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ABSTRACT

This paper discusses the generalization of the concept of blue
noise sampling from traditional halftoning to signal process-
ing on graphs. Making use of the spatial properties of blue
noise, we generate sampling patterns that provide reconstruc-
tion errors that are similar to the ones obtained with state of
the art approaches. This sampling scheme presents an alterna-
tive to those techniques that require spectral decompositions.

Index Terms— Graph signal processing, sampling, blue
noise dithering.

1. INTRODUCTION

The everyday growing datasets that describe connectivity and
interaction in multiple applications have been successfully
modeled on graphs [1], promoting research interests about
how to process quantities that are interrelated, and these
applications range from social networks [2], brain signals
analysis [3] up to financial systems [4]. Many efforts have
been done in order to obtain or translate well established
results in traditional signal processing to signal processing
on graphs [1]. At the very core of all these applications re-
sides the problem of graph signal sampling where the interest
relies on identifying those nodes of the graph that would
guarantee a unique representation of a graph signal with a
given bandwidth [1, 5–7]. Up to now, most of the research
about sampling signals on graphs relied on the use of the
spectral decomposition of the adjacency matrix or the Lapla-
cian operator [7, 8], however those eigen-decompositions are
not always available.

This work offers a substantially different approach from
previous works, considering that the spectral decomposition
of the graph matrices is not available. The sampling patterns
obtained with the proposed approach have common charac-
teristics on the spectral domain, as they are characterized by a
high frequency energy and represent the extension to graphs
of what is called in the dithering literature as blue noise [9].
Additionally, the vertex-domain properties of the obtained
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sampling patterns resemble the spatial characteristics of tra-
ditional blue noise, showing an homogeneous distribution of
the sampling nodes where the nodes are as far as possible
from each other.

This paper is organized as follows. In Section 2 the no-
tation and the problem of sampling on graphs is described
including previous approaches. In Section 3 blue noise sam-
pling on graphs is defined, while an algorithm for the genera-
tion of blue noise on graphs is introduced in Section 4. In Sec-
tion 5 a set of experiments is presented showing a clear com-
parison between blue noise sampling and other techniques.
Finally in Section 6 a set of conclusions is presented.

2. SAMPLING THEORY ON GRAPHS

2.1. Background and notation

Let G = (V, E) be a weighted graph with nodes V , and edges
E . W is the adjacency matrix, with W(u, v) the weight con-
necting the nodes u and v. Let D be the diagonal matrix
whose entries are given by D(u, u) =

∑
v 6=u W(v, u). The

combinatorial Laplacian matrix associated to G is defined as
L = D −W, whose eigenvalues are 0 ≤ µ1 ≤ µ2 ≤ . . . ≤
µN , N = |V| [10]. If G is connected, µ1 = 0 and µ` > 0
for all ` > 1 [10]. A signal, x, on the graph is then defined as
the function x : V −→ R represented by the vector x ∈ RN
where x(v) is the value of the signal on v ∈ V . The eigen-
vector decomposition of L is represented as L = UΛUT,
with U being the matrix of eigenvectors. The Graph Fourier
Transform of the signal, x, is given by x̂ = UTx. On the
spectral axes, it is said that the signal x has bandwidth ω, if
x̂(k) = 0 for all µk ≥ ω, on the discrete axes the bandwidth
of x is given by k. The set of signals of bandwidth ω is rep-
resented as PWω(G) = span{Uk : µk ≤ ω} which is the
so called Paley-Wiener space of bandwidth ω [5], where Uk

is the matrix whose columns are the first k column vectors in
U.

The vector of samples of a signal x on S ⊂ V are given
by xS = Mx where M = [δs1 , . . . , δsm ]T , si ∈ S ∀ i =
1, . . . ,m and δv is the N− dimensional Kronecker column
vector centered at v ∈ V . If x is known to be bandlimited,
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from xS a reconstructed version of x can be obtained as:

xrec = argmin
z∈span(Uk)

‖Mz − xS‖22 = Uk (MUk)
†
xS (1)

with (MUk)
† being the pseudo-inverse of MUk [8]. Then

the central challenge in the sampling problem relies on find-
ing the set S ⊂ V that leads to the minimum error between
x and xrec. In what follows we will refer to the ratio m/N
between the number of sampling nodes and N as the sam-
pling density d. The function s : V → {0, 1}N represents
the sampling pattern associated to S ⊂ V , where sS = 1 and
sSc = 0.

2.2. Previous approaches

Previous approaches faced the sampling problem by the use of
greedy techniques that build the sampling set selecting node
by node according to a specific criteria that involve the cal-
culations of eigenvalues and singular values of submatrices
of Uk. In [11] the optimal sampling set, Sopt, is found as
Sopt = arg max|S|=m σ

2
1 , whereas in [12] the optimal set is

given by Sopt = arg max|S|=m
∑k
i=1 σ

−2
i and recently in [8]

Sopt = arg max|S|=m =
∏k
i=1 σ

2
i ; where σi is the ith sin-

gular value of MUk. In [12] the so called graph spectral
proxies of order q, Ωq(S) = (σ1,q)

1
2q , are introduced to facil-

itate the calculation of the optimal sampling set, where σ1,q
is the smallest eigenvalue of (LT

Sc,Sc)
qLqSc,Sc , with Lq being

the qth power of L and LSc,Sc represents the matrix obtained
from L deleting the columns and rows indexed by S. It can
be proved that for any q and any S ⊂ V , zero error recon-
struction is possible when ω < Ωq(S). Then, the optimal
sampling set of nodes is given by

Sopt = arg max
|S|=m

Ωq(S). (2)

The solution of (2) is achieved using a heuristic rule, that con-
sists in calculating the first eigenvector of LqSc,Sc while the
nodes are aggregated one at a time. In particular, a node is
added to the sampling set according to the index location of
the component with the highest absolute value for the first
eigenvector of LqSc,Sc . The value of q should be selected as
large as possible for high accuracy.

Other approaches do not require spectral decompositions.
In [13] an approach is proposed, where the nodes are selected
according to a random matrix operator P which is designed
jointly with the sampling matrix M, and the reconstruction of
the signal is given by

xrec = arg min
z∈RN

(∥∥∥P−1/2(Mz − xS)
∥∥∥2
2

+ τzᵀg(L)z

)
,

(3)
where τ ∈ R+ and g(·) is a polynomial function, both of
which are selected empirically. The optimal way to deter-
mine P requires the eigenvector decomposition of L, how-
ever in [13] an eigen decomposition free estimation of P is

Fig. 1. Bottom-left: Random(uniform) sampling pattern dis-
tribution on the nodes of the graph. Bottom-right: spectral
characteristics of 100 averaged spectrums. Top-left: Blue
noise sampling pattern distribution on the nodes of the graph.
Top-right: spectral characteristics of 100 averaged spectrums.

proposed allowing an approximate solution of (3), with this
approach it can be proven that MP−1/2 satisfies the restricted
isometry property, but only for a number of samples on the or-
der of O(k log k). Most recently [8] proposed the use of de-
terminantal point processes (DPP) to obtain an estimate of P
including the case where eigen decompositions are not avail-
able and the reconstruction of the signal is obtained solving
eqn. (3).

In [14] the problem of graph signal sampling is considered
in a scenario in which only one node is used for the sampling
of the product between the shifting operator and the signal,
considering several powers of the shifting operator.

3. BLUE NOISE DITHERING ON GRAPHS

The concept of blue noise dithering has played a central role
in applications involving representation and printing of im-
ages, where a gray scale image has to be represented with a
binary pattern in such a way that this representation preserves
essential properties of the original image. In particular, the
new representation looks to the human eye as an image free
of artifacts that represents the range of gray scale tones of the
original one [9,15,16]. The spatial and spectral characteristics
of blue noise sampling patterns allow the generation of such
patterns either considering the spectral shaping of its Fourier
transform or the spreading of the samples in the spatial do-
main following simple and intuitive principles.

3.1. Spectral Statistics

On the spectral axes, blue noise sampling patterns are char-
acterized by a low energy content on the low frequencies. In
order to quantify the behavior of a pattern regarding its spec-
tral properties, we average the power spectrum of several of
its realizations, to this end the idea of periodograms is ex-
tended to signals on graphs as follows. Let q be the number of
realizations, x1,x2, . . . ,xq , of a stochastic signal, its power
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spectrum can be calculated as

p(`) =
N

q

q∑
i=1

x̂i(`)
2

‖x̂i‖22
` = 2, . . . , N. (4)

where the `th component of p is associated to the `th Fourier
coefficient. Notice that p(`) is the average of what is called
in [10] the amplitude spectrum of the signals xq .

It is important to point out that for a uniform random sam-
pling pattern the behavior of p is expected to be flat. In Fig. 1
an estimate of the power spectra of a random (uniform) sam-
pling pattern and a blue noise sampling pattern is depicted on
a random sensor network considering a density of d = 0.1.
Then, approximate versions of blue noise sampling patterns
can be defined as the minimizers of the cost function Rs,
given by

Rs =
1

m

N∑
`=2

ŝ(`)2

µ`
. (5)

Rs can be considered as a measure of redness for the sam-
pling pattern s, and basically penalizes the low frequency
content.

3.2. Spatial characteristics of Blue-Noise

As can be observed in Fig. 1, the vertex distribution of a blue
noise sampling pattern on the graph displays a spread uni-
formity in the sense that nodes where the sampling pattern is
equal to 1 are located as far as possible from each other. In
the following section, this property is exploited in order to
generate blue noise patterns.

4. GENERATING BLUE-NOISE SAMPLING SETS

In order to generate blue noise sampling patterns we pro-
pose an adapted version of the void and cluster algorithm
originally developed in digital halftoning applications [17].
The adapted version of this algorithm for the generation of
blue noise sampling patterns on graphs can be appreciated
in the Algorithm 1. The spreading of the sampling nodes is
performed considering the geodesic distances on the graph,

Γ, evaluated on a Gaussian kernel K(i, j) = e−
Γ(i,j)2

σ ,
where the value of σ is related with the average distance
between sampling points and should be selected accordingly.
The distances between sampling nodes using K are itera-
tively computed in c(supp(s)) =

∑
K(supp(s), supp(s)),

where the support of the sampling pattern is used to up-
date the components of c and the distance between sampling
nodes and the complement set is computed in c(supp(s)c) =∑

K(supp(s), supp(s)c) − τ , where τ ≥ N . The use
of the kernel is meant to emphasize the interaction between
sampling nodes that are close. In this way, the ones in s,
are relocated to reduce the average distances between sam-
pling points moving nodes from clustered regions to voids

Algorithm 1 Void and cluster algorithm for graphs
Input: m: number of samples, σ.
Output: s: sampling pattern

Initialisation : s = 0, IndA=-1, IndB=-1.

Calculate K(i, j) = e−
Γ(i,j)2

σ for all 1 ≤ i, j ≤ N .
2: c = K1N×1.

GetM as m nodes selected at random.
4: s(M) = 1.

for r = 1 : 1 : N do
6: c(supp(s)) =

∑
K(supp(s), supp(s)).

c(supp(s)c) =
∑

K(supp(s), supp(s)c)− τ .
8: s (arg maxi{c(i)}) = 0.

s (arg mini{c(i)}) = 1.
10: if IndA=arg maxi{c(i)} and IndB=arg mini{c(i)}

then
break

12: else
IndA=arg mini{c(i)}.

14: IndB=arg maxi{c(i)}.
end if

16: end for
return s

on the vertex domain. The results of the void and cluster
algorithm can be appreciated in Fig. 2, where blue noise sam-
pling patterns are displayed considering several densities d.
The vertex-domain spreading and uniformity can be clearly
appreciated, as there are not cluttered sampling nodes. Ad-
ditionally the spectral characteristics of blue noise are also
depicted.

5. EXPERIMENTS

Blue noise sampling patterns are tested against state of the
art techniques considering different graphs and signal mod-
els. Given a graph model and a signal model, a set of 100
signals is generated, sampled and reconstructed considering
several sampling rates. The mean squared error (MSE) is cal-
culated for each reconstruction and averaged over the number
of signals used. The schemes of sampling considered for the
experiment are: Random (uniform) sampling, blue noise sam-
pling by void and cluster, the sampling scheme proposed by
Chen et. al. [11] and the sampling scheme proposed by Anis
et. al. [12]. The signal models used are:

• SM1: A random signal of bandwidth k = 50, where the
Fourier coefficients are generated from the Gaussian distri-
butionN (0, 0.52). The samples captured are contaminated
with additive Gaussian noise such that the Signal to Noise
Ratio is SNR = 20dB.

• SM2: A random signal of approximate bandwidth k = 50.
The Fourier coefficients are generated from the Gaussian
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(a) (b) (c) (d)

Figure 1: 2 Figures side by side

1

Fig. 2. Void and cluster: blue-noise sampling patterns for different intensities d. First row: Localization on the graph of the
nodes selected in a blue-noise sampling pattern. Second row: Power spectral density for the different blue-noise sampling
patterns. Third row: the redness Rs of the sampling pattern vs the iteration number using void and cluster.

distribution N (0, 0.52) and modulated by h(µ), where

h(µ) =

{
1 If µ ≤ µ50

e−4(µ−µ50) If µ > µ50
(6)

The graphs used are:

• Graph G1: A bunny graph with N = 2503 nodes, where
the edges weights are given by the Euclidean distance be-
tween vertices.

• Graph G2: A sensor network with N = 500 nodes, where
the edges weights are given by the Euclidean distance be-
tween vertices.

In Fig. 3 the reconstruction error of different signals from
a set of samples is depicted considering different graphs, and
several signal models. The results show consistently that blue
noise sampling leads to competitive results with respect to the
state of the art techniques. In [18] some theoretical insights
are provided about why blue noise sampling promotes good
sampling sets on graphs.

6. CONCLUSIONS

The concept of blue noise sampling on graphs is discussed
and its performance against other techniques has been evalu-
ated. Taking into account the characteristics of these patterns
on the vertex domain, an algorithm for its generation has been
also discussed. This maximization of the distance between
sampling nodes obeys the intuitive idea that the samples of

(a) (b)

(c) (d)

Fig. 3. The averaged mean squared error of the reconstructed
signals from a sampled representation: (a) The graph G1 and
the signal model SM1. (b) The graphG1 and the signal model
SM2. (c) The graph G2 and the signal model SM1. (d) The
graph G2 and the signal model SM2.

the signals should not be too close to each other as they will
be highly correlated and would lead to poor reconstructions.

The calculation of geodesic distances on the graph nec-
essary for the use of void and cluster could be in some cases
computationally expensive. However, efficient implemen-
tations can be obtained exploiting the simple principle of
spreading the sampling nodes homogeneously and as far as
possible from each other. This efficient implementation for
the generation of blue noise is part of our current research.
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