor agrega-
do de aprovechar el hecho de que es informacién consolidada, analizada, mejorada y criticada por
diferentes investigadores, lo que permite conocer con gran profundidad sus limitaciones y potencial-
idades.

Los trabajos de Valstar [40] y Pantic [38] en el Imperial College of London, toman como refer-
encia el esquema de deteccién de rostro desarrollado por Viola y Jones [10], buscando la localizacién
de los puntos por medio de features. Valstar [40] propone usar el esquema de deteccién de rostro
a fin de hacer més eficiente la bisqueda de los puntos, estableciendo regiones méas probables para
la busqueda de acuerdo a unas imagenes de entrenamiento. Los features son extraidos empleando
wavelets o mascaras de tipo Haar, para posteriormente usar clasificadores boosted o regresién de
soporte vectorial.

Estos ultimos trabajos dan indicios tener una fuerte fundamentacion, ademas de ser trabajos
promisorios. Sin embargo las publicaciones sobre éstos no son lo suficientemente detalladas como
para realizar una implementacion, y mas importante, no permiten conocer en detalle sus limita-
ciones y fortalezas para su aplicacién en un proyecto de investigacion.

Por estas razones, en este trabajo se emplearan los AAM a fin de lograr la deteccién de puntos
faciales, siguiendo parte de las ideas de Valstar [40] y Pantic [38] en donde se emplea el mismo es-
quema de deteccién de rostro, para realizar una biisqueda mucho mas aproximada. La localizacion
automatica de estos puntos se realiza en cada frame, y no se consideran algoritmos de seguimiento
ya que las secuencias de imdgenes que se encuentran en la base de datos Cohn-Kanade [7], poseen
tazas de muestreo arbitrarias.

3.2. Modelos de Apariencia Activa (AAM)

3.2.1. Formulacion del Modelo de Forma

Para la construccién de un modelo de forma, se requiere de un conjunto de imagenes de entre-
namiento anotadas con su respectivo conjunto de marcas [41]. Como el interés en este trabajo es en
imégenes faciales se usan las imégenes de la base de datos Cohn-Kanade [7] después de emplear el
esquema de deteccion presentado en el capitulo 2.

Las marcas representan los principales puntos geométricos del rostro (ver ﬁgura, y no existe
un unico camino para definirlas [1]. A fin de obtener el modelo de forma es necesario en primera
instancia realizar un alineamiento del conjunto de formas empleado para llegar a sus caractaristicas
geométricas esenciales |42 [43] |41]. Dichas caracteristicas geométricas son invariantes después de
haber eliminado la rotacion, el desplazamiento respecto al origen y el escalamiento [44] [45]. Una
vez hecho esto se lleva a cabo la construcciéon de un modelo de tipo estadistico. Este procedimiento
se detalla a continuacién, por medio de varias etapas.

Alineamiento de Forma

Sea

xi 7 ""7xi )yz‘ 7y1’ ayi

T
xi = (20, 2@, ™y, 42 4O ")
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Un vector de 2n componentes, cuyas primeras n componentes representan las abscisas y las compo-
nentes de n + 1 hasta 2n son las ordenadas de un conjunto de marcas que representan la forma de
la i—ésima imagen facial de un conjunto de entrenamiento. Los pasos del proceso de alineamiento

se pueden presentar como

En el paso 4 se plantea alinear cada forma con el mean shape. Es decir este paso se reduce al
alineamiento entre dos formas. Sea x;,x;, 4 # j dos formas diferentes que se desean alinear. El
proceso de alineacién de la forma x; a la forma x; se plantea como el de encontrar los parametros
de una transformacién de similaridad 7T~ tal que

T(xi)z[‘; _b]xﬁ[iz]:xj (3.2)

por supuesto no hay garantia de que existan a,b,t,,t, de tal manera que se cumpla una igualdad,
por ello para llegar a los mejores parametros se minimiza la funcién

E =T (xi) — x| (3-3)

que llega a su valor minimo seleccionando los parametros con los siguientes valores

_Xi X, Sory (xi(r)xj(n + 1) — xi(r + n)x,(r))

_ , (3.4)
i i

1 & 1 o
ty = szj(r), tyzﬁzxj(nw) (3.5)
r=1 r=1
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Figura 3.1: Izquierda: Conjunto de marcas asignadas con el estdndar de la base de datos Cohn-
Kanade . Derecha: Conjunto de marcas asignadas siguiendo el esquema de Cootes [1]

Analisis de Componentes Principales

Para la construcciéon del modelo estadistico se emplea andlisis de componentes principales. Primero
se computa la matriz de covarianza Sg de los datos como

1 &

S = > (xi— %) (xi —x)" (3.6)

-1
s =1

y entonces se calculan los eigenvectores ¢gi correspondientes a los eigenvalores Agi, ordenados tal
que Ask > Ag(r41)- i Ps es la matriz cuyos vectores columna son los eigenvectores ¢y correspon-
dientes a los gs eigenvalores més grandes, el valor de cualquier x puede ser aproximado por

x ~ X + P by (3.7)

donde bg es un vector que contiene el conjunto de parametros del modelo deformable. Variando
los elementos de bg se puede variar la forma x usando la ecuacién La varianza del i—ésimo
parametro, bg;, en el conjunto de entrenamiento estd dado por Ag; 1 nuamero de eigenvectores
a retener, ¢s, puede ser escogido de tal manera que se conserve una porcién de la varianza total de
los datos , acorde a Cootes et al un criterio para tomar este porcentaje es

ds )\
Loik=1"k > 0,98
Zk:l >\k

es decir, tomando el 98 % de la energia total de los eigenvalores.
3.2.2. Formulaciéon del Modelo de Textura

Como en el caso del modelo de forma, para la construccién del modelo de textura se requiere de un
conjunto de imagenes de entrenamiento, que es el mismo conjunto empleado para la construccion del
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modelo de forma. Una vez se cuenta con estas imagenes, se realiza un procedimiento de normalizacion
o alineacion para asi construir un modelo estadistico empleando andlisis de componentes principales
[42] [43].

Es importante dejar claro que las muestras de textura se toman dentro del convezr hull obtenido
de las formas no alineadas [41].

Image Warping

Usando el image warping se mapea la textura de las muestras dentro de una forma a otra [41]. Para
esto se construye un enmallado triangular cuyos vértices son las marcas que definen la forma del
objeto, y la textura del mismo se encontrard en el conver hull de dicha forma. En esta construccion
de enmallados se usa usualmente el algoritmo Delaunay [41].

Una vez realizado esto, se mapean los niveles de gris correspondientes a los pixeles dentro de
cada tridngulo de la forma original al triangulo asociado de la otra forma [41]. Para ilustrar esto
considere el diagrama de la figura [3.2] sea x, la forma de un objeto y X, otra forma asociada. Sean

v(1), V(2), V(3) los vectores que representan los vértices de un triangulo Av(w@ sobre el enmallado

del objeto x, tomados en sentido contrario a las manecillas del reloj, mientras que "’21)7”22)7 V(3) SON

los vectores correspondientes al triangulo A asociado a A sobre la forma x,. Entonces

V(1,2,3)
(1,2,3)
el valor del pixel localizado en v = [z, y]T dentro del tridngulo Ay, 4 €s mapeado a v =2,y "
dentro del tridngulo A de la siguiente manera
(1,2,3)
flf/ / / ’
Tuarp () = { y ] = avgy) + By + 7y (3.8)
donde
a=1-(5+7) (3.9)

YVzz — VUzy Y — VggVy; — Vys T + Vgy Uy + TUy,
Uz Vyy + Vo Uy + Vgy Vyy + Vg Uyy — Vg Vy; — Uz Uyy

8= (3.10)

v = LVyy — TVy; — Vg Uyy — UglY + Vo Vyy + Uz Y (3 11)
Uy Vyy + Vo Uy + Vgy Vyy + Vg Uy — Vg Vy; — Uz Uyy

Y Vi) = [Umi,vyi]T, 1 = 1,2,3. Una vez hecho este mapeo es necesario llevar a cabo una interpo-
lacién para definir los niveles de gris en los cuales no se mapea ningtin valor de textura [41].
Aunque este procedimiento se define entre dos formas generales que cuentan con enmallados cuyos
nimeros de tridngulos y vértices son iguales, se considera que la segunda forma es una versién
deformada de la primera por medio de alguna transformacién [41]. En la figura se evidencia la
operacién de image warping sobre una imagen de la base de datos FERET [29] [30].

Alineacién de Textura

Para minimizar los efectos de variaciones globales de iluminacién, se normaliza el conjunto de
imégenes empleadas para construir el modelo buscando dejar varianza unitaria y media nula [42]
[43] [1].

Sea g; el vector columna de las muestras de textura (los niveles de gris en la imagen en escala de
grises) de la imagen i en el interior del convex hull de la forma no alineada x;. g; es la representacién
vectorial de la imagen por lo cual alli habrd una cantidad de ceros asociada a los pixeles que estén
fuera del convex hull de x;. El proceso de normalizacién se puede presentar como
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Figura 3.2: Diagrama que Ilustra el Image Warping, en donde x, es una versién deformada de X,
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1. Haga el warping de las muestras de textura dentro del convez hull de X;
para la imagen original ¢ al mean shape ubicado en el centro de la imagen
y con un escalamiento que es el promedio de todos los tamafios de los
rostros en el conjunto de imagenes de entrenamiento. Esto se representa
como g; < 7Zvarp (gz) .

2. Calcule para todos los g;

g — 51
e 3.12
g Ta (3.12)
donde
pg=8 (3.13)
ns
112
- B2 (3.14)
ng

aqui 1 es el vector cuyas componentes son todas iguales a 1. Este no es el inico camino para
realizar esta normalizacién, Cootes en [42] propone otra forma para realizar esta normalizacién con
resultados semejantes a los presentados en este trabajo y en el trabajo de Stegmann [41].

Analisis de Componentes Principales

Una vez las muestras de textura se han normalizado, se calcula la matriz de covarianza'| [42] [43] [41]

Ccomo
1 &

= T
Sy = > (si—8)(gi—8) (3.15)
ng —1 —
y entonces se computan los eigenvectores ¢gj, correspondientes a los eigenvalores Mgy, ordenados
como )‘gk > Ag(k41)- Si'<I>g es la mat/riz cuyos vectores columna son los eigenvectores q’)g'k cor-
respondientes a los gg eigenvalores mas grandes, el valor de cualquier g; puede ser aproximado
como

g~ g+ Pgbg (3.16)
donde bg es un vector que representa un conjunto de pardmetros del modelo. Variando los elementos
de bg se puede modificar la textura g usando la ecuacion [3.16] La varianza del i—ésimo pardmetro
bg; para el conjunto de entrenamiento estd dado por Ag; [4’? El ntimero de eigenvectores a retener
gg, puede ser escogido tal que el modelo represente una porcién de la varianza total de los datos
[46] [42] [43]. Acorde a Cootes et al, un criterio que puede tomarse es, al igual que en el modelo de
forma .

hee1 Ak

=—— >0,98
Zk:l Ak

3.2.3. Formulacion del Modelo Combinado

Se puede obtener una formulacién combinada del modelo de apariencia aplicando anélisis de com-
ponentes principales a los vectores

b:{wsbs}_{wsﬂ(x—i)

by | (3.17)

!Generalmente el tamafio de las imigenes hace inaceptable el costo computacional asociado a esta matriz de
covarianza, por lo cual es necesario realizar una proyeccién. Con ésta se podra encontrar los eigenvalores de una
matriz mas pequena, y cuyos eigenvectores permitirdn por medio de dicha proyeccién obtener los eigenvectores de la
matriz de covarianza original [47] [4§]
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Figura 3.3: De izquierda a derecha: a) Imagen Original, b)Imagen con Marcas asignadas,
¢)Enmallado construido usando las marcas, d)Textura en el interior del conver hull del enmallado
mapeada sobre la forma media usando image warping

en donde Wy es una matriz de escalamiento para adecuar unidades. Si se denota la matriz de estos
nuevos eigenvectores como ®, entonces el nuevo modelo tiene la siguiente forma

b = ®c (3.18)

Los vectores ¢ son llamados pardmetros de apariencia [49] [50] [51]. Con esto, se puede controlar
la forma y el modelo de textura. Puesto que el modelo de forma y textura tienen media cero, c
también tiene media cero [42] [43]. Entonces el modelo combinado puede ser escrito como

Xx=%X+® W, P (3.19)

g=8+ &P (3.20)
donde .
. L

b= } 3.21

o (321)

En la figura[3.4]se puede apreciar el comportamiento del modelo combinado variando los pardmetros
del vector c.

Seleccién de parametros de ponderacion de forma W

En este trabajo se usa la propuesta realizada por Cootes [42], en la que W es seleccionado como:
W, =rl (3.22)
donde I es la matriz identidad, y » > 0 es tal que

dg
2 _ k=1 )‘gk
- q
21::1 /\sk

r

(3.23)

3.2.4. Busqueda en AAM

La busqueda en los Active Appearance Models requiere de una etapa de entrenamiento, en la cual
se construyen cantidades requeridas para la siguiente etapa, que es finalmente el proceso de mini-
mizacién de una funcién de error para acoplar el modelo a la imagen objetivo.
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Figura 3.4: De izquierda a Derecha: a)Valor del modelo haciendo ¢; = —/\q,

=0 Vi>1,

b)Textura media, sobre la forma media (Mean Shape) c)Valor del modelo haciendo ¢; = A1, ¢ =
0 Vi > 1, d)Representacién de los cambios de forma por la variacién de c¢; (Azul: Mean Shape,

Verde: ¢; = /A1, Rojo: ¢; = —v/A1)

Para realizar este proceso es necesario aplicar una transformacién de similaridad sobre el mod-
elo, con la que se busca representar la variacion del modelo combinado en el frame de la imagen.

Esta transformacién se representa para cualquier punto v = [x,y]? como

1+s, —s te
Tt("’):[ sy 1+1J”+{ty]

(3.24)

t = (t1,t2,t3,t4) = (Sz, Sy, ta, ty) donde s, = scos(d) — 1, s, = ssin(f). 0 es la rotacién, y s el

escalado, mientras que (t,,1,) es la traslacion.

A continuacién se detallan las dos etapas que describen la busqueda con los AAM

Entrenamiento: Correccion de los Parametros del Modelo

La principal idea para el entrenamiento en la correccion de los valores de los parametros, es usar las
condiciones de imagenes conocidas en el modelo. Se hace una perturbacién controlada sobre éstas y
se almacena el error. Entonces, todos los errores son almacenados en una matriz que es usada para

realizar la bisqueda en el frame de la imagen.

Sean c; o y tio los valores de los pardmetros del modelo y de la transformacién de similaridad
con los cuales el modelo genera el elemento g; de la imagen 4. Se realiza una perturbacién conocida

dc, ot para cada pardmetro individualmente como
c=c;o+0c

t=t;0+ ot,

de manera que

7;72',0"!‘517 (Xm) = 7;1‘,0 (7:% (Xm)) = fcm
gn =8+ q’g‘i)cg (Cz’,O + 5(3)

Xm =X+ <I>3W;1<i>cs (Ci,O + 50)

(3.25)

(3.26)

(3.27)
(3.28)
(3.29)

gm es la textura generada en el marco de la imagen ¢ haciendo warping de g, a X, entonces el

error se puede computar como

=g = 8s — 8m

(3.30)

donde g, es la muestra de textura dentro del convex hull de Xim que es el modelo de forma perturbado

en el marco de la imagen 3.
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Sea gyk,, €l error computado por perturbacién del pardmetro p; por un valor de ¢ k), k=
1,2,3,...,d y sea A la matriz cuyos vectores columna a; son de la forma

d
1
k=1
donde )
1 _ (51’5%)
wp = —e %k (3.32)
Pk

ok es la desviacion estandar, si pr = ci entonces o = /A y si pr = tx o tiene otro valor
dependiendo de las perturbaciones realizadas en los ;.
Ahora, con esta notacién y acorde a se construye

R=(AAT) A (3.33)

Refinamiento Iterativo del modelo

Para el refinamiento iterativo del modelo, se siguen los siguientes pasos :
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’

—_— A
8. Calcule el nuevo vector de error, Z, =g, — 8&,,-

9. Si
prueba con k= 0,5;k = 0,25; etc.

2
—/ . .
’.:.gH < E, entonces acepte el nuevo estimado; de lo contrario se

Cootes et al [42] |43] y Stegmann en [52] han demostrado que la seleccién 6ptima de los desplaza-
mientos se realiza como

Sci=kyVN keQ (3.37)

teniendo en cuenta esto, en este trabajo se selecciona
1
Ce(k) = g(k —35), Vkel[l,6,keZ y dci=+N\ (3.38)

para los desplazamientos en los parametros de la transformacion de similaridad se hace

ot; =1, Vi (3.39)
y se selecciona
1
<t|t1 (k) = Ct\tz(k) = g(k - 375)7 Vk € []‘7 6]7 keZ (340)
2(k — 3.5
Cra () = G (k) = 2539 e 6k e 2 (3.41)
Sz0+ 1

donde sz0 + 1 = sz0cos(fp) define los parametros de la transformacién de similaridad sin pertur-
bacién, tal que g; es generado en el frame de la imagen como ﬁi,o(gi) =g;.

3.3. Implementaciéon

Para realizar la implementaciéon de los AAM, se empled la herramienta de simulacién Matlab. Los
tiempos de buisqueda por imagen oscilan entre los 3 y 5 minutos aproximadamente en un computador
con caracteristicas promedio. En el entrenamiento se requiere de un tiempo del orden de horas.

3.4. Resultados

3.4.1. Evaluacién Cuantitativa

El interés principal de este trabajo en el uso de los modelos de apariencia activa es la localizacion
de puntos faciales, en donde una medida de la calidad de esta localizacién puede estar asociada al
comportamiento final en textura del modelo. Sin embargo este aspecto no es definitivo, teniendo en
cuenta que en muchos casos el acople del enmallado final no esta siempre relacionado con errores
finales pequetios, por ello se establece un umbral de error satisfactorio valorando los resultados
experimentales.

En las figuras [B.10] [3.11] [3.12] [3.13] [3.14] [3.15] [3.16}, [3.17], [3.18] [3.19] se
muestran los resultados finales de deteccién de puntos faciales sobre un conjunto de 100 imagenes de
la base de datos Cohn-kanade [7] no usadas ni en el entranamiento ni en la construccién del modelo.
Los resultados por imagen individual se encuentran organizados en renglones. Para cada renglén, la
primera columna muestra el sujeto con la ubicacién inicial de la forma media, la segunda columna
muestra el mean shape en la posicion inicial, la tercera columna muestra el enmallado final después
del proceso de minimizacion sobre la imagen objetivo, la cuarta columna muestra la textura final
del modelo sobre la imagen y por ultimo la quinta columna muestra la imagen original. Los datos de
error final y nimero de iteraciones asociadas a estas figuras se encuentran consignados en la tabla
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B.11

Para la construccién del modelo fueron empleadas 244 imagenes de la base de datos Cohn-
Kanade [7] usando el estdndar de marcas asociado a la misma (ver figura [3.1). El entrenamiento
fue realizado sobre un conjunto de 193 imégenes. Teniendo en cuenta todos estos resultados el
umbral establecido para considerar como satisfactoria la buisqueda es de 95. Asi, 84 de las pruebas
consignadas en la tabla tienen un error final inferior a este umbral.

3.5. Discusion y Conclusiones

El uso del esquema de deteccién de rostro planteado en el capitulo 2, permitié mejorar los resultados
obtenidos en el uso de AAM, ya que se redujo en gran medida el grado de subjetividad para indicar
la condicién inicial del modelo respecto de la imagen. Esto representa una opcién para los fines de
extraccion de informacién.

La forma de entrenamiento requerida para realizar el proceso de busqueda con los AAM implica
que para un buen funcionamiento y comportamiento de los mismos debe haber una gran correlacion
entre los patrones faciales del sujeto en la imagen objetivo y las imagenes de entrenamiento. Por
ello el escenario mas pertinente para la aplicaciéon de este desarrollo es uno en el cual es posible con
unas cuantas imagenes de un individuo, identificar en una secuencia arbitraria y no conocida de
imédgenes del mismo, los puntos faciales de interés.
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Imagen | Error Final | Iteraciones Imagen | Error Final | Iteraciones
1 48.1108 44 o1 83.6237 6
2 98.5801 21 52 74.0367 6
3 79.7742 16 53 71.9703 14
4 48.4909 43 54 34.9860 o7
5 59.5254 40 95 43.7373 37
6 56.9495 35 56 50.7269 32
7 58.0280 29 57 50.7269 49
8 66.8353 16 o8 94.7319 5
9 71.0264 28 59 11.30386 5
10 40.9431 52 60 97.8205 25
11 67.6079 14 61 75.9192 35
12 67.1339 17 62 77.3782 26
13 62.3094 39 63 71.2283 17
14 100.9103 15 64 52.7941 55
15 101.4590 17 65 67.9733 17
16 69.0196 16 66 86.0298 17
17 68.7041 25 67 54.4744 58
18 75.1369 20 68 108.9230 6
19 73.2374 9 69 57.9465 51
20 48.3397 25 70 56.0894 81
21 51.1266 36 71 114.6948 5
22 73.9588 14 72 49.6707 78
23 71.9316 8 73 94.0578 5
24 69.2547 20 74 54.1309 54
25 78.1378 12 75 108.6562 8
26 86.3782 8 76 104.2382 7
27 85.2431 9 77 87.5434 11
28 74.6489 10 78 44.4923 59
29 53.1672 27 79 95.8944 18
30 60.4367 33 80 72.1129 16
31 39.7533 55 81 62.2984 23
32 79.2244 18 82 66.0403 20
33 71.1190 18 83 64.6535 58
34 40.4023 47 84 49.0298 91
35 81.1578 7 85 68.8150 17
36 92.4814 7 86 55.9712 59
37 92.4814 36 87 100.4090 6
38 48.0576 43 88 58.0705 55
39 41.5301 42 89 95.1503 4
40 97.3068 7 90 81.6702 11
41 53.8275 46 91 43.2614 60
42 54.6813 33 92 59.9984 18
43 34.7397 52 93 60.6217 23
44 99.3486 5 94 67.4194 22
45 99.4995 4 95 76.5257 16
46 85.1043 6 96 69.8225 23
47 79.6058 5 97 52.9968 47
48 43.0793 45 98 40.8333 56
49 77.3700 25 99 50.7203 46
50 75.8155 31 100 104.9347 5

Cuadro 3.1: Resultados AAM
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Figura 3.5: Resultados Imagenes 1-7. Para cada renglén, la primera columna muestra el sujeto con
la ubicacion inicial de la forma media, la segunda columna muestra el mean shape en la posicién
inicial, la tercera columna muestra el enmallado final después del proceso de minimizacion sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
ultimo la quinta columna muestra la imagen original. Los datos de error final y niimero de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla
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Figura 3.6: Resultados Iméagenes 8-14. Para cada renglén, la primera columna muestra el sujeto con
la ubicacion inicial de la forma media, la segunda columna muestra el mean shape en la posicién
inicial, la tercera columna muestra el enmallado final después del proceso de minimizacion sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
ultimo la quinta columna muestra la imagen original. Los datos de error final y niimero de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla
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Figura 3.7: Resultados Imégenes 15-21. Para cada renglén, la primera columna muestra el sujeto
con la ubicacion inicial de la forma media, la segunda columna muestra el mean shape en la posicién
inicial, la tercera columna muestra el enmallado final después del proceso de minimizacion sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
ultimo la quinta columna muestra la imagen original. Los datos de error final y niimero de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla [3.]]
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Figura 3.8: Resultados Imégenes 22-28. Para cada renglén, la primera columna muestra el sujeto
con la ubicacion inicial de la forma media, la segunda columna muestra el mean shape en la posicién
inicial, la tercera columna muestra el enmallado final después del proceso de minimizacion sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
ultimo la quinta columna muestra la imagen original. Los datos de error final y niimero de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla [3.]
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Figura 3.9: Resultados Imégenes 29-35. Para cada rengléon, la primera columna muestra el sujeto
con la ubicacion inicial de la forma media, la segunda columna muestra el mean shape en la posicién
inicial, la tercera columna muestra el enmallado final después del proceso de minimizacion sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
ultimo la quinta columna muestra la imagen original. Los datos de error final y niimero de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla [3.]]
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Figura 3.10: Resultados Imégenes 36-42. Para cada renglén, la primera columna muestra el sujeto
con la ubicacion inicial de la forma media, la segunda columna muestra el mean shape en la posicién
inicial, la tercera columna muestra el enmallado final después del proceso de minimizacion sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
ultimo la quinta columna muestra la imagen original. Los datos de error final y niimero de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla [3.]]
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Figura 3.11: Resultados Imagenes 43-49. Para cada renglén, la primera columna muestra el sujeto
con la ubicacién inicial de la forma media, la segunda columna muestra el mean shape en la posicion
inicial, la tercera columna muestra el enmallado final después del proceso de minimizacion sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
ultimo la quinta columna muestra la imagen original. Los datos de error final y niimero de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla
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Figura 3.12: Resultados Imégenes 50-56. Para cada renglén, la primera columna muestra el sujeto
con la ubicacion inicial de la forma media, la segunda columna muestra el mean shape en la posicién
inicial, la tercera columna muestra el enmallado final después del proceso de minimizacion sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
ultimo la quinta columna muestra la imagen original. Los datos de error final y niimero de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla [3.]]
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Figura 3.13: Resultados Imagenes 57-63. Para cada renglén, la primera columna muestra el sujeto
con la ubicacion inicial de la forma media, la segunda columna muestra el mean shape en la posicién
inicial, la tercera columna muestra el enmallado final después del proceso de minimizacion sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
ultimo la quinta columna muestra la imagen original. Los datos de error final y niimero de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla
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Figura 3.14: Resultados Imégenes 64-70. Para cada renglén, la primera columna muestra el sujeto
con la ubicacién inicial de la forma media, la segunda columna muestra el mean shape en la posicion
inicial, la tercera columna muestra el enmallado final después del proceso de minimizacién sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
ultimo la quinta columna muestra la imagen original. Los datos de error final y niimero de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla
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Figura 3.15: Resultados Imégenes 71-77. Para cada renglén, la primera columna muestra el sujeto
con la ubicacion inicial de la forma media, la segunda columna muestra el mean shape en la posicién
inicial, la tercera columna muestra el enmallado final después del proceso de minimizacion sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
ultimo la quinta columna muestra la imagen original. Los datos de error final y niimero de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla [3.]]
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Figura 3.16: Resultados Imégenes 78-84. Para cada renglén, la primera columna muestra el sujeto
con la ubicacion inicial de la forma media, la segunda columna muestra el mean shape en la posicién
inicial, la tercera columna muestra el enmallado final después del proceso de minimizacion sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
ultimo la quinta columna muestra la imagen original. Los datos de error final y niimero de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla [3.]]
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Figura 3.17: Resultados Imégenes 85-91. Para cada renglén, la primera columna muestra el sujeto
con la ubicacién inicial de la forma media, la segunda columna muestra el mean shape en la posicion
inicial, la tercera columna muestra el enmallado final después del proceso de minimizacién sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
ultimo la quinta columna muestra la imagen original. Los datos de error final y niimero de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla
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Figura 3.18: Resultados Imégenes 92-98. Para cada renglén, la primera columna muestra el sujeto
con la ubicacion inicial de la forma media, la segunda columna muestra el mean shape en la posicién
inicial, la tercera columna muestra el enmallado final después del proceso de minimizacion sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
ultimo la quinta columna muestra la imagen original. Los datos de error final y niimero de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla
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Figura 3.19: Resultados Imagenes 99-100. Para cada renglén, la primera columna muestra el sujeto
con la ubicacién inicial de la forma media, la segunda columna muestra el mean shape en la posicion
inicial, la tercera columna muestra el enmallado final después del proceso de minimizacién sobre
la imagen objetivo, la cuarta columna muestra la textura final del modelo sobre la imagen y por
ultimo la quinta columna muestra la imagen original. Los datos de error final y niimero de iteraciones
asociadas a estas figuras se encuentran consignados en la tabla
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Extraccion de Descriptores

S, LW, g, V2

La representacién de patrones en senales e imédgenes, busca la descripcién de un objeto particular
en un entorno donde existe més informacién que no es de interés . Dicha informacién adicional
no siempre es facilmente separable del mismo, y por ello la forma en como se representa este objeto
debe obedecer a criterios tanto tedricos como practicos, buscando que cada descriptor posea una
gran riqueza de informacién [54].

El problema de representaciéon de las expresiones faciales, ha mostrado ser fuente de distintas
propuestas en la definicion de los descriptores . Sin embargo, existen propuestas que destacan
entre las demds por su fundamentacion y efectividad en fines de clasificacion y sintesis, convirtiendo
el problema de seleccion de los descriptores en una tarea donde se deben valorar la fundamentacion
y la efectividad.

En este capitulo se realiza la definicién de los features a emplear para representar las expresiones
faciales siguiendo la propuesta realizada por Tian , la cual posee sélidos argumentos tedricos
y estd acompanada por resultados satisfactorios en su utilizacion. Se definira ademaés su forma de
separacion en variedades para su posterior procesamiento.

Adicionalmente, se realizara un analisis de los efectos de la simetria en los conjuntos resultantes
que describen la expresion, para finalmente dar algunas conclusiones generales al respecto.

4.1. Estado del Arte

En la descripcién de comportamientos faciales existe una distinciéon importante entre el problema
de identificacién de rostros y el de reconocimiento de expresiones faciales , quedando claro

65
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Figura 4.1: Features mpgp

asi que es necesario conocer el propésito y tipo de clasificacién para realizar una adecuada seleccion
de los parametros empleados para la representacién.

Al igual que en otros problemas, la seleccién de estos pardmetros no es tinica y muchas de las
propuestas existentes obedecen a consideraciones particulares del autor que no siempre tienen una
justificacion y trasfondo claro .

En este trabajo se destacan las propuestas de Tian [55] y Rayvse por su sélida funda-
mentacién y resultados en problemas de representacion para fines de clasificacién y/o sintesis.

En [1] se presenta el trabajo de Tian como una de las propuestas mas significativas y con
mejores resultados para fines de clasificacién de expresiones faciales. En ésta se propone un esquema
para la descripcion de las expresiones con fines de clasificacién en la cual el manejo de la informacion
se hace directamente con las herramientas de clasificacion sin realizar un procesamiento previo.

Por otra parte los resultados obtenidos por Ping empleando la técnica desarrollada por
Rayvse en muestran ser prometedores para la descripcién dindmica de expresiones faciales,
ademads de que dicha técnica posee una sélida fundamentacién con elaborados procesos basados en
operaciones binarias. Sin embargo, al ser dependiente en gran parte de las condiciones de ilumi-
nacién puede llegar a verse afectada por el ruido y/o condiciones de entorno cambiantes.

Por esto se hara uso de la propuesta de Tian , adicionando features que permitiran tener
una medida de la simetria de los movimientos faciales en la region facial inferir.

4.2. Definicion de Parametros

La mayor parte de los features definidos a continuacion se realizan siguiendo la propuesta de Tian
[55], sin embargo se realizard una separacién en variedades para dar el procesamiento posterior a la
informacién por medio de técnicas de reduccion de dimensionalidad.

4.2.1. Alternativa Planteada

El conjunto que representa los features de forma de la region facial superior propuestos por
Tian en [55] se representardan como mpgsp, éstos features se indican en la ﬁgura Entonces dicho
conjunto se especifica como
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Figura 4.2: Features mpgr

mpgp = {v € R?|v" = [D, bri, bii, het, bz, bt uz, bro, bio) } (4.1)

El conjunto que representa los features de textura de la region facial superior propuestos por
Tian en [55] se representardan como mpgy, las regiones en las cuales se calculan éstos se indican en

la figura Este conjunto puede definirse como

mpsr = {v € RO |w” = [fo1, fro, fi, fi2s st rs2] } (4.2)

para definir cada uno de los componentes de este vector sean fl, fr y n,s las regiones indicadas
en la figura Sea (p el operador de deteccién de bordes cuya salida es una imagen binaria, 7.
el operador que indica el nimero de componentes conexas y o el operador que indica el valor de
la desviacién estandar. De esta manera las componentes de los vectores que pertenecen a mpgy se
definen como

fr1 = Nee (Cb (f’l“)) s S = Nee (Cb (.fl)) y  Mrsl = Tec (Cb (n'r's)) (43)
fro=o0 (f”’) , fu=o (.fl) y MNps2 =0 (n'rS) (4'4)

El conjunto que representa los features de forma de la regién facial inferior se puede apreciar en
las figuras y Este conjunto de features puede definirse como mp;p | Jmprg en donde

Mprrp = {’U S R3 ”UT = [hl,hg,W]} (4.5)

mrrs = {U € R4 ‘UT = [Derladsrvdsl]} (46)

en donde mpyg da una medida de las movimientos simétricos de la region facial inferior.
Por 1ltimo, para el conjunto de features de textura de la region facial inferior se considera en la

figura Este se puede definir como

mprr = {v € RO |v” = [Ton1, Tena, Tr1, Tr2, T, Tio] } (4.7)
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Figura 4.3: Features mp;p

donde Ty, Ty, T} son las regiones indicadas en la figura Empleando los operadores (p, 1ee y 0
los componentes de los vectores que pertenecen a mpyr se describen como

Ten1 = TNee (Cb (Tch)) , = Nee (Cb (Tr)) , In= Nece (Cb (Tl)) (48)
Tena=0(Ten), Tro=0(Ty), Tip=0(TH) (4.9)

4.2.2. Comportamiento Dinamico: Variedades de Datos

Si bien los conjuntos de features representan caracteristicas esenciales de las expresiones faciales
en cada frame, su representacién debe realizarse respecto de un punto inicial si se desea conocer
el comportamiento dindmico. Sea vy el vector de features asociado al frame ¢ de una secuencia
de video de imagenes faciales de un determinado sujeto. Los conjuntos de datos que describen el
comportamiento dindmico, para un video con un total de g + 1 frames se representan como

M\FSF = {u eR® ‘u = V) — V) V)V € MpsE, A 0<t< q} (4.10)
M\FST = {u € RS ‘u = V() — Vo), V@),V €EMpsT, A 0<t< q} (4.11)
M\FIF = {u e R3 ‘u =V — Vo), Yu),Vo) €Mprr, A 0<t< q} (4.12)
Mprs = {ueR?!|u= V) — Vo), V) Vo) €mrrs, A 0<t<gq} (4.13)
.K/I\F[T = {u e RS ‘u = V) — V), V),V EMmprr, A 0<t< q} (4.14)

de esta manera se podrd medir la evolucion de la expresién respecto de las caracteristicas encon-
tradas en el primer frame.
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Figura 4.4: Features mprg
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Figura 4.5: Features mpyr

Comportamiento Dindmico: Comparaciones de Magnitud y Separacién en Variedades

En el trabajo de Tian se propuso realizar la clasificaciéon de expresiones faciales empleando
dos clasificadores diferentes para las regiones faciales inferior y superior respectivamente. Esta mis-
ma idea, se retoma en este trabajo, y se propone /r\ealizar/\el anélif,is de/l\a infogr\nacién para su
reducciéon de dimensionalidad individualmente en Mpgp, Mpsr, Mprrrp, Mrrs, Mperr. Esto per-
mitird analizar datos que son comparables entre si en érdenes de magnitud, ademads de eliminar el
problema de hallar escalamientos para lidiar con los cambios de unidades.

En el capitulo 5 se adicionaran argumentos relacionados con efectos de las grandes dimensiones
sobre la representacién de los datos. Esto reforzard atn més la idea de analizar los datos de acuerdo
a la propuesta realizada en este capitulo.

Comportamiento Dindmico: Acerca de la Simetria

La mayor parte de los features extraidos representan informacion redundante en caso de que exista
simetria en los movimientos faciales. En muchas situaciones, este es el caso. Por ello es importante
resaltar, que para fines de procesamiento de la informacién es necesario tener esto presente, pues
la dimensién estimada para la variedad de los movimientos no simétricos podria ser mayor que la
dimensién correspondiente a una variedad de movimientos simétricos. Para ver esto considere un
elemento v de mpgp

v = [Da b'riv bli7 h'rl7 h'r27 hll) h’l27 bT’O? blo] (415)

en caso de que existiesen movimientos simétricos, la siguiente aproximacion seria totalmente valida
[D, bri: bli7 hrla hr27 hlh hl27 brm blo] ~ [D7 briy bT’ia h?"17 hr?a h‘?"17 hr27 bro; bro] (416)

es decir ya no serian nueve las variables que describen el vector de representacién sino cinco. Esto
bien podria tener una implicacién fuerte en la estimacion de la dimensién intrinseca asociada a
cada conjunto. Méas atin cuando las simetrias, en caso de que existan, solo se registren para algunos
features.

Este argumento, brinda un soporte para el esquema de reducciéon de dimensionalidad propuesto
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en el capitulo 5, en la cual no se generaliza la dimensién estimada de la variedad. Por el contrario se
considera como una caracteristica particular asociada a cada variedad de features correspondientes
a un determinado sujeto.

4.3. Implementacion

La implementacion del cédigo para la extraccién de caracteristicas se realizé en la herramienta de
simulacién Matlab. La deteccion de bordes se realizé empleando los operadores de Sobel.

4.4. Discusion y Conclusiones

El esquema seleccionado basado en la propuesta de Tian [55] busca recoger las beneficios obtenidos
con esta seleccion, pero ademas de ello se adiciona la extraccién de los features mprs que brindan
una medida de los movimientos asimétricos de la region facial inferior. Con esto se espera anadir
informacién que brinde la posibilidad de realizar discriminacién entre expresiones faciales.

Si se optara por representar la variedad descriptora por medio de los niveles de gris de la zona
facial extraida, se tendria dicha variedad encajada o incrustada en R®S siendo R x S el tamafo
de la imagen. El esquema propuesto para la extracciéon y representacién de los features, supera
enormemente esta primera opcion de representacion pues las variedades estan encajadas en espacios
euclidianos de dimensiones fijas, y no se ven afectadas por los efectos nocivos del aumento de la
dimensionalidad a medida que RS — oo. - . . . .

Es importante considerar que los conjuntos de datos Mpgsp, Mpsr, Mprp, Mrrs, M prr pueden
ser combinados de manera arbitraria, sin embargo la estimacion de su dimensién intrinseca puede
variar considerablemente, y méas ain debido a las condiciones de simetria que pueden no ser fijas
dentro de un conjunto arbitrario de secuencias de expresiones. Por esto en capitulos posteriores se
realiza un procesamiento individual de cada uno de estos conjuntos sin dar una generalizaciéon de
la dimensién de la variedad sobre la cual recaen los datos.

La separacion de los datos en variedades diferentes brinda un analisis méds amplio y exhaustivo
de las regiones facial superior e inferior, pues Lee [58] prueba que los métodos de reduccién de
dimensionalidad, que se discutirdan en detalle en el capitulo 5, pueden usarse con total confidencia
para datos que se encuentren encajados en espacios de dimensiéon N tal que N < 5. En el esquema
de extraccion de features que se planteé en este capitulo, se garantiza en lo que se refiere a la
dimensién del espacio de represen/t\acién glliginal que se tiene un grado total de confidencia para el
procesamiento de las variedades Mprp, Mprg que est/a’\n enca/jz\idas en espacios de dimensiones 3 y
4 respectivamente, mientras que para las variedades Mpgr, Mprr el grado de confidencia es alto
pues estan en espacios de dimensién 6 que es apenas una unidad mayor al grado de confidencialidad.
Para el procesamiento de la variedad Mpgr el grado de confidencia atin puede considerarse cercano
al valor 6ptimo. Asi, se confirma ain més la ventaja de esta separacion de la informaciéon en com-
paracién con el uso directo de la informacién de textura, pues en este tultimo enfoque la dimension
RS del espacio de representacion seria RS > 5 y por la tanto la confidencia seria muy baja.
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Reduccion de Dimensionalidad

El tratamiento de la informacién extraida de las expresiones faciales representa la tltima etapa
previa a su uso en clasificacién y/o sintesis. Esta es de esencial cuidado, no solo porque es necesario
develar en lo posible la estructura que forman los datos que representan los patrones, sino porque
ademads los resultados obtenidos por varias de las distintas técnicas existentes pueden ser muy difer-
entes entre si.

En este capitulo se hace una presentacion y un analisis de las técnicas mas consolidadas y efi-
caces en la reducciéon de dimensionalidad, teniendo en cuenta el valioso estudio realizado por Lee
en , las demds referencias analizadas de acuerdo al estado del arte y por supuesto las carac-
teristicas de la informacién extraida junto con el efecto de estas técnicas sobre la misma.

En primera instancia se presentaran las motivaciones tanto tedricas como practicas para re-
alizar la reducciéon de dimensionalidad. Posteriormente se hara énfasis en los aspectos a explorar
en la aplicacién de las distintas técnicas de reduccién de dimensionalidad para los propdsitos del
tratamiento de la informacién en este trabajo, y en seguida se hard una breve discusién del estado
del arte sobre reduccién de dimensionalidad.

En la seccién [5.6] se hard una presentacién breve de las diferentes definiciones formales de
dimension y los esquemas existentes para realizar su estimacion practica, en donde adicionalmente
se hara la inclusién de una nueva propuesta para realizar dicha estimacién basada en algunos re-
sultados sobre variedades diferenciales. En la seccién [5.7] se presentaran las técnicas de reduccién
de dimensionalidad basadas en preservacion de la distancia realizando un anélisis detallado de cada
una y destacando sus respectivos pros y contras para su aplicacién en este trabajo. En la seccién
5.8 se realizard este mismo procedimiento con las técnicas basadas en preservacién de la topologfa.

Finalmente se presentara una seccién en la cual se discuten algunos aspectos de comparacién
entre las técnicas que no son tratados en la presentacion teérica de cada una, y que siguen princi-
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palmente los experimentos realizados por Lee en [58].
Se presentard ademds una seccién en donde se remarcaran las conclusiones principales sobre es-
tos métodos, y asi concluir con el planteamiento de un esquema para la reduccién dimensionalidad.
La discusiéon de cada una de las técnicas tanto de est/iinacién de la dimensién como de reduccion,
se acompanara de su aplicaciéon al conjunto de datos Mpgr empleando la informacién para cada
expresion y la informacion total correspondiente al sujeto S055 de la base de datos Cohn-Kanade [7].

Al usar Mpgp se verifica el comportamiento de los métodos empleados con el conjunto de datos
con mayores dimensiones y es posible tener en cuenta esto para tomar una decisién en la seleccion
de los mismos.

5.1. Hipétesis Central

En general, y en la mayor parte de las aplicaciones cuando se extraen vectores de descripcion de un
determinado patron, se usan valores reales, de manera que los vectores de descripcion pertenecen al
espacio euclidiano RY siendo N la dimensién de los vectores que representan dicho patrén [58] [53].

Todas las técnicas de reduccién de dimensionalidad no lineal (NLDR) se basan en la hipdtesis
de que los datos a los cuales se les quiere realizar reduccién de dimensiones caen o hacen parte de
una subvariedad topoldgica de RN [58] [59] [60]. En particular para algunos métodos es conveniente
restringir esta hipétesis a subvariedades diferenciales y/o subvariedades Riemannianas de RN [61]
[62]. En este trabajo se consideraran vectores de descripcién con componentes reales, de manera
que se asume esta misma hipdtesis analizando la diferenciabilidad y la existencia de un producto
interno asociado a la variedad cuando se considera apropiado, dependiendo del método usado para
reducir la dimensionalidad.

Se representara con M al conjunto de datos patrén que caen sobre la variedad M, es decir los
datos se representaran con un gorro sobre la letra o simbolo que representa la variedad analitica de
la que segun la hipétesis general, hacen parte los datos.

5.2. Motivaciones Practicas

Lee en [58] plantea como una de las principales motivaciones practicas para la reduccién de la
dimensionalidad, la eliminacién de la redundancia en la informaciéon, de tal manera que se tenga
el minimo nimero de variables que verdaderamente describa el problema. Pero ademas de ello, es
inmediata la utilidad en el entendimiento, clasificacién y procesamiento de la informacién asi como
también las inferencias y generalizaciones que se puedan lograr por medio de este entendimiento

58 [63] [64).

5.3. Motivaciones Tedricas

Parte de las motivaciones tedricas recaen en la visualizacion de los datos que representan un patron
objetivo. En el caso de representaciones espaciales es bien conocido el problema de visualizacion
de datos con mas de tres dimensiones, y asi mismo la visualizacion de datos que ademéds de las
dimensiones espaciales cuenten con variaciones temporales [58]. Sin embargo los efectos méas crudos
y significativos de usar datos en espacios de grandes dimensiones son conocidos como The Curse of
Dimensionality y hacen referencia al fenémeno de espacio vacio y a la concentracion de normas y
distancias 58] [63] [65].

El fenémeno de espacio vacio estd asociado en parte a la pérdida de propiedades geométricas
y topolodgicas de un objeto a medida que el espacio de representacién incrementa sus dimensiones.
Lee [58], Francois [63] y Demartines [65] muestran independientemente esto analizando inicialmente
el volumen de objetos geométricos simples como una esfera en N dimensiones asi: sea Vs el volumen
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de una esfera de radio r en el espacio euclidiano RY

T
Vi= ———r (5.1)
r(1+%)

si se considera r = 1, es decir una hiper-esfera de radio 1, se tiene que

wlz

D lim V,=0 (5.2)
I (1 ) N—o0

es decir a medida que aumentan las dimensiones del espacio de representacién el volumen de la
esfera se reduce, y un aspecto importante para resaltar es que si se tratase de una representacion
numérica de dicho volumen, eventualmente habria un nimero finito de dimensiones a partir del cual
el volumen calculado seria nulo.

Usando estos mismos argumentos Lee [58], Francois [63] y Demartines [65] muestran que los
contornos equiprobables de una distribucién gaussiana en N dimensiones crecen en términos de la
desviacion estandar a medida que las dimensiones se aumentan. Este mismo analisis puede realizarse
para otras representaciones geométricas.

Estos fenémenos permiten hacer alusién a un problema directamente involucrado en los procesos
de clasificacién y de identificacién de patrones: la pérdida de discriminacion de las normas en
grandes dimensiones, es decir la distribucién de normas en una distribucion de puntos dada tiende
a concentrarse, esto es conocido como el fendmeno de concentracion [58] [63] [65]. Este puede
describirse por medio del siguiente teorema, presentado en 58| [65]

4
N

Teorema 1 Sea y un vector N—dimensional [y1,...,Yd,- - ,yN]T; todas las componentes yq del
vector son independientes e idénticamente distribuidas (iid), con momento de orden ocho finito.
Entonces la media uy| y la varianza aﬁy” de la norma euclidiana son

pyy = E(lyl) = VaN —b+0 (N71) (5.3)

oty = Var(lyl) =b+0O (N*%) (5.4)

donde a y b son pardmetros dependientes unicamente de los momentos centrales de orden 1,2,3 y 4
de los y;:

a=p*+ o3 (5.5)
0% — o' +dpps + pa
4(p? + 0?)

Ap

h— (5.6)

donde p, es el momento central de orden v: p, = E[(yx —p)"]. p es la media E (yg), y o® la
varianza Var(yx)

con este Teorema se puede garantizar que mientras la media aumenta proporcionalmente a v N la
varianza permanece relativamente constante, numéricamente esto indicaria que a partir de un valor
N que crece se llega a un punto donde'no es posible distinguir entre py v [lyl|. Por otra parte
usando la desigualdad de chebyshev se tiene que

%

P (|lyll = )| > ) < 5L (5.7)

es decir la probabilidad de que la norma de los vectores esté por fuera de un intervalo de longitud
fija es constante. Lo cual confirma este hecho.
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5.4. Aspectos a Explorar

En la seleccion de un método para la reduccion de la dimensionalidad, es necesario tener en cuenta
caracteristicas como, la densidad de los datos, la cantidad de los mismos y las caracteristicas de
algunas de las matrices resultantes en los procesos de almacenamiento y procesamiento. Otro as-
pecto de igual importancia es el concerniente a la seleccién de los pardmetros empelados por una
determinada técnica de acuerdo a las caracteristicas de los datos, ya que si bien algunas técnicas de
reduccién y estimacién de la dimensién pueden dar resultados satisfactorios para ciertos parametros,
la seleccién de los mismos puede ser subjetiva y/o por sintonizacién, aspecto esencial a considerar
si se desea un procesamiento automatico de la informacién extraida de las expresiones faciales.

Paralelo a estos argumentos se considerard la fundamentacion teérica empleada en el desarrollo
de los métodos ya que ésta puede jugar un papel esencial para establecer conexiones y mejoras entre
éstos, ademds de brindar un panorama de exploracion para posibles trabajos futuros asociados a
estas tematicas y al andlisis de expresiones faciales.

5.5. Estado del Arte

El problema de reduccién de dimensionalidad y estimacién de la dimensién intrinseca de un conjunto
de datos ha despertado interés en diversas areas incluso décadas atras del comienzo del boom del
manejo de la informacién [58]. David Donoho de Stanford University present6 en [64] el problema
de manejar y desentranar la naturaleza de datos representados en espacios de grandes dimensiones
como uno de los desafios icénicos de este siglo.

Los desarrollos en estas tematicas son variados, con diferentes grados de fundamentacién y
motivados por aplicaciones en distintos campos de la ciencia. Lee desarrolla en [58] una presentacién
muy completa y detallada del estado del arte de las principales técnicas asociadas al problema de
la reduccién de la dimensionalidad y asi mismo al de estimacién de la dimensién intrinseca. En esta
investigacién se sigue la presentacion de este estado del arte complementandolo con técnicas que
no son abordadas por Lee [58] pero que han mostrado su efectivadad en el andlisis de expresiones
faciales. De esta manera la presentacién de cada una de las técnicas en secciones subsecuentes
representa para esta investigacion el estado del arte de técnicas de reduccién de dimensionalidad y
estimacién de la dimensién intrinseca mas pertinentes, relevantes y efectivas.

5.6. Dimensidon Intrinseca

La hipotesis de que los datos que representan determinado conjunto de patrones caen o hacen parte
de una variedad topoldgica, diferenciable y/o de Riemann, subyacen bajo la idea intuitiva de que
estos conjuntos de datos hacen parte de una estructura que es localmente similar a R™ [66] [67]. Por
medio de la estimacién de la dimensién intrinseca de dicha estructura se pretende determinar este
n.

Matematicamente hay definiciones formales y precisas de dimensién para conjuntos que forman
distintas estructuras , pero dificiles de calcular o aproximar en situaciones préacticas, como es el caso
de la dimensién de recubrimiento de Lebesgue o la dimensién de Hausdorff [68]. Sin embargo en un
intento por estimar los valores de estas dimensiones se han desarrollado otras medidas de la dimen-
sién como la dimensién de correlacién, que si bien su definicion estricta es atin tedrica, su forma ha
permitido adaptarla para realizar cdlculos en situacién practicas con mucha frecuencia [58] [68] [69].

A continuacién se presentan las distintas definiciones de las diferentes dimensiones, se estable-
ceran algunas relaciones importantes entre las mismas y finalmente se planteard un esquema para
la estimacién practica de dicha dimensién teniendo en cuenta la informacion presentada.

Considerando los argumentos tedricos y resultados experimentales, se planteard una nueva al-
ternativa para la estimacion de la dimensién que se usara en conjunto con otras formulaciones, para
estimar la dimensién de las distintas variedades que forman los conjuntos de expresiones faciales a
partir de los features descritos en el capitulo 4.
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5.6.1. Dimension de Recubrimiento

Los resultados generales sobre la dimensién de recubrimiento estan dados sobre espacios topolégicos
[70]. Siendo una variedad topoldgica un espacio topoldgico, se plantea en primera instancia una
definicién usando estos conceptos.

El recubrimiento de un espacio topolégico M es una familia @/ = {A)},., de subconjuntos tales
que

U Ar=M (5.8)
AEA

si cada elemento de .o/ es abierto entonces & es llamada cubierta abierta de M, en caso de que
todos los elementos de &7 sean cerrados entonces serd llamada una cubierta cerrada de M. Una
cubierta {B,} . se dice que es un refinamiento de la cubierta {Axcp} si para cada v € I' existe
algin A € A tal que B, C A, [70].

El orden de una familia de subconjuntos {Ax},.,, no todos vacios, de algiin conjunto es el
entero mas grande para el cual existe un subconjunto P de A con n+ 1 elementos tales que Nyxcp A
es no vacio, o es 0o si no existe tal entero [70].

Con las anteriores definiciones se puede dar la definicién de dimensién de recubrimiento en
términos de espacios topoldgicos de la siguiente manera, siguiendo a Pears [70]

Definicién 1 La dimensidn de recubrimiento dim (M) de un espacio topolégico M es el minimo
entero n tal que cada cubierta de M tiene un refinamiento abierto de un orden que no excede a n
0 es 0o st no existe tal entero.

Para los propdsitos de este trabajo, se considerard la hipotesis adicional sobre las variedades
topoldgicas a las cuales pertenecen los patrones extraidos, de ser metrizables; es decir que van a ser
variedades homeomorfas a un espacio métrico, y la métrica alli definida va a inducir una topologia
equivalente a la asignada a esta variedad topoldgica [71], o dicho de otra manera su topologia es
inducida por una métrica [70]. Lee demuestra en [71] que toda variedad diferenciable es metrizable y
en particular si la variedad es Riemanniana es posible definir esta métrica en términos de geodésicas,
asi que la consideracién adicional se enfoca en particular en el tratamiento de variedades topolédgicas
no diferenciales sobre las cuales pueden recaer ciertos conjuntos de patrones. Cuando se discutan
los métodos existentes para la reduccion de dimensionalidad se vera que esta hipétesis es muy
adecuada puesto que varias técnicas se basan en aproximaciones de distancias medidas sobre la
variedad incrustada en el espacio original de grandes dimensiones.

La definicién dada por Pears [70] se puede particularizar a espacios métricos de la siguiente
manera acorde a Robinson [72]. Sea (X, p) un espacio métrico, y sea M un subconjunto de X. Una
cubierta de M C X es una coleccién finita {U; };:1 de subconjuntos abiertos de X tales que

mc |y (5.9)
j=1

el orden de una cubierta es el entero mas grande n tal que existen n + 1 miembros de la cubierta
que tienen interseccion no vacia. Un a cubierta 8 es un refinamiento de una cubierta « si cada
miembro de [ estd contenido en algiin miembro de « [72]. Con esto la definicién se particulariza de
la siguiente manera

Definicién 2 Un subconjunto M C X tiene dimension dim (M) < n si cada cubierta tiene un
refinamiento de orden < n. Un conjunto M tiene dimension dim (M) =n si dim (M) < n pero no
es cierto que dim (M) <n — 1.

La dimensién de recubrimiento de un conjunto M en adelante se denotard como dim (M), ésta es
un invariante topoldgico, es decir es invariante a los homeomorfismos.
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5.6.2. Dimension de Hausdorff

La presentacién de la dimensién de Hausdorff se hard siguiendo a Falconer [73] [68] y Robinson [72],
quien presenta varios desarrollos tedricos sobre esta dimensién trabajando en R™. Esto es bastante
adecuado para este trabajo pues las variedades asociadas a los distintos conjuntos de patrones estan
incrustadas (embedding) en RY siendo N el niimero de componentes de los vectores descriptores
del patrén. Al igual que en las secciones anteriores esta definicién se asocia directamente a espacios
métricos.
Si U es un subconjunto no vacio de R" se define el didmetro de U como |U| = sup{|z —y| : z,y € U}.

Si M C ;Ui y 0<|U;| <6 para cada 4, se dice que {U;} es una § — cubierta de M. Asi se define

HE (M) = inf {Z |Ui|3} (5.10)
=1

donde el infimo es tomado sobre todas las j—cubiertas contables {U;} de M. De esta manera la
medida externa de Hausdorff s—dimensional de M se obtiene haciendo 6 — 0 como

A5 (M) = lim 45 (M) (5.11)

este limite existe, pero puede ser infinito [72]. La dimensién de Hausdorff dimgy (M) de un conjunto
M es el valor tnico tal que

HP(M)=00 si 0<s<dimg (M), H°M)=0 si dimg(M)<s<oo (5.12)
en particular si M C (X, p) , la dimensién de Hausdorff de M es

dimyy (M) = inf {d > 0: 227 (M) | (5.13)

siendo (X, p) el espacio métrico en el cual estd incrustada la variedad.

5.6.3. Dimensién de Capacidad (Box-Counting Dimension)

Sea N(M,e) que representa el minimo ndmero de bolas de radio € con centros en M requerida
para cubrir M, la boz-counting dimension de M se define como [72] [73] [68]

dimpog (M) = lim log N' (M, )

5.14
e—0 —loge ( )

5.6.4. Dimension de Informacion

Lee presenta en [58] la dimensién de informacién como un caso particular de una dimensién més
general conocida como ¢-dimension, que se expresa en términos de

Cy (s e) = / (1 (Be(y))™ du (y) (5.15)

siendo p una medida de probabilidad de Borel sobre un espacio métrico M tal que y € M. ¢ >
0, € >0y Bc(y) es una bola cerrada de radio e. De manera que para todo ¢ > 0, ¢ # 1 se
definen las siguientes cantidades

I
Dy (4) = lim fnf 128 Cali9)

5.16
1 e—0  (¢—1)loge (5.16)
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log C,
D (u) = lim sup 208%q\H: €) AU

5.17
a e—0 (1 —-¢)loge (5.17)

Si Df = D, , se dice que este valor comtn, representado como D, es la g—dimensién de M. Asf la
dimension de informacion se define como

ding (M) = lim Dy (1) (5.18)

qg—1

Lee muestra ademds como esta dimensién puede ser igual a la dimensién de capacidad (box-counting
dimension) cuando la definicién de la g—dimensién se plantea desde una perspectiva fisica y se
realizan ciertas supuestos.

5.6.5. Dimension de Correlacion

En [58] se presenta la dimensién de correlaciéon como un caso particular de la dimensién de infor-

macién cuando ¢ = 2. Si M = {y1,---,¥k,--.,yp} es el conjunto de puntos representativos del
patrén que caen sobre la variedad M, se define
Ca(6) = Jim s 3 H (e~ lyi=v;1l) (5.19)
z,ij#:jl
siendo H (u) la funcién de Heaviside. Con esto la dimension de correlacién se define como
log C5 (€)

dimeprr (M) = lim

5.20
e—~0 loge ( )

5.6.6. Relacién entre algunas dimensiones

Robinson demuestra en [72] que para cualquier espacio métrico compacto (X, p) se verifica que
dim (X) < dimg (X) < dimpe, (X) (5.21)
y Lee presenta en [58] que se cumple ademés la siguiente desigualdad
dimeory (M) < dimyy, o (M) < dimpe, (M) (5.22)

Un aspecto importante para resaltar de acuerdo a lo expuesto en [58] es que la dimensién de
correlaciéon puede subestimar la dimension real en determinados casos.

5.6.7. Estimacidén Practica de la Dimensién Intrinseca

Las dimensiones presentadas anteriormente aunque bien definidas, son extremadamente dificiles de
calcular si no se cuenta con una expresiéon analitica que describa la variedad M sobre la cual recaen
los datos patrén [58], esto es principalmente cierto si se habla de las dimensiones de recubrimien-
to o de Hausdorff. En el caso de la boz-counting dimension aunque es posible plantear métodos
aproximados para tratar numéricamente la operacién de limite, el costo computacional termina
convirtiéndola en inapropiada para problemas en donde existan grandes dimensiones que es donde
precisamente se busca estimar la dimensién [58]. La dimensién de correlacién aunque inicialmente
es un planteamiento que requiere también de la operacién de limite, es atractiva desde el punto de
vista computacional [69] [58] y por lo tanto esto la convierte en una herramienta para la estimacién
de la dimensién en situaciones précticas.

Adicionalmente, existen otras técnicas consideradas aceptables en muchas aplicaciones, que
no parten de las definiciones formales de dimensién dadas anteriormente, pero que buscan exami-
nar comportamientos locales como en el caso de PCA local (PCA—/) [58], o que buscan adecuar
computacionalmente una aproximacién de una dimension teérica como en el caso de Packing Num-
bers [74]. A continuacién se discuten varias de estas estimaciones practicas.
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Dimension de Correlacion

En [58] se propone aproximar la dimensién de correlacién de un conjunto finito de datos M que
caen sobre la variedad M como

/\) _ log C’g (€2) — log é2 (€1)

d ( 5.23
corr (M log es — log €1 ( )

siendo (s (¢) una aproximacién de Cs (e) dada por el nimero finito de puntos con los que se cuenta
para estimar la dimensién de la variedad. Este es un estimado de la pendiente media de una grafica
de log C (¢€) vs loge. Los valores de €1 y €2 se seleccionan entre el minimo y el méximo de las dis-

tancias entre puntos medidos en M. De acuerdo a los analisis realizados por Lee [58] los valores de
€1,2 no deben ser demasiado pequenos ya que se obtendria una dimensién cercana a cero que es la
dimensiéon de un conjunto aislado de puntos, e igualmente valores grandes de estos pardmetros no
concuerdan con el tipo de aproximacién que se quiere lograr, ya que se trata de aproximar un limite
que tiende a cero.

Der Maaten [75] desarroll6 un cédigo en matlab en donde se usa el esquema propuesto por
Lee [58], usando los valores de €1,€2 como la mediana de las distancias y el valor méximo re-
spectivamente, obteniéndose buenos resultados dentro de las pruebas realizadas por ese autor. Sin
embargo la seleccién de estos valores es arbitraria y no parece haber una razén de peso para haber
seleccionado estos parametros de esa manera.

Por otra parte Theiler en [76] encuentra de manera rigurosa y exhaustiva un criterio para la
seleccién de estos dos valores conocido como la regla de cinco. En este trabajo, se seguird este cri-
terio que se describe de la siguiente manera: sea no el nimero de distancias inferior a e; y sea nj
el nimero de distancias inferior a €;. Una vez se ha seleccionado €9 el valor de €1 se selecciona de
tal manera que ng/ny =~ 5; con estos valores es posible usar parte del esquema desarrollado por Der
Maaten [75], seleccionando ez como el valor maximo de las distancias. Este algoritmo se describe
como

1. Se computa la matriz de distancias entre pares de puntos D, para el
conjunto M.

2. Se selecciona ez = max (D).
3. Se encuentra no el nimero de distancias menores a 3.

4. Se calcula n; = ceil (%) como el nimero de distancias menores a €1, de
manera que el valor de este término queda determinado.

5. Calcular

A 1

Ca (€a) = PP=1) H (ea — llyi — y;l,) (5.24)

11 M

nl
Sl

para aa=1,2

6. Finalmente se calcula el estimado de la dimensién de correlacidén como

A> _ log C’Q (€2) — log CA'2 (e1)

corr .2
deo (M logea — log e; (5:25)

En la tabla se pueden apreciar 10/\8 valores estimados de la dimensién de correlacién para la
informacién de las expresiones faciales M pgp del sujeto S055 de la base de datos Cohn-Kanade [7]
extraidos con el esquema propuesto en el capitulo anterior, alli se consigna ademas la cantidad de
puntos empleados para realizar dicho calculo.
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dcorr (M FSF) P
S055.01 | 3 12
S0055.02 | 3 25
5005503 | 2 9
S0055.04 | 2 28
S0055.05 | 3 45
S0055_06 | 2 8
S0055_all | 3 127

Cuadro 5.1: Estimacién de la Dimensién de Correlacién de ./T/l\ rsF para el sujeto S055 de la base
de datos Cohn-Kanade [7].

PCA Local (PCA—Y)

Lee presenta en [58] una técnica que se basa principalmente en determinar la dimensién usando

P CA sobre subconjuntos disyuntos del total de la informacién. Es decir, si M= Vi, Yks---,YP}
es el conjunto de puntos que recaen sobre la variedad M. La estimacién de la dimensién usando

PCA —/ consiste en seleccionar una familia de subconjuntos o = {(71, ceey ﬁj} de M tales que

UiNU; = 0y U; Ui = M, siendo el tamano de los U; uniforme. Se aplica entonces PCA sobre
cada uno de estos conjuntos para estimar su dimension intrinseca, asi se obtiene un estimado de

la dimension de la variedad M graficando dicho valor como la mediana o la media de los valores
obtenidos para cada subconjunto vs el nimero de subconjuntos empleados para realizar cada esti-
macion.

De esta manera, la estimacién estara asociada a regiones planas de la grafica donde se estabi-
liza el valor de la dimensién. A medida que aumenta el nimero de ventanas la cantidad de datos
asociados a cada U; es menor y por ello se asemeja con més propiedad al comportamiento local de
la variedad M. El valor estimado serd la ordenada de la regién plana de la gréafica correspondiente
a los valores maés altos en cuanto al nimero de ventanas empleadas.

Acorde a Lee [58] esta técnica muestra ser bastante atractiva por su practicidad y ademads resulta
ser acertada en los estudios experimentales realizados por este autor. No obstante esta misma técnica

muestra una gran dependencia de la cantidad de datos de M , razon por la cual puede ser limitada
si el numero de datos es reducido. Teniendo en cuenta que en la base de datos Cohn-Kanade [7]
existen conjuntos de iméagenes muy reducidos que describen el comportamiento dindmico de una
determinada expresion, una aplicacién directa de este procedimiento para este tipo de informacion
seria fuertemente cuestionable.

Por otra parte, a pesar de los grandes atractivos de esta técnica por su simplicidad y aprovechamien-
to del comportamiento local, subyace un problema que aun hoy es considerado por expertos como
abierto: la seleccién del nimero de componentes. Jolliffe realiza en [46] un anélisis comparativo de
varias técnicas y criterios para realizar esta seleccion, sin embargo una de las principales conclusiones
obtenidas por este autor, es que aun este tema es la causa de numerosos desarrollos estadisticos y
matematicos con fundamentaciones cada vez mas elaboradas, pero con pocas ventajas o ninguna
sobre los procedimientos simples en la mayoria de los casos préacticos, en donde se desconoce qué es-
tructura forman los datos que representan un determinado patron.

Dentro de estas reglas simples Jolliffe [46] describe el método basado en la famosa grafica de
los eigenvalores ordenados de mayor a menor y el cual consiste en la ubicacién del codo de la curva
trazada en esta gréfica, que va a corresponder a un punto cuya vecindad izquierda es una region
de gran pendiente (en valor absoluto) mientras que la de su derecha es casi plana. Lee menciona
esta misma técnica en [58] pero aplicando logaritmo sobre los eigenvalores. A pesar de que in-
negablemente puede existir en algunos casos, un grado de subjetividad en la selecciéon del ntimero
de componentes por medio de este procedimiento, ésta es igual o menor a la subjetividad de otras
técnicas mas sofisticadas en casos donde no se conoce a profundidad la naturaleza de la informa-
cién [46]. Por otra parte Lee en [58] sugiere el uso del criterio AIC(Akaike’s Information Criterion)
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y/o el criterio MDL presentados por Cichocki |77] como alternativas rigurosas para este fin. En este
trabajo se propone integrar en una sola metodologia las ideas de Jolliffe |[46] y Lee [58], buscando un
intermedio entre el codo de la curva en una gréfica construida empleando el criterio AIC y el criterio
AIC mismo, la presentacién de esta estrategia se realizard en la seccién [5.6.8] cuando se plantee la
version modificada de PCA—/.

5.6.8. Algunos Resultados Sobre Variedades Diferenciales: Acerca de la Dimen-
sién, PCA local Modificado (PCA —(m)

De acuerdo a la definicién formal de variedad topolégica dada por Lee en [71]:

Definicion 3 5i M es un espacio topoldgico, se dice que M es una variedad topoldgica de dimension
n si se verifican las siguientes propiedades:

1. M es un esapcio de Hausdorff: Para cada par de puntos p,q € M existen subconjuntos abiertos
disyuntos U,V C M tales que p e U yqe V.

2. M es seqgundo contable: Existe una base contable para la topologia de M.

3. M es localmente Euclidiano de dimension n: Cada punto de M tiene una vecindad que es
homeomorfa a un abierto de R™.

y a la idea intuitiva de variedad brindada por Massey en [66]:

... El andlogo n-dimensional de una superficie es una variedad de dimension n, la cual es un
espacio topologico con las mismas propiedades locales de un espacio euclidiano n-dimensional . ..

se puede afirmar que para todo punto de la variedad M de dimension n existe una vecindad home-
omorfa a un subconjunto abierto de R™, por lo tanto cualquier punto de la variedad debe brindar
informacién sobre la dimensién de la misma. Esto otorga un argumento sélido para la aplicacién de
PCA local en la estimacién de la dimension, pues una estimacion a diferentes escalas de la variedad
debe corresponder a un mismo valor.

En las situaciones practicas serd necesario tener en cuenta que solo se cuenta con un subconjun-
to de datos de esta variedad, por lo cual solo habra un rango de escalas adecuado para la estimacion
de esta dimension. En este trabajo se propone teniendo en cuenta estas ideas una variante de PCA
local, que se denominard PCA —¢m (PCA local modificado), en la cual se usan familias de subcon-

juntos de M no disyuntos y asi estimar la dimensién aplicando sobre éstos PCA para estimar la

’

dimension. Esta se plantea de la siguiente manera.

Sea M = {y1,...,yp} el conjunto de datos que caen sobre la variedad M
for k=1:1:P —1
for i=1:1:P-k
d(i)= Estimacién Dimensién por PCA de [yi,...,¥itk);
end
df (k)=median(d) ;
end

La salida de este algoritmo entregara un vector df que graficado vs el tamafio de la ventana se
espera tenga distintas regiones planas. Se considerara como el estimado de la dimensién al valor de
ordenada correspondiente a la primera de estas regiones planas, ya que este representa el minimo
valor al cual se estabiliza la dimensién calculada localmente (ver figura [5.1)).
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df

Figura 5.1: Grafica tipica de df vs el tamano de la ventana Wd en la aplicacion de PCA—¢m. La
primera regién plana asociada a la ordenada de valor 2 indica el valor estimado de la dimensién.

Sobre el Nimero de Componentes usadas (;Cuantas Componentes?)

En la presentaciéon de PCA local se mencioné el inconveniente que aun hoy en dia existe para
determinar el nimero de eigenvalores de tal manera que se realice una distincién adecuada entre
ruido e informacién esencial. En este trabajo se propone realizar esta seleccién integrando las ideas
de Jolliffe [46], Lee [58] y Cichoky [77].

Mientras Jolliffe propone por una parte el uso del método grafico para buscar el codo de la
curva de los eigenvalores, Lee y Cichoki presentan el criterio AIC para realizar la distincién entre
ruido e informacién después de la aplicacion de componentes principales. De acuerdo a este criterio
el nimero de componentes que representan la informacién viene dado por el entero n que minimiza,
la funcién

AIC(n) = =2P(m —n)log (p(n)) + 2n(2m — n) (5.26)

siendo m el nimero de eigenvalores obtenidos mediante la aplicacién de componentes principales,
P el nimero de datos u observaciones empleadas para construir la matriz de covarianza y p(n) la

funcion definida como )

(An—l—lAn—i—Q .o )\m) m—n
Mgt + g2 + oo+ A)

p(n) = (5.27)

m—n

vy A; el eigenvalor correspondiente al i—ésimo eigenvector .

La aplicacién de este criterio asume que los vectores de representacién son de media cero y las vari-
ables son independientes e idénticamente distribuidas, que son de acuerdo a Jolliffe y Lee
condiciones asumidas cuando se realiza la aplicacién de PCA sobre un conjunto de datos.

Por otra parte la bisqueda del codo de la curva mencionado por Jolliffe y Lee se basa
principalmente en una observacion grafica de cambios drésticos de pendiente. En este trabajo se
cuantifica esta idea teniendo en cuenta que dicho codo posee una vecindad a su izquierda cuya
pendiente es elevada (en valor absoluto) y una vecindad a su derecha cuya pendiente es casi nula.

Asi, la propuesta de este trabajo se basa en buscar el codo de la curva AIC(n), en caso de
que esta ultima funcién se minimice solo con el nimero total de eigenvalores. En la figura se
muestran dos graficas tipicas de la uncién AIC(n), en donde se evidencia que no siempre se halla
un minimo local en un ntimero menor a la cantidad total de eigenvalores, pero si existen marcados
cambios de comportamiento que son cercanos al de un minimo local. Esta propuesta se describe como
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Figura 5.2: Dos comportamientos tipicos en la curva AIC. Izquierda: Caso en el cual existe un n
que minimiza la funcién AIC(n). Derecha: Caso en el cual el valor minimo de AIC se logra con el
nimero total de eigenvalores, pero existe un marcado cambio de comportamiento con un nimero
menor de los mismos

El condicional presentado en el paso 2 establece como debe ser el cambio de pendiente en el posible
punto donde se encuentra el codo de la curva, y sencillamente establece que se debe pasar de un
valor de pendiente grande (en valor absoluto) a uno pequetio (en valor absoluto).

o~

Los datos de los resultados obtenidos sobre el conjunto Mpgr para el sujeto S055 de la base
de datos Cohn-Kanade m con esta técnica son presentados en la tabla en donde ademads se
encuentran también los estimados por medio de la dimensién de correlacion.

5.6.9. Algunos Resultados Sobre Variedades: Sobre el Teorema de Whitney, un
Nuevo Método para la Estimacion de la Dimension (PCA — w)

El teorema de Whitney , descrito en forma clasica puede expresarse como:

Teorema 2 Toda variedad diferenciable admite un embedding(encajamiento, incrustamiento) pro-
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PCA—(m (M\FSF) (J\7FSF>

5055_01

S0055.02
S0055-03
S0055-04
S0055_05
S0055_06
S0055_all

DO DO DO Wo| DN DO W
WD W NN W W Q.

Cuadro 5.2: Estimacién de la Dimensién de J/\/[\FSF usando PCA —/m (J/\/[\F5F> Y deorr (M\FSF),
para el sujeto S055 de la base de datos Cohn-Kanade [7]

pio suave en RZH1

Y posterior al planteamiento del anterior teorema Whitney demostré un teorema mucho mas fuerte

Teorema 3 Si n > 0 toda variedad suave admite un embedding(encajamiento, incrustamiento)
suave en R?"

En estos resultados se establece que es posible encajar o incrustar una variedad diferenciable de
dimensién n en el espacio R?"+! o0 R?" segiin corresponda. Como se ha comentado anteriormente,
una técnica como PCA no tiene plenas capacidades para desenvolver las variedades formadas por
algunos conjuntos de patrones y realizar un adecuado homeomorfismo del espacio de dimensiones
originales a un espacio de la dimensién intrinseca [58]. Sin embargo, se propone estimar la dimensién
intrinseca de los datos aplicando PCA, de manera que aunque no se asegura la obtencién de la
dimension intrinseca n de la variedad sobre la cual caen los datos, se puede llegar al estimado de la
dimensién del conjunto incrustado en R?"*1 o R?" segiin corresponda.

Acorde a Lee [71], el primero de estos teoremas brinda una respuesta al problema matematico
de cudndo una variedad abstracta es difeomorfa a una subvariedad de un espacio euclidiano y es
suficiente en muchos contextos para la solucién de algunos problemas y la demostracion de otros
resultados tedricos. Mientras que el segundo teorema demostrado ocho anos después, y con el uso de
conceptos y herramientas matematicas mas sofisticadas es un resultado més fuerte con implicaciones
practicas.

En este trabajo se propone una nueva técnica para la estimacién de la dimensién aprovechando
estos resultados tedricos y las dos hipdtesis siguientes:

1. Los vectores descriptores del patron, expresados como vectores de N componentes caen o
hacen parte de una variedad diferenciable de dimensién n < N.

2. Esta variedad sin ruido y sin la redundancia menos intrincada esta incrustada en el espacio
R2",

La primera hipétesis es comin al uso de técnicas de reduccién no lineal [59] [58], v la segunda
asegura que si los datos extraidos representan un determinado patréon que estd asociado a una
variedad de dimensién n, ésta debe estar incrustada en el espacio R?” si el ntimero de componentes
N de los vectores descriptores es N >> n.

La consideracién de esta segunda hipétesis sigue la interpretacion de Lee en [58] del teorema
de Whitney. Este asocia el Teorema al hecho de que se requieren a lo mds 2n dimensiones para
representar la variedad de dimensién n. Adicionalmente este mismo autor en [58] sugiere como un
esquema alternativo para la reduccién de dimensionalidad aplicar primero PCA a los datos y luego
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cualquier técnica de reduccién de dimensionalidad que resulte adecuada dependiendo del tipo de
variedad (en caso de que sea posible extraer algunas conclusiones sobre esta estructura). Esto debido
a que PCA puede ayudar a atenuar ruido estadistico en los datos y a eliminar la redundancia menos
intrincada sin una gran pérdida de informacién, siempre y cuando el nimero de componentes haya
sido seleccionado correctamente [58].

Asi, una vez aplicado PCA se asume que se obtiene un conjunto de datos encajado o incrustado
en R?". Si este no es estrictamente el caso y los datos obtenidos tienen dimensién de 2n — 1 se puede
adicionar un vector de ceros de tal manera que los datos puedan considerarse incrustados en R?".

En resumen esta segunda hipdtesis puede resumirse como

Sea M el conjunto de P vectores de N componentes extraidos para representar un determinado
patron. Si estos datos caen sobre una variedad M de dimension n y N >>n, al estimar la
dimension de M usando PCA, se puede considerar que la dimension estimada corresponde a una
incrustacion o encajamiento de la variedad M en R?™. Es decir la variedad sobre la que recaen los
datos es representada respecto de la dimension n empleando un nimero de variables mayor al
numero mdzimo de variables que se requieren para ello, y el exceso de este numero de variables se
puede eliminar usando PCA

En esta hipotesis se argumenta que N >> n, pero en verdad esta idea es mucho mas especifica y es
posible establecer una relacién entre estas dos cantidades.

Teniendo en cuenta que en la representacién de la variedad se presume que se usan mas variables
que las dadas por el nimero maximo necesario para dicha representaciéon, y que de acuerdo a la
interpretacién de Lee [58] del teorema de Whitney [71] este ntiimero es 2n, la anterior desigualdad se
representa ahora como N > 2n. Por esto es importante contar con una estimacion de la dimension,
que no se requiere sea exacta, pero que brinde una idea de qué tan lejana es la dimensién intrinseca
de la dimensién original de los datos.

Asi, el algoritmo planteado para realizar dicha estimacién es el siguiente

—

1. Sea M el conjunto de datos que caen sobre la variedad M de dimensién n.

2. Se realiza una estimacién de la dimensién usando PCA — ¢m y dimensién de

—

correlacién sobre M y se selecciona este valor como

PCA — ¢m (ﬂ) ¥ deorr (/\7)

n= 5.30

5 (5.30)

3. 8i 2n < N entonces vaya al paso 4, de lo contrario se aborta la
estimacién.

4. Usar PCA sobre el conjunto M\ para estimar su dimensién k € N.

5. Si k=2n con n € N entonces la dimensién estimada es PCA —w (M\) = g,

de lo contrario haga PCA —w (ﬂ) = %

En el paso 3 se pretende establecer si las dimensiones originales de los vectores patrén poseen
un nimero mayor al nimero de 2n de dimensiones que a lo mds se requieren para incrustar la
variedad de dimensién n. Si esto se verifica se procede a aplicar PCA para eliminar el ruido y
la redundancia menos intrincada, de manera que se llega a una representacién usando el ntmero
maximo de variables que se requieren para ello. Para estimar la dimension en el paso 4 se emplea
el criterio basado en AIC presentado en la seccién anterior y usado en PCA—/¢m.
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Figura 5.3: De izquierda a derecha: El rollo suizo, El Toro, La botella de Klein, La banda de Mobius.

PCA—f(m <MF3F) deorr (MFSF) PCA—w (MFSF)
S055_01 3 3 2
S0055_02 2 3 4
S0055_03 2 2 2
S0055_04 3 2 2
S0055_05 2 2 3
S0055_06 2 2 2
S0055_all 2 3 3
Swiss Roll 2 3 2
Klein Bottle | 2 4 2
Torus 2 3 2
Mobius Strip | 2 3 2

Cuadro 5.3: Estimacion de la Dimension de M\FSF usando PCA —/m (M\FSF>, deorr (M\FSF) y
PCA—-w (M\FSF) para el sujeto S055 de la base de datos Cohn-Kanade [7]

Comparacién con Otros Métodos

Se realiza la constrastacion de la dimensién estimada por esta nueva técnica, con la dimensién
de correlacion y con la dimensiéon obtenida por PCA — ¢m. Las pruebas se muestran sobre los

datos M rsF para el sujeto S055 de la base de datos Cohn-Kanade [7] y sobre cuatro variedades
benchmark (ver figura , las cuales estan descritas por una distribucién de 2000 puntos ubicados
aleatoriamente sobre la variedad por medio de una distribucién uniforme. Cada componente de la
descripcién original se contamina con ruido generado por una distribucién uniforme cuya magnitud
varfa entre +£10% de los valores méximos asociados a cada coordenada. Se agregan tres compo-
nentes adicionales de ruido con valores alrededor de 0,01, de manera que la variedad resultante
estd incrustada en RY.

Los resultados obtenidos con esta propuesta para estimar la dimensién, pueden observarse en
la tabla en donde ademés se presentan los valores estimados empleando la dimensién de cor-
relacién. Estos son cercanos a los obtenidos por los otros estimadores de la dimensién, y aprovecha
las ventajas asociadas a PCA, junto con el criterio basado en AIC para la seleccién del ntimero
de componentes. Por esto se pondréa a consideracion el uso de esta técnica a fin de contar con un
estimado adicional de la dimensién intrinseca.
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Otras Estimaciones practicas de la Dimensién

Se han desarrollado diversas propuestas para realizar la estimacién préactica de la dimensién, sin
embargo algunas de ellas aun con muchos aspectos por detallar y mejorar. Una de las mas prom-
etedoras, fué desarrollada por Kegl [74] denominada Packing Numbers, la cual se basa en una
aproximacién de la dimensién de capacidad, similar a la que se realiza para estimar la dimension
de correlacién. Segun los experimentos realizados por Kegl [74] esta técnica muestra una mayor ro-
bustez frente a ciertos niveles de ruido en comparacién con la dimensién de correlacion, sin embargo
su correcto funcionamiento depende de la seleccién de dos parametros, para los cuales no existe un
criterio 6ptimo de seleccién. Esto es particularmente inconveniente si se desea abordar el problema
de una estimacién automaética. Por esta razon no se considerard para este trabajo.

Por otra parte Levina [78] propone el uso del principio de méxima similitud, para analizar las
distancias entre vecinos cercanos, a fin de dar un estimado de la dimensién intrinseca. Esta prop-
uesta es usada en algunas implementaciones [75], sin embargo los resultados obtenidos dependen
fuertemente de algunos parametros para los cuales no existen criterios de seleccion 6ptima, en al
analisis de conjuntos arbitrarios de datos. Por esta razén no se considerara para este trabajo.

Relacién entre Estimaciones Practicas

La primera de las desigualdades presentadas en la seccién , demostrada por Robinson en [72]
relaciona de manera rigurosa la dimensién topoldgica, la dimensién de Hausdorff y la boz-counting
dimension. Sin embargo éstas son de caracter tedrico y no se pueden aplicar directamente para
analizar conjuntos finitos de datos que recaen sobre variedades diferenciales.

La desigualdad propuesta por Lee [58] es un tanto més cercana a la practica ya que estd en
términos de la dimensién de correlacion, para la cual pueden obtenerse valores aproximado. De
acuerdo a esta desigualdad es posible que el valor obtenido para esta dimensién sea menor a la
dimensién topoldgica de la variedad sobre la cual recaen los datos.

Por otra parte, teniendo en cuenta la fundamentaciéon teodrica asociada a PCA —/m que se basa
en analisis local, se cuenta con un valor que no sobreestimard la dimensién de la variedad, de alli que
los resultados experimentales mostrados en la tabla sean semejantes entre si.

De acuerdo a los resultados experimentales es adecuado considerar estas dos técnicas y PCA—w
cuando se requiera un analisis automatico de la dimensién para un conjunto dado de puntos.

5.7. Técnicas Basadas en Preservacion de la Distancia

5.7.1. Distancia Euclidiana

A continuacién se presentan las distintas técnicas cuyo principio es la conservacion de la distancia
euclidiana entre los datos en el espacio original de representacion.

Multidimensional Scaling (MDS)

Existe una gran cantidad de variantes de ésta técnica, pero en este trabajo sélo se discutira la
versién clasica del método [58|. Este puede describirse por medio del siguiente algoritmo [79] [58]

1. 81 Y =[y1,...,yp| es la matriz de N X P dimensiones formada por los datos

M que recaen sobre la variedad M. Se computa la matriz de productos
internos

S=Y'Y (5.31)
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2. Se calcula la descomposicién espectral
S = UAUT (5.32)

siendo U la matriz cuyos vectores columna estan formados por los primeros
n eigenvectores de la matriz S con mayor valor de sus respectivos
eigenvalores, y A la matriz diagonal cuyos elementos son estos
eigenvalores ordenados de mayor a menor valor.

3. La representacién en el espacio n—dimensional se obtiene como

X =L, pA2UT (5.33)

En este trabajo de acuerdo a los esquemas planteados se cuenta con un conjunto de datos M que
recae sobre una variedad; sin embargo en muchas de las aplicaciones de MDS se cuenta inicialmente
con una matriz de distancias Dpyp entre los diferentes puntos, en ese caso el primer paso se
reeplazaria por el siguiente

1. Calcular

1 1 T 1 T 1 T T

en donde 1p representa un vector columna cuyas todas componentes son iguales a 1, este proceso
es conocido como de doble centrado |79] [58].

Asi, MIDS opera preservando los productos internos euclidianos de los vectores de datos rep-
resentativos del patrén, y es equivalente a usar PCA. Por lo tanto se pueden asociar las mismas
ventajas y desventajas que posee esta ultima técnica, como por ejemplo el hecho de que se asume una
relacion lineal entre la informacién original y la informacién resultante [58|, es decir una relacién
lineal entre las variables originales y las variables latentes de la variedad, lo cual resulta a nivel
general altamente insatisfactorio.

Por otra parte esta misma semejanza con PCA posee dos enormes ventajas, es simple y ro-
busto; ademas es el concepto del uso de distancias el que permitié lograr una generalizacion de
MDS conocida como Isomap (se discutird mas adelante) que emplea aproximacién de distancias
geodésicas y no distancias Euclidianas.

Lee [58] realiza pruebas de MDS para las benchmark manifolds: rollo suizo y la caja abierta.
Como se esperaba de una técnica que asume una relacion lineal, los resultados obtenidos no son
satisfactorios pues no se logra una representacion a(ig:uada de estas variedades en dos dimensiones.

Los resultados de emplear esta técnica sobre Mpgr para el sujeto S055 de la base de datos
Cohn-Kanade [7] se pueden apreciar en la tabla alli se muestra la dimensién en la cual se in-
crustan los datos conservando el 98 % de la energia de los eigenvalores y se compara con el estimado
de la dimensién de correlacién (que también puede verse en la tabla [5.1)). Teniendo en cuenta esto
se puede asegurar que un encajamiento en un espacio de menores dimensiones es insatisfactorio
debido a la lejania entre la dimension de correlacion y la dimensién necesario para preservar las
cualidades esenciales de la informacién con esta técnica (e.g 98 %), ya que si bien la aproximacién
de la dimensién de correlacién puede ser un subestimado de la dimension real de la variedad sobre
la cual caen los datos, la diferencia es demasiado grande.

Por estas razones MDS no es atractivo para realizar la reduccion dimensionalidad de los
datos representativos de las expresiones faciales. Sin embargo, acorde a Lee [58| es posible e incluso
conveniente usar PCA-MDS en caso de que la cantidad de datos sea demasiado escasa.

Sammon’s Nonlinear Mapping (NLM)

En el mapeo no lineal de Sammon, se plantea mapear los puntos patrén extraidos del espacio
euclidiano N —dimensional a un espacio euclidiano de dimensién n preservando las distancias por



90 CAPITULO 5. REDUCCION DE DIMENSIONALIDAD

dimensién (> 98 %) | dimcorr (M\ FSF) P
S055_01 5 3 12
S0055.02 | 7 3 25
S0055.03 | 6 2 9
S0055_04 | 4 2 28
S0055.05 | 10 2 45
S0055.06 | 5 2 8
S0055_all | 11 3 127

Cuadro 5.4: BEstimacién de la dimensién usando MDS sobre M rsF para el sujeto S055 de la base
de datos Cohn-Kanade m La dimensién estimada se basa en conservar el 98 % de la energia de los
eigenvalores

medio de la minimizacién de una funcién de estrés definida como 58]

P j—1 .. ..
By =13 (Z (dyi.) — d?c(z,mQ) (5.35)

j=2 \i=1

donde dy(7,7) es la distancia euclidiana entre y; y y; en el espacio N—dimensional, y dx(i,j) es
la distancia euclidiana entre los mapeos de y; y y; en el espacio n—dimensional. La constante c

estd definida como
P /i1
c=Y_ ( dy(i,j)) (5.36)
1

de acuerdo a Lee y Sammon este algoritmo se puede plantear como
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el procedimiento de minimizacién de la funcién de estrés, expresando en el paso 3 es conocido como
Cuasi-Newton [80] [58], y los términos de primera y segunda derivada se calculan como

OENLM B OENLM O0dx(i,7)

Ox;(k) — Odx(i,j) 0x;(k) (5.39)
donde o) " "
x\?,J]) X — Xj
i) dw(in)) (5.40)
de manera que
OENLM (z 7) (xi(k) —x,(k))
oxi(i) e 41
o (1) Z (i J) (541)
J#z
la segunda derivada puede expresarse como
o (B — < 2
Mﬂ __z dx(i,j)  (xi(k) .X.](k)) 5.42)
O (1) N (i)

J#Z

los resultados de aplicar esta técnica a los datos M\ rsr del sujeto S055 de la base de datos Cohn-
Kanade [7] se pueden ver en la figura Cada conjunto de features es representado en un espacio

de dimensién igual a la dimensién estimada 7 = dimcorr (M FSF ).

En la figura se evidencia que en algunos casos de secuencias individuales de datos de ex-
presiones, hay solapamiento de la informacién respecto del espacio dado por la estimacién de la
dimensién de correlacién. Sin embargo cuando se analiza la variedad que incluye todos los compor-
tamientos no hay intersecciones entre las distintas trayectorias que representan los distintos tipos
de expresiones, ya que el espacio en cuestién tiene la dimensiéon mas alta de las estimadas para
cada variedad analizada por expresién. Esto indica que dicho solapamiento se podria atribuir a una
subestimacién de la dimensién.

De acuerdo a la presentacion de estos resultados para los conjuntos de features obtenidos, podria
considerarse que los mismos son satisfactorios, sin embargo Lee analiza en [58] el comportamiento
de esta técnica sobre las variedades rollo suizo y caja abierta obteniendo resultados no satisfacto-
rios respecto de la dimension real de estas variedades. Pues si bien Sammon’s nonlinear mapping
es mas capaz de lidiar con la no linealidad en comparacién de técnicas como PCA y MDS, no es
recomendable si la variedad posee grandes radios de curvatura [58].

Lee menciona en [58] ademds el inconveniente de que a funcién de estrés en la que se basa este
método no se puede garantizar que sea siempre céncava, por lo cual se podria caer en un minimo
local. Esta técnica se comparara con las analizadas en secciones subsiguientes.

Curvilinear Component Analysis (CCA)

De manera similar a NLM, Curvilinear Component Analysis (CCA) se basa en la preservacion de
las distancias por medio de la minimizacién de la funcién de estrés [82] [65] [58]:

N

Booa= 5 3 (dyi. ) — duli )* Fy (d(i. ) (543
i=1
j=1

donde dy (i, j) es la distancia euclidiana entre los puntos y; y y; en el espacio RY y dx(i, j) es la
distancia euclidiana de entre los puntos mapeados en el espacio R™. La funciéon F) es escogida para
preservar prioritariamente las distancias cortas sobre las largas. Consecuentemente F) es selecciona-
da usualmente como una funcién mondtona decreciente de su argumento [82] [65]. Ademds dado
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Figura 5.4: Resultados de aplicar NLM sobre M rsr para el sujeto S055 de la base de datos
Cohn-Kanade [7], empleando la dimensién de correlacién. Algoritmo de Vesanto



5.7. TECNICAS BASADAS EN PRESERVACION DE LA DISTANCIA 93

que el método opera sobre un conjunto finito de datos, esta funcién también es escogida como aco-
tada, de tal manera que no existan problemas para manejar distancias demasiado cortas o incluso
nulas [82]. Lee [58] muestra que esta funcién se selecciona como

_ dx(i,5)
A

F)\ (dx(/l/hy)) =
El método CCA puede describirse como

(5.44)

En el tercer paso se hace referencia a la actualizacién de los valores de a y A. Estos pueden ser
actualizados de distintas maneras, sin embargo Vesanto en [83] ha encontrado adecuado realizar

estas actualizaciones como o

] = Qo (Oé_p) ! (547)

Qo
)\ -1
ImaxP—1
A= Ao ( u ) (5.48)
Ao
paral=1,..., gmsP. En particular, en se muestra que se encuentran resultados satisfactorios

para una gran variedad de problemas seleccionando ag = 0,5, ar = {3, Ao = max{3ady(z j)}

tomando las desviaciones correspondientes a las distancias finitas y Ap = 0,01. Donde g3 es el
numero maximo de iteraciones o épocas.

En el paso 4 se plantean las ecuaciones de actuahzamon para cada uno de los puntos x;. Estas
se basan en un planteamiento propuesto en . La idea basica es realizar la minimizacién de
la funcién de estrés usando el método de descenso por el gradiente. Para esto se usa la derivada de
la funcién de estrés respecto de cada una de las coordenadas de los puntos en el espacio R™:

_ O0FEcca  O0FEcca 0Odx / x;(k) —x;(k)
VxEcca = oxi(h) ~ ody Ok Z (2F,\(d ) — (dy dx)F,\(dx)> i

(5.49)

J=1



94 CAPITULO 5. REDUCCION DE DIMENSIONALIDAD

de manera que la actualizacién de cada uno de los x; usando descenso por el gradiente, se da de la
siguiente forma
X; < X; — aniECCA (550)

siendo « una tasa positiva de aprendizaje seleccionada teniendo en cuenta las condiciones de Robins-
Monro [58]. Demartines demostré en [82] [65] que esta actualizacién posefa algunos inconvenientes
asociados al estancamiento en minimos locales, por lo cual propuso realizar dicho proceso desacop-
lando la informacion de la funcién de estrés. Esto se hace teniendo en cuenta que:

P
Ecca = ZEg)CA (5.51)
=1
donde
1 & )
Bta =3 Z du(i, 1)) Fi (dx (i, ))) (5.52)

=1

asi en el nuevo procedimiento se reahza la actualizacién en todos los x; para cada i como:
Xi — X5
dx (i, j)

es decir primero se actualizan todos los x; para ¢ = 1, luego se realiza la actualizacién de todos los
x; para ¢ = 2 y asi sucesivamente. El término §(i, j) se define como

Bi.5) = (dy — dx) (2FA(dx) = (dy — ds) Fi (d) ) (5.54)

Xj ¢ Xj — anjE(Ci)CA =x; — af(i,5) (5.53)

los resultados de aplicar esta técnica a los datos M rsr del sujeto SO55 de la base de datos Cohn-
Kanade [7] se pueden ver en la figura cada conjunto de features es representado en un espacio

de dimensién igual a la dimension estimada n = dimeopr (/\/l FSF). Como se evidencia en esta

grafica hay solapamiento de la informacién en el espacio respecto al cual se ha dado la reduccién
de dimensionalidad aunque esto también puede deberse al igual que en el método anterior a una
subestimacién de la dimension en el calculo de la dimensién de correlacién ya que cuando se analiza
toda la informacion como parte de una sola variedad la dimensién estimada es de tres, y alli no se
evidencia solapamiento.

Lee 58] analiza el comportamiento de CCA aplicandolo sobre las variedades rollo suizo 'y ca-
ja abierta, encontrando resultados superiores a los obtenidos con NLM. Ademés de ésto Lee [58]
muestra que CCA trata de estirar la variedad en casos en los que NLM la aplasta superponiendo
la informacién.

Desde el punto de vista computacional, CCA muestra ser mucho mas rapido que NLM, sin
embargo con la desventaja de que en CCA hay una gran dificultad para interpretar el error puesto
que la funcién F) estd cambiando en el proceso de iteracién y el hecho de que el proceso de con-
vergencia depende fuertemente de la actualizacion de a y A. Esta técnica se comparara con otras
técnicas que se presentaran mas adelante.

5.7.2. Técnicas Basadas en Distancias de Grafo

A continuacién se presentan las técnicas de conservacién de la distancia en donde se emplean
aproximaciones de geodésicas por medio de las distancias de grafo.

Isometric Mapping (Isomap)

Isomap es una técnica basada en MDS pero en la cual se usan aproximaciones de las geodésicas
que unen los datos que recaen sobre la variedad M, por medio de distancias de grafo [84] [58]. Asi,
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el manejo de la no linealidad usando Isomap reside tnicamente en el hecho de emplear aproxi-
maciones de distancias geodésicas. Acorde a Lee [58] y Tenenbaum [84] este procedimiento puede
describirse como

1. Construya un grafo en el espacio R con los puntos Y =[y;...,yp|.

2. Asigne a cada arista del grafo un peso dado por la distancia euclidiana
entre los vértices del mismo.

3. Se calculan las distancias de grafo entre los puntos del mismo, por
ejemplo usando el algoritmo de Dijkstra, y se almacenan en la matriz D.

2

4. Realice doble centrado sobre la matriz ]~), siendo ]~)ij = Dij, obteniendo la

matriz S.

5. Se realiza la descomposicidén espectral
S =UAUT (GE55)

siendo U la matriz cuyos vectores columna estdn formados por los primeros
n eigenvectores de la matriz S con mayor valor de sus respectivos
eigenvalores, y A la matriz diagonal cuyos elementos son estos
eigenvalores ordenados de mayor a menor valor.

5. Finalmente se computa la representacién en el espacio n—dimensional como

X = I, pA2UT (5.56)

Para conocer el efecto de tomar un nimero n de eigenvectores, o estimar la dimensién intrinseca de
la variedad se analiza la varianza residual por medio de la ecuacién [84] [58]

o =1—13 (dx(i,j), fi?) (5.57)

siendo 7;; el coeficiente de correlacién sobre los indices i y j, y Lif la distancia de grafo entre y;
y yj. Para identificar la dimensién de los datos se realiza un andlisis similar al que se hace para
encontrar la dimension intrinseca usando PCA, es decir se busca graficamente donde se ubica un
punto de la grafica a cuya derecha se encuentre una region casi plana y a la izquierda una regién de
elevada pendiente (en valor absoluto), ordenando las varianzas de mayor a menor [58| [84]. Lee [58] y
Jolliffe [46] llaman a esto el codo de la curva, este procedimiento se puede apreciar en la presentacion
de PCA—{m (ver seccién en donde se emplea para la seleccién del niimero de componentes
a fin de estimar correctamente la dimensién intrinseca.

Isomap muestra ser de acuerdo a los andlisis realizados por Lee en [58] y a parte de los resultados
experimentales de Ping en [57], una técnica més poderosa para manejar la no linealidad que las técni-
cas que se han presgzltado anteriormente. Sin embargo, Isomap solo tiene su mejor comportamiento
cuando los datos M que representan el patrén caen o hacen parte de una variedad desarrollable
M, y ademés de ello existe una isometria entre M y un espacio euclidiano convexo [58] [59] [84].
Es decir, sea L§f la distancia geodésica sobre M de dimensién n, encajada en RV entre los puntos
Yi V¥, ysea & CR" convexo de dimensién n tal que x;,x; € £ son los puntos asociados a y; y y;
por medio de Isomap respectivamente, dy (i, j) es la distancia euclidiana entre los puntos x; y x;.
Se dice que Isomap permite recuperar la estructura original de los datos si AC' € R tal que

Ly] = Cdy(i,j) Vi, j (5.58)

Por otra parte, Bernstein muestra en [85] que a pesar del cumplimiento de las anteriores condi-
ciones para asegurar un buen comportamiento de Isomap, debe considerarse la calidad de la aprox-
imacién de las distancias geodésicas por medio de las distancias de grafo. Berstein [85] demuestra
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Figura 5.6: Gréfica para encontrar el valor éptimo de K propuesta por Shao [86] para los datos

Mpgr del sujeto S055 de la base de datos Cohn-Kanade [7] construyendo el grafo a partir de
distancias euclidianas, el valor éptimo seria de 12

que la curvatura de la variedad sobre la cual se asume que caen los datos patrén juega un papel
importante para establecer la calidad de esta aproximacién y adicionalmente la densidad de los
datos también juega un papel fundamental.

A partir de este dltimo argumento y a los andlisis hechos por Lee en [58] se concluye que seria
seriamente cuestionable emplear Isomap para una cantidad reducida de datos.

Por esto, se pondra a consideracion el uso de Isomap realizando su aplicacién asumiendo que
las variedades Mpgp, Mpst, Mprrp, Mperr, Mprs sobre las cuales recaen los datos patrén, estan
constituidas por todas las expresiones de un determinado individuo para garantizar una mayor can-
tidad de datos y con ello una posible mayor densidad de los mismos.

Otro aspecto a mencionar de suma importancia es la seleccién de los pardmetros para la con-
struccion de los grafos, en concreto el valor K que define la construccion del grafo por medio de los
K —vecinos. Aunque algunos autores como Lee [58] proponen realizar una sintonizacion empirica de
este valor observando los resultados, Shao propone en [86] una alternativa més rigurosa para esta
seleccién, teniendo en cuenta las caracteristicas de los datos a tratar sin realizar el mapeo al espacio
de la dimensién estimada. Sea D) la matriz en donde se almacenan las distancias de grafo, para
un grafo construido con una valor de K empleando la técnica de los K —vecinos, Shao [86] propone

analizar la funcién
P

f(K) =" DM (i,j) (5.59)

ij=1

y encontrar en ella el punto donde se registre un descenso abrupto en el comportamiento de f(K).
Esta gréfica se presenta por practicidad desde el primer valor de K donde f(K) alcanza su méximo
global. En la figura[5.6]se muestra el valor de K 6ptimo para la construccién del grafo empleando los

datos M pgp para todas las expresiones faciales del sujeto S055 de la base de datos Cohn-Kanade [7].
Para realizar este cdlculo de manera automatica se adopta un procedimiento similar al empleado en
la buisqueda del codo de la curva empleado en PCA., pero con modificaciones respecto a los cambios
de pendiente.

Entonces, para realizar la ubicacién sistemética de este punto en el grafico de f(K) vs K se
emplea el siguiente algoritmo

Sea () el maximo tamafio de vecindad considerado, si no existe un estimado se
puede hacer (Q = P.

1. for ii=Kppa, +1:1:0-1
it ({5 + 1) — f(0)| - |£(8) — fii—1)] > 0

foli) = |[f (@i + 1) = f(id)| = [f (@) = f(ii = 1) (5.60)
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end
end

el 8 ) =
2. Se busca el il = fiy, en el cual fy(ii) alcanza su valor maximo.

3. Se calcula el valor 6ptimo de K como K = iimay

siendo K = Kjfpq, el valor en el cual f(K) alcanza su maximo global.

como se aprecia en este algoritmo los cambios de pendiente en donde se considera que se puede
asociar el valor 6ptimo de K, seran los puntos cuya vecindad derecha tenga una gran pendiente (en
valor absoluto) mientras que la izquierda una pendiente pequena (en valor absoluto).

En las figura se aprecian los resultados de emplear Isomap sobre la variedad M FSF para
el sujeto S055 de la base de datos Cohn-Kanade [7] visualizando los datos en 2 o 3 dimensiones
dependiendo del comportamiento de la varianza.

Isomap se comparard con las demas técnicas empleadas para la reduccién de dimensionalidad.

Supervised Isomap (s—Isomap)

Geng propone en [87] una variante de Isomap denominada Supervised Isomap en la cual se busca
principalmente reducir la sensitividad de Isomap al ruido, y brindar ventajas para fines de clasifi-
cacién. La propuesta de Geng se basa en realizar esta mejora empleando una matriz de disimilaridad
en la construccién del grafo teniendo en cuenta la clase o categoria a la que pertenecen los datos [87].
Sea dy (i, ) la distancia euclidiana entre los puntos y; y y; que caen o hacen parte de la variedad
M. Se representaran como %, 6 =1,2,... las distintas clases a las que pertenecen los datos. La
matriz de disimilaridad propuesta por Geng se define como [87]

_dgGg) [ d5(.0) / _d5 (i)
1—e 8 Sioyiyjea N e P —a>V1-e 7
\/ a2 (i.j) \/ 02 (3.5) rET o —
-5 B (4,9) dy (i,4)
e B —at+\l-e B . dylvd) _ %
2 Si yi,yj € N e A —a<Vl1l—e &

d2 (i,)

a3 (i) \/ 43 i) \/ d3 (i.4)
e P —a Si yiedyyjeay N\ l—e 7 <Ve 7 —

@
\/ 2 (i.5) \/ d2(i.5) = ——
_ (4,7) dg (4,5)
B — 1— B . y _ %
\ : a+2 . Si Yz‘e%',yg'eﬂfb AN Ve 7 —a>Vli-e B
(5.61)
Siendo f seleccionada como el promedio de las distancias euclidianas dy (i, j) y a una constante

seleccionada con un valor cercano a 0,5. De acuerdo a Geng [87] el uso de esta matriz en lugar de
la matriz de distancias euclidianas presenta tres grandes ventajas

D(yi,y;) =

% Cuando la distancia Euclidiana entre dos puntos de la variedad es cero o cercana a ser cero, la
disimilaridad entre elementos de diferente clase (interclase) es mayor a la disimilaridad entre
elementos de la misma clase (intraclase), lo cual permite lograr diferenciacién geométrica entre
secuencias de datos de distinta naturaleza sobre una misma variedad.

% Cada funcién de disimilaridad es mondtona creciente respecto a la distancia euclidiana lo que
permite conservar las cualidades esenciales de la informacién, es decir su estructura geométrica
esencial se preserva.

% Dado que la disimilaridad interclase es > 1 — « y la disimilaridad intraclase es < 1 es posible
analizar sin mayores inconvenientes datos con niveles de ruido dentro de rangos més amplios
que con Isomap original.
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Figura 5.7: Resultados de aplicar Isomap sobre M FsF para el sujeto S055 de la base de datos Cohn-
Kanade [7], usando K = 12 seleccionado con el criterio asociado a f(K). Algoritmo de Tenenbaum

[84]
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% Con el crecimiento de la distancia ecuclidiana la disimilaridad interclase aumenta mucho méas
rapido que la disimilaridad intraclase, Geng describe este aspecto como una capacidad de
9D (yi,y;) para distinguir entre la informacién y el ruido.

Teniendo en cuenta estas caracteristicas, es claro que esta nueva version de Isomap es mucho
mas robusta frente al ruido que la versién original, y esto brinda ventajas tanto para fines de vi-
sualizacién como de clasificacién. Ping [57] obtiene resultados altamente satisfactorios para fines
de clasificacién empleando s—Isomap en conjuntos de expresiones faciales obtenidos de la base de
datos Cohn-Kanade [7]. Este algoritmo puede presentarse como

1. Construya un grafo en el espacio RY con los puntos Y =[y;...,yp]-

2. Asigne a cada arista del grafo un peso dado por la matriz de
disimilaridad @(yi,yj) correspondiente a los vértices del mismo. Esta
matriz se calcula empleando la ecuacién [5.61]

3. Se calculan las distancias de grafo entre los puntos del mismo, por
ejemplo usando el algoritmo de Dijkstra, y se almacenan en la matriz D.

2

i obteniendo la

4. Realice doble centrado sobre la matriz f), siendo f)ij =D
matriz S.

5. Se realiza la descomposicién espectral
S = UAUT (5.62)

siendo U la matriz cuyos vectores columna estan formados por los primeros
n eigenvectores de la matriz S con mayor valor de sus respectivos
eigenvalores, y A la matriz diagonal cuyos elementos son estos
eigenvalores ordenados de mayor a menor valor.

5. Finalmente se computa la representacién en el espacio n—dimensional como

X = I, pAzUT (5.63)

Geng [87] compara s—Isomap con Isomap y otras de sus variantes encontrando resultados muy
superiores para los propédsitos de visualizacién. Adicionalmente Geng [87] demuestra que s—Isomap
es una técnica robusta para fines de clasificacion, de hecho ésta muestra ser ligeramente mas robusta
dentro de los experimentos realizados que otras técnicas de clasificacién ya consolidadas como SVM
(support vector machines).

Los resultados de aplicar s—Isomap a M rsr empleando la totalidad de las expresiones para
el sujeto S055 de la base de datos Cohn-Kanade [7] se pueden apreciar en la grafica [5.8 usando los
pardmetros o = 0,5, K = 11, en donde K se seleccioné siguiendo el procedimiento propuesto por
Shao [86]. Teniendo en cuenta todos estos argumentos sobre s—Isomap, y los resultados obtenidos
sobre Mpgp, resulta evidente su ventaja para aplicaciones de reduccién de dimensionalidad, ésta
se comparara con las demas técnicas presentadas.

Geodesic NLM(GNLM)

GNLM se basa en la minimizacién de la funcién de estrés de Sammon presentada en la seccién
5.7.1) pero emplea la aproximacién de las distancias geodésicas en el espacio original en el cual se
encuentran los datos [58]. De esta manera la funcién de estrés para esta técnica puede expresarse
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Figura 5.8: Resultados de aplicar s—Isomap sobre la variedad M rsr para el sujeto S055 de la base
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Geng-Tenebaum
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como

(5.64)

Eeneim = - SIS

yJ
7j=2 \ i=1 Lyi

. >y . .. . . - 'on .
siendo L3, la aproximacién de la distancia geodésica sobre M entre los puntos y;,y; € M por medio
de las distancia de grafo, y al igual que en secciones anteriores dy(7,j) es la distancia euclidiana
entre los mapeos de los puntos y;,y; al espacio de dimensién intrinseca. La constante c se calcula

Ccomo
P o/i-1
c=Y_ ( ry ) (5.65)
1

j=2 \i=

Al igual que en Isomap, la construccién de un grafo involucra el problema de seleccionar un
valor de 6ptimo de K en la regla de los K —vecinos. Dado que la propuesta de Shao [86] menciona-
da anteriormente hace referencia a la calidad de la aproximacién de las distancias geodésicas sin
necesidad de involucrar el mapeo o encajamiento en el espacio de dimensién intrinseca, se propone
emplear esta misma regla para dicha seleccién.

El procedimiento de optimizacién asociado sigue siendo idéntico al asociado a NLM, de manera
que el algoritmo que describe esta técnica se puede presentar como

Lee menciona como una desventaja de la técnica el problema de la seleccién del valor 6ptimo
de K — en la construccién del grafo y la dependencia de la técnica de los valores de otros parametros
como «. Sin embargo, al tener en cuenta la propuesta de Shao para conocer el valor éptimo de
K, el primer aspecto deja de ser un problema y solo queda por analizar el comportamiento depen-
diente de o que de acuerdo a Vesanto puede seleccionarse con un valor de 0,5 de tal manera
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que se obtengan resultados satisfactorios para amplias variedades de datos.
Otras limitantes de GNLM estan relacionadas, al igual que en Isomap, con la calidad de
aproximacion las distancias geodésicas sobre la variedad M por medio de las distancias de grafo,

descritas a partir de los datos M. Como se mencioné anteriormente Bernstein en [85] demostré que
tanto la densidad de los datos como el radio de curvatura de la variedad sobre la cual caen éstos,
afecta de manera significativa la calidad de la aproximacién de las distancias geodésicas dadas por
las distancias de grafo. Por ello aplicar esta técnica a conjuntos reducidos de datos seria bastante
cuestionable.

Por otra parte GNLM tiene la ventaja de manejar la no linealidad por medio de las distancias
de grafo como lo hace Isomap y ademads por medio de la minimizaciéon de una funcién de estrés. Lee
en [58| realiza pruebas con esta técnica sobre las variedades rollo suizo y caja abierta obteniendo
resultados altamente satisfactorios, y por supuesto GNLM tiene un mejor comportamiento que
Isomap para variedades que no son desarrollables, pues no tiene restricciones al respecto.

Considerando las enormes ventajas que representd para el uso de Isomap, la introduccién por
parte de Geng [87] de una matriz de disimilaridad en el manejo del ruido en la construccién del
grafo, se propone usar una nueva version de GINLM denominada s—GINLM en donde se emplea
esta matriz de disimilaridad para la construccién de este grafo. En teoria esto permitirda manejar
mayores niveles de ruido y evidenciar mejorias como las que se logran en s—Isomap. Entonces el
procedimiento asociado a s—GINLM puede describirse como

1. Construya un grafo en el espacio RY con los puntos Y =[y1...,yp|-

2. Asigne a cada arista del grafo un peso dado por la matriz de
disimilaridad ’}D(yi,yj) entre los vértices del mismo, esta matriz se
calcula empleando la ecuacién [5.61]

3. Se calculan las distancias de grafo entre los puntos del mismo, por
ejemplo usando el algoritmo de Dijkstra, y se almacenan en la matriz D.

4. Se inicializan los puntos X; en el espacio n—dimensional, esta
inicializacién puede ser aleatoria, o aplicando PCA y tomando los
primeros n eigenvectores de acuerdo a la energia asociada a sus
autovalores.

5. Se actualiza

9EGNLM
ox; (k)

?EgNrm
0% (k)2

x;(k) +— x;(k) — « (5.68)

donde de acuerdo con Sammon [80] el valor de a se puede asignar cercano
al intervalo entre 0,3 y 0,4.

6. Se computa

(5.69)

Eonim = - Z Z

y7
=2 =1 Ly¢

5. Si Fgnrim < Aerr se termina el proceso, de lo contrario se regresa al
paso 3. Donde A, es el limite del error deseado.

En la ﬁgura se muestran los resultados de aplicar GNLM y s—GINLM sobre el conjunto M FSF
para el sujeto S055 de la base de datos Cohn-Kanade [7] empleando la totalidad de las expresiones,
y como puede verse los resultados son altamente satisfactorios para s—GINLM, pues se logra una
separacion entre los flujos de informacion correspondientes a cada expresion, sin solapamientos.
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Figura 5.9: Resultados de aplicar GNLM y s—GNLM sobre M rsF, empleando la dimensién de
correlacién. Con K = 12,11 respectivamente, seleccionado con el criterio asociado a f(K)
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Son enormes las fortalezas de s—GNLM al permitir manejar mayores niveles de ruido de los
que se pueden manejar con GNLM, y ademds las ventajas de GNLM en si mismo permiten dar
como una excelente opcién para su aplicacién en el analisis del comportamiento dindmico de las
expresiones faciales. Esta técnica se contrastard con otras técnicas presentadas.

Curvilinear distance Analysis (CDA)

Lee [88] presenta CDA como una version mejorada de CCA en donde se emplea la aproxi-
macién de las distancias geodésicas en el espacio en el cual se encuentran los datos en la funcion
de estrés correspondiente a CCA.. De esta manera la funcion de estrés asociada a CDA se escribe

como ) ,
Eopa =53 (¥ = (i) Fi (dx(i.)) (5.70)

i=1

j=1

y el proceso de actualizacién se realiza de la misma manera que se plante6 para CCA. Teniendo en
cuenta eso, el algoritmo para CDA se presenta como

En el paso 6 la actualizacién se realiza igual que en CCA, empleando las ecuaciones [5.53| y
En tanto los valores de «, A se actualizan empleando y[5.48] Este planteamiento de CDA
se basa en las ideas originales del método publicado en el ano 2000 . No obstante Lee propone
en (afio 2007) algunos cambios respecto de la actualizacién e inicializacién del valor de A par-
tiendo de una versién modificada de CCA propuesta por Demartines en la que se asocia a
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CCA una funcién de estrés para comportamiento local y otra para comportamiento global [58]. En
este trabajo no se adopta este dltimo enfoque, ya que no se introducen cambios sustanciales en la
técnica.

Teniendo en cuenta que en esta técnica se requiere de la construccién de un grafo y de la aprox-
imacion de las distancias geodésicas sobre el mismo, CDA podria poseer limitaciones similares a las
asociadas inicialmente a Isomap y GINLM respecto de la calidad de aproximacién de las geodésicas
por medio de las distancias de grafo. Por lo tanto es una técnica inadecuada si se cuenta con una
baja cantidad y densidad de datos, y adicionalmente existe una dependencia del radio de curvatura
de la variedad sobre la cual caen los datos patrén.

Su similaridad con GNLM e Isomap permite adecuar el planteamiento de Geng [87] a CDA
como se hizo para presentar s—GINLM. Por ello, en este trabajo se propone construir el grafo
empleando la matriz de disimilaridad creada por Geng para s—Isomap, de esta manera resulta el
algoritmo que se denominara en adelante s—CDA, el cual describe como

1. Construya un grafo en el espacio RY con los puntos Y =[y1...,yp|-

2. Asigne a cada arista del grafo un peso dado por la matriz de
disimilaridad C‘D(yi,yj) entre los vértices del mismo, esta matriz se
calcula empleando la ecuacién [5.61].

3. Se calculan las distancias de grafo entre los puntos del mismo, por
ejemplo usando el algoritmo de Dijkstra, y se almacenan en la matriz D.

4. Se inicializan las coordenadas en el espacio n—dimensional de todos
los puntos X; ya sea aleatoriamente o usando PCA. Se hace g=1 (q es el
nimero de época o iteraciém).

5. Se actualiza el valor de a y A para el nimero de época q.

6. Se selecciona un punto X; y se actualizan los demds acorde a

for i=1:1:P
Xj & X — anngDA
LN X Xy
— x5 — aﬂ(z,j)—d i j; (5.73)
(5.74)
end

7. Retorne al paso 4 hasta que cada punto x; haya sido seleccionado al menos
una vez por época.

8. Incremente el valor de ¢, y si la convergencia no se ha logrado retorne
al paso 3.

Al igual que en GNLM y s—GNLM la seleccién del valor del K 6ptimo para la construccion
del grafo empleando la regla de los K —vecinos se hace usando la propuesta de Shao [86] por las
mismas razones expuestas en la presentacion de GNLM y s—GINLM. Los resultados de aplicar

CDA y s—CDA sobre el conjunto M pgr para el sujeto S055 de la base de datos Cohn-Kanade [7]
se evidencian en la figura[5.10, y como puede verse también los resultados obtenidos son altamente
satisfactorios pues se logra una separacién interclase sin solapamiento, y se aprecia una gran similitud
entre éstos y los obtenidos usando s—GNLM.

Esta técnica se contrastara con otras técnicas presentadas.
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108 CAPITULO 5. REDUCCION DE DIMENSIONALIDAD

5.7.3. Otras Técnicas

Una técnica sobre la cual se han realizado un nimero considerable de aportes es, KPCA (Kernel
PCA). A pesar de su sélida fundamentacién matemadtica y de su potencial capacidad para el manejo
de datos que hagan parte de variedades altamente no lineales, posee un serio talén de aquiles para
enfrentar problemas con datos de naturaleza arbitraria, la seleccién del kernel [90] [58]. Acorde a
Lee [58] no hay una estrategia clara y consolidada, por el momento, para seleccionar este Kernel a
fin de tratar conjuntos arbitrarios de datos. Por estas razones no se empleara esta técnica, pero la
misma puede representar para futuro una estrategia valiosa.

Otra técnica destacada, es SDE (semidefinite embedding). Una fuerte desventaja de este método
es la ausencia de un criterio para la determinacién del valor de K en la construccién del grafo
empleando los K —vecinos, ya que en esta seleccién juega un papel la isometria local que busca
garantizar este método. Por lo tanto, la propuesta de Shao [86] no seria pertinente para aplicarse,
porque hace alusién a la calidad de la aproximacion de las distancias geodésicas y no a qué tan
bien se estd preservando dicha isometria local. Sumado a esto, se tiene que incluso para conjuntos
pequenos de datos, pero con grandes dimensiones una seleccién satisfactoria por sintonizacién de
K puede implicar un exagerado costo computacional [58]. Por estas razones no se empleard SDE
en este trabajo, aunque puede ser una alternativa acorde a los andlisis realizados por Lee en [58],
valiosa para ser explorada en trabajos futuros cuando se hayan realizado mejoras a la misma.

Grimes desarrolla en [59] una variante de Isomap denominada Piecewise Isomap en la cual la
idea es la aplicacién de Isomap a nivel local para lograr tratar con mayor éxito los comportamientos
locales y ensamblar todas las incrustaciones al final en un resusltado global. Sin embargo esta misma
propiedad es recogida en HLLE, y aunque se aprovecha el comportamiento local de la variedad,
Isomap es cuestionable para conjuntos reducidos de datos lo cual puede poner muy en duda los
resultados obtenidos.

5.8. Técnicas Basadas en Preservacion de la Topologia

A continuacién se presentan y discuten las técnicas basadas en preservacion de las propiedades
topoldgicas de las variedad sobre la cual recaen los datos patron.

5.8.1. Reticula definida por Datos

En esta seccién se presentan las técnicas de preservacion de la topologia méas usadas para realizar la
reduccién de dimensionalidad, usando la contruccién de una reticula de acuerdo al comportamiento
de los datos sin restricciones anteriores al uso de los mismos.

Locally Linear Embedding (LLE)

LLE se plantea como un método de preservacion de la topologia por medio de la conservacion de
los dngulos a nivel local usando mapeos conformes |91] [92]. Este puede presentarse como

1. for i=1:1:P

e Encuentre los K— vecinos mis cercanos de y;

e Calcule la matriz G; como

Gi(r,s) = (yi —v)" (yi — vs) (5.75)

siendo v, el r—ésimo vecino de y;
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La deduccion de las ecuaciones empleadas esta relacionada en primera instancia con la minimizacion
de

2
P

EW) =) llyi— > W(.jy; (5.79)

i=1 JEK(2)

siendo K (i) el conjunto de K —vecinos de y;. Esta ecuacién representa una medida del error asociado
a qué tan parecido es y; respecto a sus K —vecinos, por lo cual al minimizar £(W) se espera encontrar
los valores W (i, j) que representen a nivel de estos K —vecinos las propiedades de la variedad sobre
la cual recaen los datos patréon . Esta minimizacién se realiza teniendo en cuenta que

= W(i,j) =0siy; yy; noson K—vecinos.
P ..
" Zj:l W(i,j) =1

Los valores de W asociados a un determinado punto, tienen la propiedad de ser invariantes a
transformaciones afines; de manera que éstos solo representan propiedades geométricas intrinsecas
de la variedad .

Ahora, empleando los valores de W se minimiza la funcién

2
P

® (f{) =S k- Y W) (5.80)
)

i=1 JEK(i

en este caso se busca encontrar los puntos X; que minimicen la funcién ® (X) teniendo en cuenta

las propiedades geométricas esenciales de la variedad, sintetizadas en los coeficientes W (¢, 5) [91].
Para realizar la minimizacién de estas funciones se hace primero un calculo directo para los
valores de W teniendo en cuenta que el aporte de un punto y; a la funcién de error £(W) se puede
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escribir como [92]

2
W) =lyi— 3 Wiy, (5.81)
JEK(i)
que puede ser reformulado como [58]
K 2 K 2 K
Ei(wi) = |lyi = > _wilr)v(r)|| =D wi(r) (yi —v(r)| = Y wilr)wi(s)Gi(r,s)  (5.82)
r=1 r=1 r,s=1

de manera que los valores de w;(r) pueden ser hallados asi [91] [92] [58]

i) — 21 (G
' Zv{,(szl (Gi_l)r,s

En ocasiones la matriz G obtenida es singular o mal condicionada, por lo cual debe aplicarse el
proceso de regularizacién empleando la ecuacion [5.76
Una vez se cuenta con los valores de W y teniendo en cuenta que w; representa las entradas no

(5.83)

nulas del renglén i de la matriz W, se puede proceder a la minimizacién de ® (ﬁ) considerando
que [91] [92]:

P 2 2,
o (X) =Y - X W% =D | D W) Gi—%)|| = Y M(i.) (]%)
JEK(4)

i=1 JEK (i) i=1 ij=1
(5.84)
de manera que los valores por determinar M(i, j) corresponden a la matriz
M=I-W) (1-W) (5.85)

LLE aprovecha propiedades de tipo local para lograr la reduccion de dimensionalidad, por lo
cual es una técnica que aprovecha los conceptos esenciales de variedades para preservar la topologia.
Ademids de ello, su fundamentacion tedrica es muy soélida lo cual la convierte en una técnica con
grandes atractivos; pero aun asi posee una seria desventaja para el analisis automéatico de datos
arbitrarios, la variabilidad de comportamiento respecto a K y A [58] [92]. Lee demuestra en [5§]
que la seleccién de éstos parametros debe sintonizarse cuidadosamente para obtener resultados
satisfactorios, no existiendo por el momento criterios para la seleccién 6ptima de los mismos; y de
hecho pueden obtenerse representaciones totalmente distintas para valores de pardmetros cercanos
entre si. Este mismo comportamiento se evidencia en la figura[5.11] en donde para un valor dado de
A se llega a representaciones muy distintas usando diferentes valores de K.

Teniendo en cuenta estos dos ltimos aspectos, en este trabajo se reconoce el potencial de esta
técnica pero no se usard ya que el andlisis que se haga para un tipo particular de informacion, a fin
de seleccionar los parametros, no sera de utilidad para conjll\ntos de datos arbitrarios.

Los resultados de emplear esta técnica sobre los datos M pgp para al sujeto SO55 de la base de
datos Cohn-Kanade [7] se pueden apreciar en la figura para distintos valores de K. Se observa
el comportamiento de la reduccién de dimensionalidad que es extremadamente sensible con relacion
a los cambios en K.

Laplacian Eigenmaps (LE)

Laplacian Eigenmaps se basa en la hipdtesis central de que los datos patrén a los cuales se les
va a aplicar reduccién de dimensionalidad caen o hacen parte de una variedad Riemanniana [62].
A partir de esto se emplea la adaptacién o aproximacién del operador de Laplace-Beltrami en la
variedad, sobre grafos [62] [58]. El algoritmo de este método puede presentarse como [62]
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En el paso 4 en donde se soluciona el problema generalizado de eigenvalores y eigenvectores es
posible realizar, si se desea, una normalizacién de L [58], como

L' =D :LD 2 (5.91)

, , . . ’ .
y asi el problema se trasladaria al de hallar los eigenvalores y eigenvetores de L', teniendo en cuenta
que los eigenvalores son los mismos que los del problema generalizado y los nuevos eigenvectores u;
guardan la siguiente relacién con los originales [58]

u! = Daf; (5.92)

Lee en v Belkin en muestran que el valor de los parametros ¢ en el kernel de la funcién
empleada en la construccién del grafo y el valor de K empleado en la regla de los K —vecinos juega
un papel dramético en los resultados de la reduccién de la dimensionalidad. Actualmente no existen
procedimientos o reglas que permitan seleccionar un valor éptimo para los mismos, y ésta selecciéon
debe hacerse por sintonizacién .

Por otra parte, Lee también demuestra que el planteamiento de LE puede reformularse de
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manera equivalente al de minimizar la funcién de estrés

P
1 .
Bip =5 > Wi, ) % — x4 (5.93)
ij=1

la cual evidencia minimizacién de distancias entre vecinos, que puede conducir a comprimir ex-
cesivamente los datos llevando a encajamientos pobres, pero esto a su vez convierte esta técnica
en conveniente para clustering de datos [58] [62]. Estos aspectos convierten a LE en una técnica
con una fundamentacién que permitiria abrir nuevas rutas en la investigaciéon sobre reduccién de
dimensionalidad, pero altamente inadecuada. Ademds en la figura [5.12] se evidencian los pobres
resultados obtenidos con los datos empleados en este trabajo asociados a la variedad Mpgp para
el sujeto S055 de la base de datos Cohn-Kanade |[7].

Adicionalmente, un aspecto esencial encontrado por Lee [58] en esta técnica es que LE tiende
a curvar la variedad en el espacio de dimensién intrinseca, lo que produce fuertes cuestionamientos
sobre la misma.

Con todos estos argumentos, en este trabajo no se empleara LE. Los resultados de aplicar
esta técnica al conjunto M pgp para el sujeto S055 se pueden apreciar en la figura €omo se ve
los resultados no son satisfactorios.

Hessian Eigenmaps (HLLE)

Donoho y Grimes en [59] [61] desarrollan HLLE como un método intermedio entre LLE y LE. Del
primer método toma la idea de preservar una propiedad a nivel local, y de LE el hecho de basar la

ops 004

004 002

T k=60

Dimension 2

Dimension 1
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descripcién de esta propiedad por medio de la estimacién de una cantidad asociada a la variedad,
el Hessiano. El desarrollo de esta técnica se basa en la hipdtesis de que los datos caen sobre una
variedad Riemanniana, y se busca lograr una isometria a nivel local. El algoritmo de esta técnica

puede presentarse como
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En el paso 4 es necesario tener en cuenta que
U = [u,ug,...,u,) (5.100)

Grimes [59] considera el problema de reduccién de dimensionalidad como un problema de
reparametrizacién. Es decir si M es la variedad de dimensién n encajada en RY sobre la cual
caen los datos yi,...,yp, se asume que existe un conjunto abierto A" C R" y que ademds existe
Y : N = M, tal que ¢ (N) = M siendo 1 un encajamiento suave localmente isométricoﬂ El prob-
lema se plantea entonces como el de encontrar un homeomorfismo f : M — N, tal que se preserven
las propiedades esenciales de la variedad. De acuerdo a Grimes [59] es posible encontrar una base
para dicha representacién analizando el funcional

H(f) = /M VH(m) |2 dim (5.101)

que brinda una medida de la curvatura promedio inducida?| por M sobre f. De hecho Grimes [59] [61]
demuestra como H(f) posee un espacio nulo de n + 1 dimensiones, lo cual implica que es posible
recuperar la estructura original de los datos (e.g recuperar A') salvo por un movimiento rigido.
Una clara fortaleza de esta técnica es el aprovechamiento de una propiedad de tipo local, y su
solida fundamentacién en conceptos precisos sobre variedades Riemannianas, pero por otra parte
evidencia una de las mismas debilidades de LLE, la seleccién de un valor 6ptimo de K para la
construccion del grafo erll\pleandO la regla de los K —vecinos. Como se ve en la figura[5.13] en donde

se aplica HLLE sobre M prgr para el sujeto S055 de la base de datos Cohn-Kanade [7], diferentes
valores de K incluso cercanos entre si, pueden llevar a resultados completamente diferentes.

Por otra parte en [61] [59] se evalia el comportamiento de HLLE con respecto a Isomap, LLE
vy LE dejando entrever la superioridad de HLLE para variedades no desarrollables y no convexas.

Teniendo en cuenta estos aspectos, en este trabajo se considera que aunque HLLE es una
técnica promisoria con una sélida fundamentacion que puede ser extremadamente util para analisis
no automaticos de la informacién, presenta una limitante para la seleccién de un valor 6ptimo de K
que resulte adecuado a los datos que se emplearan en este trabajo, los cuales son en general escasos,
dispersos, y de naturaleza cambiante de un sujeto a otro. Por todo ello no se empleara.

Otras Técnicas

Lee y Verleysen proponen en [94] [95] Isotop como una técnica de preservacién de la topologia en
la que se emplean, al igual que en métodos anteriores, las distancias de grafo a fin de aproximar las
distancias geodésicas. Sin embargo, la forma en como se construye la representaciéon n—dimensional
es totalmente nueva, ya que una vez construido el grafo con la informacién en el espacio de repre-
sentacién original se busca actualizar una inicializacién de los puntos x; asignados a cada vértice
del grafo, teniendo en cuenta la aproximacién de las geodésicas y usando Kernels Gaussianos aso-
ciados a cada x;. En [58] los resultados obtenidos por Lee son los mejores para un conjunto de
variedades benchmark en comparacién con otros métodos, sin embargo no hay un suficiente nivel
de detalle como para realizar una implementacién de esta técnica. El autor de esta investigacion
contacté directamente con el doctor Lee [58], quien facilité un cédigo desarrollado en febrero de
2010, con algunas modificaciones substanciales. Por ejemplo en éste ya no se realiza la construccién
de un grafo y se integran las ideas de técnicas como SNE(stochastic neighbor embedding). El doctor
Lee [58] afirma que el nuevo cédigo representa un algoritmo de muchisima maés calidad, y con resul-
tados superiores a los que se obtienen con el algoritmo original. Sin embargo, en virtud de que no
existen publicaciones en las cuales se plasmen claramente las diferencias de este nuevo algoritmo,
con el que se presenta en [58], en esta investigacién no se realiza el uso de esta técnica. No habria
coherencia en hacer alusién a un marco tedrico bien definido, pero representado en un coédigo que
no sigue estrictamente estas ideas. Se puede afirmar que para trabajos futuros esta técnica muestra
ser promisoria, en tanto se publiquen en detalle las modificaciones realizadas usando SNFE al cédigo

Lyer [93]
2En [61] se usa la palabra curviness para referirse a esto
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original de Isotop.

Zhang presenta en [96] LTSA, como una técnica que busca aprovechar el concepto de espa-
cio tangente a una variedad diferencial, considerando los puntos originales con un nivel de ruido
asociado. En ésta se busca representar la geometria local usando espacios tangentes construidos aju-
stando un subespacio afin en una vecindad de cada punto. Dichos espacios tangentes son alineados
y a partir de una descomposicion espectral se propone el encajamiento en el espacio de dimension
intrinseca. En virtud de esto, posee una enorme cercania con LLE y HLLE, pero asi mismo com-
parte con éstas la desventaja de que no existe un criterio automaéatico para conjuntos arbitrarios de
datos, que permita seleccionar el valor de K en la seleccion de los K — vecinos més cercanos para
la construccién de los espacios tangentes. Acorde a los resultados obtenidos en [96] esta seleccién
juega un papel crucial y es particularmente dificil si los datos estdn contaminados con ruido y/o si
la variedad sobre la cual recaen los datos posee un gran radio de curvatura. Por estas razones no se
empleard LTSA sin embargo se deja claro que es una de las técnicas con mejor fundamentacion,
y sobre la cual se han indicado de manera precisa limitaciones y posibles mejoras, por esto puede
representar en un futuro una alternativa a considerar.

Brun propone en [97] LogMaps como una técnica para la reduccién de dimensionalidad. Esta se
basa en la representacion de la informacién por medio de coordenadas Riemannianas normales [93].
Aunque su fundamentacion tedrica es sélida, posee una seria desventaja para el manejo de ruido
dentro de los datos, puesto que la misma solo ha sido probada con éxito con niveles de ruido practi-
camente nulos [97]. Por otra parte, para la construccién del sistema de coordenadas normales se
requiere de la seleccién de un punto sobre la variedad, y esta seleccién juega un papel critico en
los resultados. Actualmente no existe un criterio para la localizacién adecuada de dicho punto para
un conjunto arbitrario de datos. Por ello esta técnica no se empleard en esta investigacion, pero
se presenta como una técnica promisoria para futuros andlisis del comportamiento dindmico de las
expresiones faciales.

5.9. Comparacion de los Métodos

En esta seccién se especifican las técnicas que serdan empleadas en el esquema de reduccién de
dimensionalidad general. Se hace alusién a aspectos discutidos en secciones anteriores y se retomaran
brevemente los comentarios adecuados respecto a cada seleccién.

5.9.1. Estimacién de la Dimension

Teniendo en cuenta los argumentos tedricos correspondientes a cada una de las técnicas presentadas
para realizar la estimacién de la dimensién, y los resultados experimentales obtenidos se afirma que
los métodos mas adecuados para los fines de esta investigacion son

= Dimension de Correlaciéon. Procede de una definiciéon formalmente construida en el campo
de la geometria fractal, ha sido ampliamente usada con resultados satisfactorios [58] [69], y
ademds de ello existe un criterio establecido de manera rigurosa (la regla del cinco [76]) para
definir sus parametros.

= PCA — /m. Aprovecha las ventajas esenciales de PCA—/, pero se adecua bien a conjuntos
de datos reducidos. Teniendo en cuenta el criterio propuesto basado en la bisqueda del codo
de la curva AIC se puede afirmar que existe un criterio bien definido para la seleccién del
numero de eigenvalores.

= PCA —w. Considera la interpretacion del teorema de Whitney cuando el niimero de variables
asociadas a la descripcién original del patréon supera enormemente la dimensién intrinseca
estimada por correlacién y/o PCA — ¢m. Brinda un estimado teniendo en cuenta que existe
un numero maximo de variables necesario para la representacién, por encima del cual existe
redundancia que puede ser facilmente eliminada por PCA. Los resultados experimentales
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muestran su cercania a los valores de las otras dimensiones, y al usar el criterio basado en la
biusqueda del codo de la curva AIC se puede garantizar que existe un criterio bien definido
para la seleccién de los eigenvalores.

Para los fines de estimacién de la dimensién se emplearan estas tres técnicas, dando como valor
final estimado un valor promedio de éstas, redondeado al entero mas cercano.

5.9.2. Reduccion de Dimensionalidad

Teniendo en cuenta los argumentos tedricos correspondientes a cada una de las técnicas presentadas

anteriormente, y los resultados experimentales obtenidos sobre los datos M FSF para el sujeto S055
de la base de datos Cohn-Kanade [7], se puede afirmar que los métodos con mejores resultados y
caracteristicas en reduccion de dimensionalidad para los propositos de esta investigacién son

= s—Isomap. Aunque no se puede garantizar que la variedad sobre la cual recaen los datos sea
desarrollable, la posible distorsién del espacio original es aceptable siempre y cuando no haya
solapamiento de informacién. Ademads existe un criterio para la seleccién 6ptima del valor de
K en la construccién del grafo empleando la regla de los K —vecinos. En caso de considerarse
varias clases sobre una misma variedad, al usar s—Isomap se logran manejar niveles de ruido
considerables.

= s—GNLM. Permite manejar la no linealidad por medio de las distancias de grafo y la mini-
mizacién de una funcién de estrés. No produce deformaciones del mismo grado que se producen
por Isomap en variedades no desarrollables. Y posee plenas capacidades para reducir dimen-
siones sobre variedades con nudos y lazos esenciales, acorde a los experimentos realizados por
Lee en [58]. La misma regla empleada en Isomap para la seleccién éptima del valor de K
en la construccion del grafo aplica para este método. El uso de la matriz de disimilaridad de
Geng [87] permite manejar niveles de ruido considerables.

= s—CDA. Permite manejar la no linealidad por medio de las distancias de grafo y la mini-
mizacién de una funcién de estrés. No produce deformaciones del mismo grado que se producen
en Isomap. Segin los resultados de Lee en [58], la deformacién es incluso menor a la pro-
ducida por GNLM. Ademés posee incluso mejores capacidades que GINLM para reducir
dimensiones sobre variedades con nudos y lazos esenciales [58]. La misma regla empleada en
Isomap para la seleccién éptima del valor de K en la construccién del grafo aplica para este
método. El uso de la matriz de disimilaridad de Geng [87] permite manejar niveles de ruido
considerables.

Los resultados obtenidos sobre los datos Mpgr usando estas técnicas, fueron los mejores dentro
de las métodos presentados, puesto que se logré la mejor separacion interclase sin solapamiento de
informacién en un espacio euclidiano de la dimensién intrinseca estimada.

5.10. Esquema propuesto para la Reduccién de Dimensionalidad

Teniendo en cuenta, como se menciond en secciones anteriores, que la baja densidad y cantidad de
datos puede hacer cues‘monables los resultados de la aphcacmn de tecmcas de reducc1on de dlmen—

sionalidad, el esquema planteado considera que los conjuntos /\/l FSF, M FST, M FIF, ./\/l FIS, M FIT
estan formados por los datos correspondientes a todas las expresiones de un determinado sujeto, es
decir la variedad sobre la cual recaen estos puntos es una variedad interclase.

Sea f‘fjﬁ el arreglo de los datos obtenidos después de la reduccién de dimensionalidad sobre los

features M\V, v=FSF FST,FIS,FIF, FIT, empleando la técnica § = s—CDA,s—GNLM, s—
Isomap correspondiente al sujeto ¢. El esquema propuesto se puede apreciar en la figura [5.14]
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Figura 5.14: Esquema General de Reduccién de Dimensionalidad

De esta manera la informacion total de salida del esquema de reduccion de dimensionalidad
es un arreglo de 15i7p elementos cada uno de los cuales es un vector de dimensién 7. Siendo ir la
cantidad total de sujetos empleados en el proceso de extraccién de informacién. Estos datos tendran
una dimensién n que no necesariamente serd igual para todos los individuos, a menos que se trate
de expresiones faciales con patrones muy similares entre si.

5.11. Implementacién

5.11.1. Estimacién Dimensién Intrinseca

La dimensién de correlacién se calcula empleando parte del cédigo desarrollado por Maaten |75,

mientras que las demds técnicas son desarrollos propios del autor de esta investigacion, realizados
en Matlab.

5.11.2. Reduccién de Dimensionalidad

Para realizar la implementacion de las técnicas propuestas para la reduccién de dimensionalidad
se usa la herramienta de simulacién Matlab. El cédigo de s—CDA es construido empleando parte
del cédigo desarrollado por Tenenbaum para la construccion del grafo con calculos relacionados
y empleando parte del cédigo desarrollado por Vesanto dedicado a CCA. Para computar la
matriz de disimilaridad empleada se usa el cédigo de desarrollado por Geng .

En la construccién del codigo de s—GINLM se emplea parte de un programa desarrollado por
Vesanto para el céomputo de NLM. Mientras que el cédigo desarrollado por Tenenbaum es
empleado para el manejo del grafo con cantidades relacionadas. Al igual que en s—CDA se emplea
el cédigo de Geng para el célculo de la matriz de disimilaridad.

El c6digo de s—Isomap empleado es desarrollado por Tenenbaum y adecuado por Geng
para trabajar con la matriz de disimilaridad. En este trabajo se realizo la una revisiéon detallada del
mismo, logrando asi realizar una correccion en este codigo en los umbrales establecidos para definir
la matriz de disimilaridad.
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5.12. Discusiéon y Conclusiones

En este capitulo se abord¢ el problema de determinar los métodos més pertinentes y/o adecuados
para realizar la reduccién de dimensionalidad en el seguimiento automatico de las expresiones faciales
en una secuencia de video. Se realizd un andlisis tedrico de las técnicas mas empleadas en el andlisis
de informacién facial, teniendo en cuenta desarrollos analiticos y resultados experimentales de otros
autores, asi como resultados y consideraciones propias que dan como consecuencia el planteamiento
del esquema de la figura [5.14]

Algunas técnicas no seleccionadas, cuentan con caracteristicas que las hacen promisorias para
trabajos futuros en tanto se sigan realizando investigaciones sobre éstas.

Ademads, como parte de la contribucién propia de este trabajo de investigacién se realizé una
propuesta para estimar la dimensién intrinseca teniendo en cuenta el teorema de Whitney para
variedades diferenciales y un criterio basado en la bisqueda del codo de la curva AIC.
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Resultados Generales

En este capitulo se da una presentacién de los cédigos entregados como productos asociados a los
resultados del proyecto de investigacion. Se discutirdan a grandes rasgos los principales archivos, su
manejo y datos de salida dejando la presentacion de los mismos para los apéndices. Adicionalmente
se delimita el escenario de aplicacién de este desarrollo, para asi puntualizar las alcances del mismo,
y los aspectos a mejorar y/o desarrollar en trabajos futuros.

6.1. Escenario de Aplicacion

Los resultados de este proyecto de investigacién, estdn asociados al seguimiento dindmico de la
informacién que representa las expresiones faciales, dentro de un escenario dado por los alcances de
las herramientas desarrolladas.

El esquema de deteccién de rostro propuesto aprovecha las fortalezas de Adaboost, teniendo en
cuenta en el caso de las imagenes a color, regiones méas acotadas dadas por la segmentacién cromatica
propuesta. Y si bien el detector de rostro de Viola y Jones es una solucién contundente para
condiciones controladas, no lo es para condiciones extremas y arbitrarias de iluminacién. Por lo
tanto

1. El software desarrollado se aplica a videos o secuencias de imdgenes en ambientes controlados
de iluminacion adecuados para el estudio y andlisis de expresiones faciales

121
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Los Active Appearance Models (AAM) bajo los argumentos presentados en el capitulo 3, brindan

la mejor opcién para la localizaciéon de puntos faciales. Esta debe estar asociada a conjuntos de
imégenes de sujetos cuya correlacién con las imagenes de entrenamiento sea alta. Por ello una de
las caracteristicas del escenario de aplicacion es la siguiente

2. El software desarrollado se aplica para realizar el sequimiento de expresiones faciales en videos
o secuencias de imagenes, asociadas a sujetos de los que se cuenta con algunas imdgenes para
realizar el entrenamiento del mismo

es decir se debe contar con unas cuantas imagenes del sujeto para el entrenamiento, y la herramienta
permitird realizar el seguimiento dindmico de las expresiones de este mismo sujeto en secuencias de
video arbitrarias.

Es particularmente importante, aclarar que este mismo escenario es semejante al de entrenar
un sistema para lograr el reconocimiento facial.

Por otra parte, el andlisis de esta informacion no se realiza en tiempo real. A pesar de que la
extraccion de la informacién se realiza frame por frame, el tratamiento en la reducciéon de dimen-
sionalidad se realiza con la totalidad de la informacién extraida de la secuencia de video. Este hecho
permite, dar mas confiabilidad a los métodos de reduccién de dimensionalidad como se mencioné en
el capitulo 5, y con ello méas certeza de las conclusiones extraidas a partir de este seguimiento. Esto
se sintetiza como

3. El software desarrollado se aplica para extraer conclusiones de una secuencia de video real-
izando un andlisis y procesamiento de los frames en bloque

No existen restricciones sobre la cantidad de datos minima o m&axima sobre la cual puede
aplicarse el esquema de reduccién de dimensionalidad desarrollado en el capitulo 5. No obstante,
debe tenerse en cuenta que uno de los aspectos que brinda confiabilidad en la aplicacion de cualquiera
de estas técnicas es la cantidad y densidad de datos con los que se cuenta. Considerando los aspectos
discutidos en el capitulo 5 se plantea que

4. Una medida de la confiabilidad de los resultados finales en la reduccion de dimensionalidad,
estd dictada por la cantidad de secuencias de video analizadas por sujeto, la cantidad de
frames de los mismos y la tasa de muestreo. Entre mayores sean estas cantidades mucho mds
confiables serdn los resultados obtenidos

6.2. Productos Entregados

6.2.1. Articulos de Divulgacién

1. Fast Object Detection using Colour Segmentation. Codigo ISSN: 2145-812X. Tercer
Congreso Internacional de Ingenieria Mecatréonica. Bucaramanga 2011.

2. Face Detection using Adaboost and Color Centroid Segmentation with Compre-
hensive Color Image Normalization. Aceptado para revision en Diciembre de 2010. Aun
en espera de las indicaciones para su envio definitivo a la revista de Ingenieria y Ciencia de
la Universidad EAFIT.

3. A New Facial Point Detector using Active Appearance Models. Cédigo ISSN: 2145-
812X. Tercer Congreso Internacional de Ingenieria Mecatrénica. Bucaramanga 2011.

4. Intrinsic Dimensionality Estimation of Data using PCA and The Whitney Theo-
rem. En Construccion.

5. Supervised Nonlinear Dimensionality Reduction over the Manifold of Facial Ex-
pressions with GNLM and CDA. En Construccion.
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6.2.2. Cébdigos

En esta seccién se brinda una descripcién de los cédigos desarrollados, asi como de sus principales
caracteristicas y pardmetros a fin de realizar el seguimiento dindmico de la informacién.

6.2.3. Deteccién de Rostro

Para hacer la deteccién de rostro en un conjunto de imagenes correspondientes a una secuencia de
video, se emplea el siguiente codigo

A my_facedetect6.m En el cual se ejecutan los algoritmos de segmentacién cromatica, y el
programa realizado en C++ basado en Adaboost para la deteccién por textura.

A y8.cpp Codigo en C++ basado en Adaboost que se ejecuta dentro de my_facedetect6.m.

de esta manera es posible realizar la deteccién de rostro sobre la pila de frames que conforman la
secuencia de video. Entregando como salida los archivos de imagen con la deteccién realizada.

6.2.4. Localizacién de Puntos Faciales y Extraccion de Caracteristicas

Para la localizacion y extraccion de puntos faciales se ejecuta el archivo my_searchvideo.m, en el
cual a su vez se ejecutan los archivos:

A my_SearchModel 2.m Con el cual se realiza el proceso de busqueda en la imagen objetivo
por medio los AAM, y

A extract_data.m Con el cual se realiza la extracciéon de la informacién correspondiente a
cada uno de los frames.

6.2.5. Reduccion de Dimensionalidad

Para realizar la reduccién de dimensionalidad se ejecuta el codigo my NDR.m, en donde a su vez se
ejecutan los siguientes archivos

A my corrdim.m  (Adaptacién de Maaten [75])Empleado para calcular la dimensién intrinseca
de los datos por medio de correlacion.

A my_localPCA.m Empleado para calcular la dimension intrinseca de los datos usando PCA —¢m.

A my ATIC_MDL.m Empleado para seleccionar el nimero de eigenvectores en la estimacién de
la dimensién intrinseca usando PCA.

A my KoptIsomap.m  Empleado para calcular el valor 6ptimo de K en la construccion del
grafo empleando la regla de los K —vecinos, en técnicas en las que se aproximan las distancias
geodésicas por medio de las distancias de grafo.

A cda.m Empleado para realizar la reduccién de dimensionalidad usando CDA..
A GNLM.m Empleado para realizar la reduccién de dimensionalidad usando GNLM.

A IsomapII.m  (Desarrollado por Tenenbaum [84])Empleado para realizar la reduccién de
dimensionalidad usando Isomap.
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Construccion y Entrenamiento de los AAM

Para realizar la construccion de los AAM se requiere la ejecucién de los archivos

A

6.2.6.

A

A

A

my_alineacion.m Empleado para realizar el andlisis de Procrustes o alineacién de forma,
y construir el modelo estadistico.

my_takedata2.m Usando para realizar la normalizacién de los niveles de gris de las imagenes
v la construccion del modelo estadistico de textura.

my_combined_PCAmodel.m Con el cual se realiza la construccién del modelo combinado de
forma y textura.

my PCA_g.m Programa para realizar descomposiciéon en eigenvalores y eigenvectores de la
matriz de covarianza asociada a la textura, ya que su tamafio obliga a realizar una proyeccién
auxiliar.

my_Rmatrix_obain.m Con el cual se realiza el proceso de entrenamiento mediante la con-
struccion de la matriz R.

Codigos Auxiliares

my_warpping.m Empleado para realizar el image warping dos formas triangulares.

L2 distance.m  (Desarrollado por Tenenbaum [84])Empleado para computar la matriz de
distancias euclidianas entre pares de puntos.

dis_distance.m  (Desarrollado por Geng [87])Usado para computar la matriz de disimi-
laridad, usada en la reduccién de dimensionalidad supervisada.
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7

Conclusiones, Discusidon y Trabajos Futuros

En este capitulo se consignan las conclusiones asociadas a la investigacion y los resultados obtenidos.
Se dan comentarios generales para luego emitir conceptos particulares propios de cada temética.
En la seccién se consigna un comentario respecto a la direccién y enfoque de las investigaciones
posteriores a corto plazo, teniendo en cuenta la perspectiva y la visién adquirida durante la real-
izacién de este proyecto.

Finalmente se presentan las recomendaciones para trabajos futuros, dando inicialmente un con-
cepto general, para entrar luego en las particularidades de cada tematica.

7.1. Conclusiones

En este trabajo fueron desarrolladas herramientas computacionales que permiten realizar el seguimien-
to dinamico de las expresiones faciales en una secuencia de video, teniendo en cuenta los desarrollos
mas relevantes en la materia. Estas herramientas estan enmarcadas en un esquema en el cual se
busca el aprovechamiento de la riqueza en la informacién dindmica, atin poco explorada.

Dicho paquete de herramientas consta de un detector de rostro, un localizador de puntos fa-
ciales, un extractor de features y un reductor de dimensionalidad que permitiran extraer los flujos
de informacién para su posterior uso, ya sea en clasificacién o sintesis.

7.1.1. Deteccién de Rostro

1. El esquema de deteccién facial planteado aprovechoé las fortalezas de Adaboost, buscando una
localizacién mas acertada del rostro con la ayuda de segmentacién cromética basada en CCS
y CCIN. Si bien el problema de segmentacién por color se enfoca en la distribucién cromatica
de la piel, este mismo esquema puede emplearse para la detecciéon de otros objetos.

2. La técnica empleada para la correccion de iluminacion brinda una alternativa robusta para
lidiar con las variaciones en el espacio de color, de la distribucién de la piel. Sin embargo
debe siempre buscarse un escenario de buena calidad para la toma de las secuencias de video,
en donde existan fondos de colores bien diferenciados respecto de esta distribucién y que no
produzcan modificaciones severas en los espacios de representacion.
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7.1.2. Localizacién de Puntos Faciales

1. Eluso de los AAM en la localizacién de puntos faciales brinda una alternativa sélida para este
fin, ya que es una teoria consolidada en la cual se conocen bien sus alcances y limitaciones,
que estan asociados a los requerimientos de correlacién entre las imagenes objetivo y las de
entrenamiento.

7.1.3. Extraccion de Caracteristicas

1. El esquema para realizar la extraccién de caracteristicas evita los efectos de tratar datos
en grandes dimensiones, pues no se consideran directamente las imédgnes sino parametros
extraidos a partir de las mismas empleando propuestas consolidadas para dicha extraccion.
Adicionalmente con este esquema se tiene una medida de las simetrias en los movimientos
faciales, y la separacién de los datos en variedades diferentes brinda un analisis mas amplio y
exhaustivo de las regiones facial superior e inferior.

2. Teniendo en cuenta que las asimetrias en las expresiones pueden producir una variaciéon de
la dimensién intrinseca estimada, se extrae la informacién sin dar una generalizacién de la
dimension intrinseca de la variedad sobre la cual recaen los datos. Esto evita pérdida de
informacién o inclusién de dimensiones adicionales innecesarias para realizar un posterior
procesamiento.

3. Si se optara por representar la variedad descriptora por medio de los niveles de gris de la
zona facial extraida, se tendrfa dicha variedad encajada o incrustada en R siendo R x S
el tamano de la imagen. El esquema propuesto en esta investigaciéon para la extraccién y
representacién de los features, supera enormemente esta primera opcion de representacién
pues las variedades estan encajadas en espacios euclidianos de dimensiones fijas, y no se ven
afectadas por los efectos nocivos del aumento de la dimensionalidad a medida que RS — co.

7.1.4. Reduccion de Dimensionalidad

1. Las técnicas seleccionadas por sus propiedades para la reduccién de dimensionalidad se basan
en el empleo de las distancias de grafo como aproximaciones de las geodésicas. En el captiulo
5 se indico que dicha calidad de aproximacion depende de la cantidad y densidad de los datos
tratados, razén por la cual debe buscarse en lo posible analizar una cantidad de expresiones
amplia, en secuencias de video con una cantidad de frames que sea lo mayor posible junto
con una alta tasa de muestreo. Sumado a esto se encuentra que es mas conveniente considerar
las distintas expresiones de un sujeto sobre una misma variedad a considerar cada expresién
individual sobre una variedad diferente.

2. Se realizé la propuesta de las técnicas PCA —fm y PCA — w como alternativas para realizar
la estimacion intrinseca de la dimensién, aprovechando los conceptos y desarrollos tedricos
asociados a variedades diferenciales. Los resultados obtenidos por medio de éstas son com-
parables a los que se obtienen empleando dimensién de correlacion, y se espera que sienten
un punto de discusion en una tematica aun en desarrollo en donde no existen ni métodos ni
soluciones definitivas para ningtin problema.

3. Teniendo en cuenta que s—Isomap tienen su mejor comportamiento sobre variedades desar-
rollables, los resultados contenidos en

f\i,é:s—lsomap
v,n

pueden representar versiones deformadas de los resultados asociados a

fi£=s—CDA fi6=s—GNLM

v,n ’ v,n
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pero con valiosos aportes para lograr la discriminacién entre las diferentes clases que recaen
sobre la variedad.

4. Lee [58] prueba que los métodos de reduccién de dimensionalidad pueden usarse con total
confidencia para datos que se encuentren encajados en espacios de dimensién N, con N < 5.
En el esquema de extraccién de features que se planted en el capitulo 4, se garantiza en lo que
se refiere a la dimensién del espacio de representacién original que se tiene un grado total de
confidencia para el procesamiento de las variedades M FIF, MFIS que estan encaJadaS €n es-

pacios de dimensiones 3 y 4 respectivamente. Mientras que para las variedades M FST, M FIT
el grado de confidencia es alto pues estan en espacios de dimension 6 que es apenas una unidad

mayor al umbral de confidencia. Para el procesamiento de la variedad M rsF, encajada en R?
el grado de confidencia ain puede considerarse cercano al valor 6ptimo en comparaciéon con
procesar la totalidad de la informacion en un solo blogue.

Con esto se confirma atn maéas la ventaja de esta separacion de la informacion, en com-
paracién con el uso directo de la informacién de textura a partir de la imagen, pues en este
ultimo enfoque la dimensiéon RS del espacio de representacion seria RS > 5 y por la tanto la
confidencia serfa muy baja.

5. Por medio del uso de la matriz de disimilaridad propuesta por Geng [87] se lograron mejores
resultados que los obtenidos sin el empleo de la misma, con las técnicas de reduccion de di-
mensionalidad CDA,GNLM e Isomap, ya que el uso de ésta permite separar la informacién
de distintas clases que recaen sobre una misma variedad.

El uso de esta matriz con Isomap fué propuesto por Geng [87], y en este trabajo se anal-
iz6 y se concluyo que era posible, debido a su planteamiento, aplicarla en CDA y GNLM,
con resultados potencialmente mejores que los obtenidos con Isomap pues estas dos ultimas
técnicas manejan la no linealidad tanto con aproximaciones de distancias geodésicas como con
la minimizaciéon de una funcién de estrés.

7.2. Discusion

Sin duda alguna el procesamiento de la informacién extraida de las expresiones faciales, depende
y se ve fuertemente afectada por los métodos de reduccién de dimensionalidad y las técnicas em-
pleadas para realizar la estimacién intrinseca de la variedad. Esto implicaria que las investigaciones
realizadas a futuro deben centrar la mayor parte de sus esfuerzos en realizar contribuciones en estas
temadticas pues su repercucién serd directa en el andlisis dindmico de patrones faciales. Aunque esto
podria desviar un poco la atencion de la finalidad esencial, se lograrian contribuciones no solo en
esta temdtica sino en el andlsis de informacién en general.

7.3. Recomendaciones sobre Trabajos Futuros

Ya que en este trabajo se realiza el seguimiento dindmico de las expresiones faciales, se propone
realizar una investigacién en la cual se estudien los procesos de clasificacién y sintesis, considerando
la informacién extraida F“S L5 con el esquema desarrollado en este trabajo, a fin de encontrar la
herramienta de clasificacién que aproveche mejor la riqueza de esta informacién.

Aunque en esta investigaciéon los tiempos de cémputo no jugaron un papel esencial, se sugiere
el desarrollo de un proyecto en el cual se realice una implementacion en C++ de la totalidad de las
herramientas que hacen parte del esquema.

7.3.1. Deteccién de Rostro

1. Buscando ampliar los limites de aplicacién de los desarrollos logrados, se propone realizar una
investigacién en donde se aborden imagenes con oclusiones y grandes rotaciones craneales,
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siguiendo los trabajos de Ichikawa [11] y Huang [12] en donde se emplea también Adaboost
para lidiar con estos problemas.

7.3.2. Localizacién de Puntos Faciales

1. Buscando disminuir el grado de correlacién entre las imagenes objetivo y las imagenes de
entrenamiento empleadas en los AAM, se recomienda integrar los AAM junto con la propuesta
de Valstar |40|. Esta integracién debe hacerse una vez sean conocidos los detalles de ese
desarrollo, para delimitar con precisién el escenario de aplicacién.

7.3.3. Extraccién de Caracteristicas y Reduccién de Dimensionalidad

1. Si bien el planteamiento de los features para describir el comportamiento de las expresiones
faciales es el resultado de una investigacién profunda realizada por Tian [55], se sugiere estu-
diar y disenar el planteamiento de un conjunto de features que mantenga las caracteristicas
esenciales de esta propuesta, pero que recaiga sobre una variedad de geometria conocida, a fin
de aplicar con mucha mas precision los métodos de reduccion de dimensionalidad.

2. Se sugiere realizar una investigacién a fin de llegar al planteamiento de criterios para la
seleccién éptima de los parametros en el uso de técnicas como LLE, HLLE y LTSA en la
reduccién de dimensionalidad y MLE para realizar la estimacién de la dimensién intrinseca,
las cuales poseen fuertes cimientos tedricos.

3. A pesar de que la propuesta de usar PCA —/m y PCA —w para la estimacion de la dimension
intrinseca aprovecha conceptos de variedades diferenciales y asocia resultados sobre la seleccién
del nimero de componentes, ésta no se plantea como una solucién definitiva en un campo
donde aun los desarrollos se basan en hipétesis razonables pero no siempre comprobables. Se
sugiere, realizar una investigacion en donde se realicen pruebas mas alla de las consignadas
en este trabajo, que si bien siguen exactamente las pruebas de otros trabajos, no muestran un
comportamiento con conjuntos de datos propios de otras disciplinas.

4. Teniendo en cuenta las ventajas de los desarrollos realizados en torno a las series de tiempo, se
sugiere explorar el uso de estas herramientas para modelar la informacién de las expresiones
faciales una vez realizada la reduccion de dimensionalidad, a fin de obtener beneficios tanto
para clasificacién como para sintesis.

5. Si bien la base de Datos Cohn-Kanade [7] brinda una excelente alternativa para contrastar
resultados con otros autores, se sugiere como un proyecto a largo plazo la creaciéon de una
base de datos de secuencias de expresiones faciales que posean mejores condiciones de ilumi-
nacién, mejor calidad de imagenes, fondos con colores lejanos a la distribucién de la piel y
una mejor tasa de frames por segundo, a fin de mejorar la infomacién disponible para estas
investigaciones.

7.4. Comparacion con el Trabajo de Otros Autores

En el capitulo 5, por medio de las pruebas realizadas sobre M rsF se evidencid y se comprobé la
hipotesis de la existencia de expresiones bien diferenciadas entre si para un individuo dado. La visu-
alizacion de estos resultados es comparable a la realizada por Ping en [57], en donde con un esquema
de extraccion de caracteristicas diferente se logré establecer por medio de visualizacién, la diferencia
entre distintas expresiones en espacios de representacion euclidianos de 2 y/o 3 dimensiones.
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