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W ith the surge in the volumes and dimensions of data de-
fined in non-Euclidean spaces, graph signal processing 
(GSP) techniques are emerging as important tools in our 

understanding of these domains [1]. A fundamental problem 
for GSP is to determine which nodes play the most important 
role; so, graph signal sampling and recovery thus become es-
sential [2]. In general, most of the current sampling methods are 
based on graph spectral decompositions where the graph Fourier 
transform (GFT) plays a central role [2]. Although adequate in 
many cases, they are not applicable when the graphs are large 
and where spectral decompositions are computationally difficult 
[3]. After years of beautiful and useful theoretical insights devel-
oped in this problem, the interest has now centered on finding 
more efficient methods for the computation of good sampling 
sets. Looking to the spatial domain for inspiration, substantial 
research has been performed that looks at the use of spatial point 
processes to define stochastic sampling grids with a particular 
interest at point processes that generate “blue noise.” 

The term blue noise was first coined by Ulichney [4] in the 
field of halftoning to describe a homogeneous distribution of 
printed dots used by inkjet printers to reproduce shades of 
gray that are spaced as far apart as possible, having a power 
spectra dominated by high-frequency energy where blue is 
the high-frequency component of white light [5]. Minimiz-
ing low-frequency or red energy creates dot patterns that are 
least visible to the human visual system, and by understand-
ing the relationship between interdot spatial characteristics 
to desirable spectral properties, an algorithm developer can 
focus on optimizing these spatial characteristics instead of 
spectral. And because these arrangements also define good 
stochastic sampling patterns as well as sampling sets on 
graphs [6], [7], it is expected that vertex-domain sampling 
algorithms exist for graphs that are computationally efficient 
and applicable to large graphs where Fourier-based methods 
are impractical.

Concepts similar to blue noise in relation to graph sampling 
include the early work of Stadler [8], who developed spectral 
measures to quantify the correlation between the values of 
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signals on the vertex domain for some families of graphs. Also 
included is the work of Pesenson [9], who defined sampling 
patterns based on the covering of a manifold by means of open 
sets of the same size, while de Silva and Ghris [10] used a simi-
lar concept of disk coverings to capture homological proper-
ties with graphs. Tremblay [11] proposed graph sampling with 
a point process having a repulsion property that minimized 
the possibility of nearest neighboring samples existing within 
a predefined range, all based on the approach proposed by 
Puy et al. [12] who introduced blue-noise-like random sam-
pling strategies based on the local graph properties.

Lacking a single, unifying framework for good graph sam-
pling with low computational complexity, it is the goal of this 
article to translate the concept of blue noise for spatial-domain 
sampling onto graphs such that the attributes of the algorithms 
of halftoning can be justifiably employed in the vertex domain 
as an alternative to methods that require the 
calculation of eigenvalues and eigenvectors. 
A fascinating aspect of this article is that it 
draws from various disciplines within sig-
nal processing, spectral graph theory, and 
from digital halftoning. Additionally, the 
concept of admissible partitions proposed 
in [13], although theoretical, put the seeds 
for the development of diffusion sampling 
methods based on blue-noise sampling principles. As error dif-
fusion is one of the most successful and computationally effi-
cient blue-noise halftoning algorithms in the spatial domain 
[14], we expect it to become a standard technique for graphs.

Beyond unidirectional, connected graphs, this article also 
considers multigraphs, where signals can be defined and pro-
cessed exploiting concepts from GSP but where a unique set 
of challenges arises from the intrinsic characteristics of mul-
tigraphs. Without a clear definition of frequency, sampling 
algorithms proposed for simple graphs like those of Anis 
et al. [15] do not have multigraph variants. Yet even though 
there is no clear understanding of blue noise in the spectral 
domain, the vertex-domain definition of blue noise as a pro-
cess that minimizes clustering of sampling nodes is more 
easily extended to nonsimple graphs, such as multigraphs. 
Within the context of digital printing, we hypothesize that 
multigraphs are similar to color halftones composed of cyan, 
magenta, yellow, and black inks where the individual half-
tones observe blue-noise properties as well as the composite 
color halftoned when viewed in the monochrome, luminance 
space [16]. As such, this article demonstrates a series of 
modifications to our graph algorithms to also sample mul-
tigraphs where we extend the idea of jointly blue noise to 
multigraph sampling.

Background and notations
Before introducing the details about blue-noise sampling, we 
note that the graphs considered in this discussion are undirect-
ed, weighted, connected, and simple. They are represented by 

( ), ( )),(G V G E G=  where V(G) is the set of nodes and E(G) 
the set of edges. The weights associated to the edges in E(G) 

are stored in the symmetric matrix W, being ( , ) ,u v 0W $  the 
weight associated to the edge connecting the nodes u and v. 
The diagonal matrix D stores the degrees of the nodes in the 
graph, and its entries are given by ( , ) ( , ).u u u vD W( )v V GR= !  
The values of D can be used to characterize any graph G by 
its volume as ( ) ( , ).G u uvol D( )u V GR= !  On any graph, sev-
eral graph shift operators can be considered to exploit dif-
ferent properties of the graph and to define a GSP frame-
work [1], [17]. For our discussion, we use the combinatorial 
graph Laplacian ,L D W= -  which is a symmetric-positive 
semidefinite matrix whose eigenvalues are represented as 

,0 N1 2 g# # #n n n=  ( ) .N V G; ;=  A path between the nodes 
u1  and uq  is given by a sequence of nodes { }ui i

q
1=  such that 

( , )u u 0W i i 1 !+  for all ,i q1 1# # -  and its length is given 
by ( , ) .u uWi

q
i i1

1
1; ;R =

-
+  Then, the distance (geodesic) between 

u1  and uq  is defined as the minimum length of all the paths 
between u1  and ;uq  we store the values 
of these distances in the matrix ,C  where 

( , )u vC  is the distance between the nodes 
u and v.

A real-valued signal x on the graph G is 
defined as a function : ( ) ,x V G R"  which 
is associated to a vector .x RN!  The com-
ponent ( )x v  represents the value of the sig-
nal on the node ( ).v V G!  The support of 

x, defined as the set of nodes where x is different from zero, 
is indicated by ( ),xsupp  and the restriction of x on a subset 
of nodes S is represented by ( ).x S  Considering the spectral 
decomposition of the Laplacian as ,L U UK= <  the GFT of 
a graph signal x on G is defined as x xU= <t  [1]. The band-
width of x is defined in terms of the nonzero components of .xt  
In particular, the bandwidth of x on the spectral axes is given 
by R!~ +  if ( ) { : },x PW G span Uk k! #n ~=~t  where 

( )PW G~  is the so-called Paley–Wiener space of bandwidth ~  
[18], and Uk  is the matrix whose columns are the first k columns 
of U. An alternative representation of the bandwidth is given 
by the largest integer k such that .k #n ~  When considering 
the realizations , , ,x x xq1 2 f  of a random signal x, the power 
spectrum of x is computed as ( ) ( / ) ( ) / .x xN qp i

q
i i1

2
2
2, , < <R= = t t

The notion of bandwidth on a graph is based on the fact 
that any signal on the graph can be represented by means of 
its nonzero coefficients in the GFT, which states a minimum 
number of values of the signal for its unique representation. 
In this context, we consider the sampling of a signal x on the 
graph G by selecting the components of x on a subset of 
nodes { , , } ( ).S s s V Gm1 f 1=  These values are represented 
by ( ) ,x xS M=  where M is a binary sampling matrix. A 
reconstructed version of x can be obtained from ( )x S  as

	 ( ) ( ),argminx z x xS SM U MU
( )z

k k2
2

rec
span Uk

= - = @

!
^ h � (1)

where MUk
@^ h  is the Moore–Penrose pseudoinverse of MUk  

[6], [15]. The closeness between x and xrec  is directly depen-
dent on the choice of the sampling set S; therefore, the central 
challenges in sampling are two. First, given a fixed value of 
the bandwidth of the signals, it is desired to find the subset of 
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sampling nodes S such that the reconstruction in (1) provides 
the minimum error, and second, given a fixed number of sam-
pling nodes, it is desired to find the subset of nodes S, which 
extends or maximizes the bandwidth of the signals that can be 
represented in a unique way on S.

In [18], some quantities have been defined to character-
ize the goodness of sampling sets, relying on the concept of 
removable sets. In particular, any subset of nodes ( )S V G1  is 
said to be a K–removable set if

	 ( ),x x x L S1 L2 2 26# !K^ h � (2)

where ( )L S2  is the set of all signals x, with support in 
( )S V G1  and finite 2,  norm. The highest-value K for which 

(2) holds, is represented as .SK  This can be associated to the 
quality of a given sampling set. Indeed, as stated in [18], if for a 
set ( ),S V G1  it happens that ( )\S V G Sc =  
is a ScK –removable set, then all signals in 

( )PW G~  are completely determined by 
their values in S whenever .0 Sc1 1~ K  
As such, ScK  provides a measure for the 
quality of the set S as a sampling set. In 
[13], other parameters connected to ScK  are 
introduced and a detailed discussion about 
them can be found in [6], where it is also 
shown that sets of nodes with large values of ScK  are desired 
not only for the uniqueness of the representation but also for a 
high-quality reconstruction.

Different approaches have been considered in the literature 
for the search of optimal sampling sets [6], [15], [17]. Most of 
these approaches rely on the minimization or maximization of 
a cost function that is directly or indirectly related to the val-
ues of ScK  as a consequence of the fact that finding the subset 
of nodes that provides the maximum value of ScK  is a com-
binatorial NP-hard problem. The different cost functions are 
based on the minimization of the error in the reconstruction 
[6] achieved by means of greedy algorithms that add one node 
at a time. A detailed discussion of the recent methods can be 
found in [6] considering different types of sampling schemes 
and optional reconstruction methods. Illustrated in “Exam-
ple 1” is one such sampling method from [15] that relies on the 
systematic calculation of the first eigenvector and eigenvalue 
of a Laplacian matrix indexed by the nodes in the complement 
set of a temporary sampling set S. In particular, denoting by 

( )L ,S S1 c cn  the first eigenvalue and u1  its associated eigenvec-
tor of the matrix obtained from L deleting the rows and col-
umns indexed by S, an optimal sampling set S is obtained as 

{ },S S v,=  where v corresponds to the index of the compo-
nent of u1  with maximum absolute value. This process starts 
with S 4=  and repeats the desired number of sampling points.

Also illustrated in “Example 1” are the sampling methods 
proposed in [12] and [11]. In [12], m samples are drawn inde-
pendently according to the sampling distribution ,p RN!)  
which minimizes the graph-weighted coherence given by 

,/p U Ui k
T

i i
N

k
T

i1 22< < < <ee R=) =  where ie  is the N-dimensional 
Kronecker column vector centered at i. Tremblay et al. in [19], 

on the other hand, introduced a way to find the optimal distri-
bution p)  based on determinantal point processes, considering 
sampling sets of size m k=  when Uk  is available. An efficient 
implementation of this sampling technique was later developed 
in [11]. The recovery of the signal for the methods in [11] and 
[12] is given by

	 ( ) ,argmin P Mx z x S( )
/

Uz
1 2

2
2

rec span k ; ;= -!
- ^ h � (3)

where ( ).pdiagP = )  Note that (3) can be considered a particu-
lar instantiation of (1), where the effective sampling matrix is 

.P M/1 2-

Blue-noise graph sampling
As an alternative to deriving eigenvectors and values, blue-
noise sampling on graphs provides a framework for the effi-

cient generation of sampling sets relying on 
the simplicity of generating vertex-domain 
blue-noise-like patterns using algorithms 
originally derived for halftoning. Although 
blue-noise sampling can be described by 
means of simple and intuitive ideas, its 
connection with formal theoretical results 
about graph sampling [6] provides a solid 
ground for the development of simple, ef-

ficient, and fast algorithms with consequences in applications 
where large networks are considered. As various studies have 
looked at how to convert a continuous-tone image into a blue-
noise halftone, we similarly are interested in algorithms for 
building blue-noise sampling patterns on graphs.

As stated previously, Ulichney [4] demonstrated that the 
best halftoning algorithms are the ones that maximize the high 
or blue-noise frequencies or, conversely, minimize the low or 
red-noise frequencies; however, doing so is much easier, com-
putationally, in the spatial domain assuming that we know the 
spatial properties corresponding to minimizing a pattern’s 
redness. Likewise, Parada-Mayorga et al. [6] show that good 
graph sampling is defined by binary graph signals whose GFT 
also minimizes redness, which they define as a weighted mea-
sure of the signal’s total energy according to

	
( ) ( )

,
s

s s
R

m
1 1

s

N N

2
2

2

2

2

2

, ,
n n

= =
,, ,,= =

t

t t/ / � (4)

where st is the GFT of s, and the square of each coefficient 
is weighted by the inverse of the corresponding eigenvalue/
frequency. In this way, the lowest frequency components have 
much greater weight than do the highest. In the vertex domain, 
these binary signals have intersampling node-spatial proper-
ties, which are characterized as a homogeneous distribution 
of sampling nodes spaced as far apart as possible while also 
uniformly spanning the area of the graph at a given density. To 
illustrate this, “Example 2” compares well-formed blue noise 
with uncorrelated white-noise patterns generated by associat-
ing to each node a Bernoulli random variable with a probabil-
ity of success of / .p m N=

The notion of bandwidth 
on a graph is based on the 
fact that any signal on the 
graph can be represented 
by means of its nonzero 
coefficients in the GFT.
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Like halftones, white-noise graph signals have a flat Fou-
rier response for all frequencies, while blue noise shows a 
substantial reduction in red energy near .0n =  It is this reduc-
tion in redness that makes blue noise beneficial to graph sig-
nal sampling. Specifically, Parada-Mayorga et al. [6] proved 

that the redness of any sampling pattern, with support in a set 
( ),S V G1  is related to the value of ScK  according to

	
( )

,C
G R m

N
m

R

1vol s

s
S 2

2

c2K
- -

d
d

f ` j p
� (5)

The void-and-cluster (VAC) and error-diffusion methods 
have the advantage that spectral decompositions are not 
required, whereas the other used methods do. The patterns 
generated by adaptive VACs are similar to those generat-
ed using spectral decomposition (see Figure S1).

To compare the performance of various sampling methods, 
a numerical experiment using the 2,642-node Minnesota 
graph was generated. One hundred band-limited signals 
with bandwidths of . ( )V G0 05 ; ;  were generated having addi-
tive Gaussian noise with a signal-to-noise ratio of 20. An 
example of these signals is depicted in Figure S2(a). The sig-
nals were then sampled and reconstructed using different 
methods according to the sampling nature; deterministic 
methods used (1) for the reconstruction, while probabilistic 

methods (Puy et al. [12] and Tremblay [11]) used (3). The 
mean-squared errors (MSEs) between the reconstructed and 
original signals were compared for all the methods [see 
Figure S2(b)].

A VAC with .1 5a =  has an MSE that quickly converges 
to the sampling patterns of Anis et al. [15] and Tremblay 
et al. [11] and performs substantially better than random 
sampling. A VAC with 0a =  produces a uniform spatial 
distribution, independent of the underlying graph structure; 
in the case of the Minnesota graph, this causes a poor per-
formance. Even though error diffusion does not outperform 
a VAC with . ,1 5a =  it offers lower computational com-
plexity, and its performance is comparable to the method 
proposed by Puy et al. [12].

Example 1

Anis et al. Puy et al. VAC Uniform Sampling
a = 0

VAC Adaptive Sampling
a = 1.5

FIGURE S1. Different sampling strategies on the Minnesota graph with a density of 10%.
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where d  is the isoperimetric dimension of the graph, and Cd  
is a constant that depends only on .d  Note that low values of 
Rs  are desired because, as Rs  decreases, the right-hand side of 
(5) increases, providing the guarantee that the minimum pos-
sible value of ScK  increases as well. The proof of (5) relies on 
the use of the Dirichlet inequality ( ) ( / ( ) ),S C S1 vol /

D
22n d
d  

where ( )SDn  is the first eigenvalue of the combinatorial 
Laplacian on the induced subgraph by ( ),S V G1  and on the 
fact that ( ) ( / ) / ( ) /sS m m N1vol N2 2

2
2,$ nR- , ,= t^ h [6]. Addi-

tionally, we note that (5) is consistent with an intuitive inter-
pretation of the relationship between Rs  and the correlation 
between sampling nodes. We recall that as pointed out in [8], 
the correlation length of a signal x on a K-regular graph is 
given by / ( ) /( )x xKx

N
2
2

2
2, ,< < nR= , ,=t t  and, therefore, the red-

ness of a sampling pattern can be seen as directly linked to 
how correlated the sampling nodes in a sampling pattern are. 
And this correlation is intuitively expected to decrease when 
the distance between sampling nodes is increased, which at the 
same time would lead to a reduction of the redness.

Now, as ideal blue-noise sampling patterns inherit the 
low values of ,Rs  it is our goal to establish a spatial-domain 
statistic on which we can develop vertex-domain optimiza-
tion algorithms sans eigenvectors. Translating Ulichney [4] 
from halftoning to graphs, blue-noise graph signals can be 

described as a set of fixed radius disks covering the graph 
such that the area of the disk is equal to the area of the graph 
divided by the number of sampling nodes [6]. The radius of 
these disks is then the average distance (geodesic) between 
the nearest neighboring sample nodes indicated by bm  and 
referred to as the principal wavelength of blue noise [14]. 
Although the relationship between bm  and the gray level of a 
binary halftone is deterministic and proportional to the square 
of the density, it is not so on graphs, which may vary greatly in 
the way nodes are connected. Hence, the principal wavelength 
of an ideal blue-noise sampling pattern can be related to the 
number of sampling nodes according to / ,{ ( )}d 1 E N bm=  
where { ( )}E N bm  is the expected number of 1s on an open 
ball of radius ,bm  and /sd N0< <=  is the density of the sam-
pling pattern. Because { ( )}E N bm  is graph dependent, so is 

.bm  The value of bm  can be computed experimentally consid-
ering the histograms of the number of nodes inside a given 
radius for a given node.

It is important to point out that, for a particular graph, the 
values of { ( )}E N bm  may vary dramatically from one region 
to the other if the local properties of the graph are not homoge-
neous. This leads to a dilemma, as to have a consistent relation-
ship between d and ,bm  the spacing between sampling nodes 
should be modified accordingly. For the remainder of this 

In Figure S3, the red lines represent the ideal spectral 
shape defined by Ulichney [4] for digital halftones 

transcribed to the graph Fourier transform. The graph 
power spectra of random or white-noise sampling is char-
acterized by a flat shape across all of the frequencies, 
while blue-noise patterns .d 0 05=  and .0 15  are character-
ized by the suppression of low-frequency components that 
becomes more pronounced for patterns with higher density.

Note that the location of the peaks in the ideal frequency 
response (Figure S3) and the pair correlation (Figure 2) 
move in opposite directions, but a closed-form expression 
can be derived for only specific families of graphs. Patterns 
with higher densities require more iterations to arrive at 
their stable form, while patterns with lower densities are 
stabilized after just a few iterations (see Figure S4).

Example 2
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FIGURE S3. Graph power spectra on a sensor network generated by 
random and void-and-cluster sampling patterns with horizontal axes 

kn  representing the normalized eigenvalues (frequency), while ( )p kn  
are the intensities of the power spectrum calculated as the squared 
average of the kth  coefficient of the graph Fourier transform.

FIGURE S4. An example of how the redness ( )R s  of the patterns, 
computed using (4), decreases as the number of iterations in the void-
and-cluster algorithm increases.
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section, we consider graphs with this local homogeneous struc-
ture measured by the local isoperimetric dimension. In these 
types of graphs, equal spacing leads to an optimal reduction 
of the redness which, as it is shown in [6], is a desired attribute 
of good sampling patterns. Note that when this property is not 
satisfied, a partition of V(G) can be built such that each element 
in the partition has the same local properties.

Assuming a local homogeneous graph structure, we expect 
the average distance between sampling nodes, ,bm  to have 
some variation with too large a variation having a noisy or 
uncorrelated (white) point distribution, while too small a 
variation has a periodic or rigid sampling arrangement. Sta-
tistically, we can quantify the variation in bm  using the pair 
correlation to measure the increased/decreased likelihood of 
a sampled node occurring at a given distance from another 
sampled node. In [6], the graph pair correlation is introduced 
to analyze the vertex-domain characteristics of sampling pat-
terns following the same principles used by Lau et al. [20] 
in traditional halftoning to provide a clear description of the 
distance between the closest points in a sampling pattern. 
Its definition relies on the use of concentric ring sets (annu-
lus) given by ( , ) { ( ) : },B v u V G ,v u 1! # ; ;t t i c t i= - +i  
where ,v uc  is the shortest path between the nodes v and u. Note 
that ( , )B v ti  can be obtained as the set difference of two open 
balls centered at v with a radius of t i-  and ,t i+  respec-
tively. With this notion, the sample pair correlation of a sam-
pling s is given by

	 ( )
( ( , ))

( ( , ))
,

s

s

N
B v

m
B s

1

1

R

( )

s

v V G

i
i

m

0

1
0

t
t

t

=

!

i

i

=

/

/
� (6)

where sm < <= 0  is the size of the support of s, i.e., ( )sS supp= = 
{ , , , },s s sm1 2 f  and ( ( , ))s B si 0< <ti  is the number of elements 
in the support of s on ( , ).B si ti

To help illustrate the meaning of the pair correlation, Fig-
ure 1 shows in green all of the nodes within a shortest path 
distance of an arbitrary t  from a sample node of interest for 
a random sensor network. A close inspection of the figure 
shows that t  is measured based on the weights of the connec-
tions and not the Euclidean distance, as the disk of green has 
a rough edge. Shown in orange are all of the nodes that are 
within !i  of t  from the node of interest; while the sample 
nodes in blue are within the set of orange nodes. So the pair 
correlation is the ratio of the number of blue sample nodes 
over the total number of orange nodes. Thus, the numerator is 
the average number of elements in S enclosed on a ring cen-
tered in another element ,s Si !  while the denominator is the 
average number of elements in S enclosed on a ring centered 
in any node ( ).v V G!  The value of i  is selected according 
to the distribution of nonzero values of W being the average 
of these values of the typical selection [6]. When a random 
pattern is considered via q of its realizations , , ,s sq1 f  the pair 
correlation is calculated as ( ) ( ),/q1R Rsr

q
1 rt tR= =  where the 

values of t  for which ( )R t  reaches a peak are an indication 
of a frequent occurrence of a given distance between sampling 
nodes, while the valleys indicate a suppression at these inter-
point distances.

Presented in Figure 2(a) and (b) are the pair correlations for 
a white- and blue-noise process, respectively, where, for white 
noise or random sampling, the expected number of selected 
nodes stays constant for all values of ,t  with the pair corre-
lation exhibiting a flat shape. Given the nature of blue-noise 
sampling to minimize clustering and equally space sam-
pling nodes, we expect the pair correlation of a well-formed 
blue-noise sampling pattern to match that depicted in Fig-
ure 2(b), which exhibits the following properties: 1) given a 
sampling node, no other sampling nodes lie within a path of 
length ;b1t m  2) for ,b2t m  the expected number of sam-
pling nodes per unit area (on the geodesic domain) tends to a 

y t t t

2i
2i

(a) (b) (c)

FIGURE 1. How to calculate the pair correlation for a given set of sampling nodes where (a) the green nodes are all nodes within a radius t  of a 
given sample nodes, (b) the orange nodes are within !i  of t  from the node of interest, and (c) the blue nodes are sample nodes within the set of 
orange nodes. 
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constant value; and 3) the internode distance with the highest 
occurrence is .bm

As stated previously, as the variance in the distance between 
the nearest sampling nodes increases, we expect to see the val-
ley in ( )Rs t  for b1t m  to fill in, while the peak at bt m=  
is expected to dissipate until it becomes flat for all ,t  which 
is characteristic of uncorrelated or white-noise sampling pat-
terns. From Figure 2(b), we see the characteristic peak when t  
is equal to bm  with a noticeable suppression of samples nodes 
at a distance less than bm  apart. In [11], Tremblay referred to 
this suppression as a repulsion property. We summarize this 
result by saying that ideal blue-noise sampling patterns on 
graphs have their sampling nodes spread as far apart as pos-
sible from each other.

Void and cluster
To demonstrate that good blue-noise sampling patterns can be 
constructed entirely in the vertex domain, Parada-Mayorga et 
al. [6] proposed a blue-noise generator for graphs inspired by 
Ulichney’s void-and-cluster (VAC) algorithm [21]. For halfton-
ing, VAC modifies the concentration of printed pixels moving 
dots from regions with high concentration to regions with low 
concentration. For graphs, VAC relies on the use of geodesic 
distances between sampling nodes on the graph, maximizing 
for each sampling node the sum of distances with respect to 
other sampling nodes. Specifically, VAC uses the Gaussian 
kernel, ( , ) ( ( , ) / ),expu v u vK 2 vC= -  to map the geodesic dis-
tance ( , )u vC  between nodes u and v into a new set of values 
that are directly used to measure the density of sampling nodes 
in a given region. The values of ( , )u vK  are close to 1 and 0 for 
the small and large values of ( , ),u vC  respectively.

Initially, we set the signal s to a random binary signal where 
the signal’s support, ( ),ssupp  becomes the set of sampling nodes 
where s is equal to 1. The density of the sampling nodes, ( ),ssupp  
is calculated as ( ( )) ( ( ), ( )),s s ssupp supp suppc KR=  while 
the density of the remaining nonsampling nodes, ( ) ,ssupp c  
is calculated as ( ( ) ) ( ( ), ( ) ) ,s sssupp supp suppc Kc c xR= -  
where N$x  and ( , ) ( , )A B a bK K,a b i ji jR R=  with ,a Ai !  

.b Bj !  The new location of the nodes in s is done accord-
ing to { ( )}argmaxs i 0( )ci =  and { ( )} .argmins i 1( )ci =  That 
is, { ( )}argmaxs i( )ci  is the sampling node with the high-
est corresponding local density. We make this node a non-
sampling node by setting its signal value to 0. Likewise, 

( { ( )})argmins ici  is the nonsampling node having the least or 
sparsest local density, which we make into a sampling node 
by setting its signal value to 1. Repeating these steps until the 
same two nodes flip back and forth leads to a sampling pat-
tern like the one depicted in Figure S1 (in green) in “Exam-
ple 1,” which shows a uniform and homogeneous spreading 
of the samples. 

As proposed, the uniformity of the sampling pattern 
obtained by means of VAC does not consider the density of 
the connections around each node. As a consequence, the 
richness of the information associated to a given sampling 
node might be poor. This density can be included considering 
the mapping ( , ) ( , ) { ( ), ( )} ,maxu v u v u vW W7 t t a  where 

/( ) ( , ),( )u u u uDNt =  ( )uN  is the number of neighbors of u, 
and .R!a +  In this way, the weights will be increased in 
regions of the graph where we have nodes with a large num-
ber of connections, allowing the nodes to be further away 
than they would be with no modification of the weights. At 
the same time, those regions with a low density of connec-
tions will have low concentrations of sampling nodes, as the 
weights will be decreased, resulting in patterns like Figure S1 
(in blue) in “Example 1.”

Error diffusion
Although VAC produces good blue-noise patterns, its com-
putational complexity, ( ),NO 2  makes it especially expensive 
for large graphs. So, we propose a method of error diffusion 
[7] that performs well with only ( ( ))N d2O deg+ r  complexity, 
where ddegr  is the average degree of the nodes in the graph. 
In digital halftoning, error diffusion has been extensively 
studied and improved for generating blue-noise-like patterns. 
The basic premise is to process signal samples serially along 
a predefined raster path, quantizing each sample to its nearest 
binary value and propagating the quantization error into the lo-
cal neighborhood of yet-to-be-processed samples. How exactly 
the quantization error is divided into neighboring samples is 
determined by a user-defined error filter kernel, with differ-
ent kernels producing different halftone textures—some more 
blue than others.

For the sampling of graph signals, we follow the same prin-
ciple where graph edges take over the role of the error filter 
kernel to define how much the quantization error from a given 
node gets propagated to neighboring nodes. And just as with 
images, error diffusion on the graph requires a predefined ras-
ter path, with some paths leading to better blue-noise sample 
sets than others. We note that the idea of using diffusion for 
the generation of sampling patterns is connected to the notion 
of admissible partitions proposed in [13]. Then, although error 
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noise graph-sampling sets.
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diffusion was developed originally for halftoning applications, 
it can be considered on graphs as an attempt to generate the 
optimal sequence of admissible partitions that would lead to 
an optimal sampling set.

In this article, error diffusion on the graph starts by defin-
ing a constant signal ( / )x m N 1N 1= #  or x with amplitude 

/d m N=  along with a raster path defining the order on which 
we will visit each node of the graph and a quantization thresh-
old tth  defining when a scalar sample is closer to 0 or 1. In 
graphs, the raster path is defined using the labeling of the 
nodes assigned when the graph is generated. This labeling is 
not unique [1], but for our discussion, we consider graphs gen-
erated by the GSP toolbox with the labels it provides for the 
construction of the raster paths. Then, starting with the first 
node in the raster, an error is generated as ( ) ( ),s xe 1 1p = -  
where ( )s 1 1=  if ( )x t1 th2  or ( )s 1 0=  if ( ) .x t1 th1  The 
value of ep  is then diffused to the neighbors of this first node, 

( ),1N  as ( ) ( , ) / ( , ) , ( ).e Wi i e v i i1 1W N( )p i 1N !R= !^ h  This 
process is repeated iteratively following the ordering given 
by the raster in such a way that the error at node v would 
be computed as ( )se v up = -  with ( )s v 1=  if u tth2  or 

( )s v 0=  if u tth1  and ( ) ( ),x eu v v= -  diffusing this error 
as ( ) ( ) ( , ) / ( , ) .e ei i v i e v iW W( )p i vNR= + !^ h  In this way, the 
error is propagated according to the local connections of each 
node, ignoring connections to the nodes already processed. 
Note that this diffusion of error is completely equivalent to the 
one performed in traditional halftoning [4] in the sense that the 
amount of propagated error is not amplified or diluted in any 
way because the sum of the diffusion weights is exactly equal 
to 1; however, each node has its own error filter kernel that is, 
in part, determined by the raster order, as error can only be 
propagated to as-not-yet-processed nodes. There is the occa-
sional situation where a node is the last to be processed within 
a local neighborhood with its corresponding error simply dis-
carded, a situation analogous to error being diffused beyond 
the left and right edges of an image.

Displayed in Figure 3(b) is a cropped region in a 50,000-
node random sensor network that has been sampled by means 

of error diffusion with a sampling density of 2%. As a means 
of statistically characterizing the spatial distribution of nodes, 
Figure 3(a) shows the corresponding pair correlation with an 
inhibition of clustering with ( ) 1Rs 1t  for . .0 041t  The 
lack of a clear peak at the principal wavelength is indicative 
of excessive varying in the average spacing between sample 
nodes relative, for instance, to the spacing from the pair cor-
relation in Figure 2(b). This varying in spacing is visible in 
Figure 3(b) by the snake-like vertical strands/paths formed 
by blue dots; however, Figure 3(b) is clearly more organized 
than random sampling as ( )Rs t  approaches 0 for smaller 
values of .t

Now as a means of quantitatively evaluating error diffusion 
on graphs for signal sampling, “Example 1” shows the perfor-
mance of error diffusion in comparison with other sampling 
approaches described in the “Void and Cluster” section. We 
can observe a clear improvement with respect to uniform 
random sampling as well as VAC when ,0a =  providing an 
alternative for sampling when graphs with a local isoperimet-
ric dimension that is not homogeneous. Although not as good 
as VAC for . ,1 5a =  error diffusion performs sampling with 
substantially lower computational complexity. To see this, we 
consider complexity in terms of two separated components. 
The first is the presampling set search (SS) component, which 
is associated with the calculations that are involved before the 
SS, while the second part is the cost of the SS itself, i.e., finding 
the sampling set. For error diffusion, we have none of the pre-
liminary calculations with pre-SS=0 and SS= ( ( )).N d2O deg+ r  
For VAC, we have a pre-SS= ( ( ( ) ) )logN E G N NO ; ;+  and 
SS= (( )( )).N m1 2O - +  For Anis et al. [15], we have pre-SS=

( ( ) )q E G kTO 1; ;  and SS= ( ),NkO  where q is the power of 
the Laplacian considered in the application of [15], m is the 
number of sampling nodes, k is the bandwidth of the signals 
considered, wr  represents the average of the nonzero elements 
in W, ddegr  is the average number of neighbors of each node, a  
is a constant associated to the difference between the desired 
number of sampling nodes and its effective value, and T1  is the 
average number of iterations required for the convergence of a 
single eigendecomposition pair.

Blue-noise sampling on multigraphs
The principles of blue-noise sampling on graphs can be gen-
eralized to richer graphical structures like multigraphs. The 
interaction between Facebook and Twitter, for instance, is a 
system that can be represented as a multigraph. Compared 
to simple graphs, there are few approaches to the problem of 
sampling on multigraphs [22], [23] given that, despite the fact 
that the spectral decomposition of the matrix operators on the 
subgraphs exists, it is not clear how to get a general spectral de-
composition that involves all of the subgraphs. A naive way to 
generalize the sampling methods proposed for simple graphs, 
such as the ones proposed by Anis et al. [15], Puy et al. [12], 
Tremblay [11], and the adaptive VAC introduced in the “Void 
and Cluster” section, is to construct an equivalent simple graph 
by aggregating the subgraphs information. One of the simplest 
approaches is to define an equivalent weight matrix as the sum 

0 0.05

0.5

1

0.1 0.15 0.2 0.25

R
(t

)

t
(a)

(b)

FIGURE 3. (a) The pair correlation and (b) the snapshot of a sampling 
pattern obtained by means of error diffusion on a random sensor network 
with 50,000 nodes.  
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of the weight matrix Wl  of each set of edges, ( ).E Gl  Thus, the 
resulting Laplacian consisting of the sum of the simple graphs’ 
Laplacians is 

	 ( ) ( ).GL LG
l

p

l
1

=
=

/ � (7)

Other approaches suggested for the spectral representa-
tion of multigraphs consider the summation of the individual 
spectral kernels or the linked matrix factorization that approx-
imates the graph through a low-rank matrix approximation 
using the common factors among graphs and the characteris-
tics of each graph Gl  [24]. The problem with sampling based 
on the equivalent weight matrix is that the combination or 
superposition of independent stochastic sampling patterns, 
each designed for a different set of edges ( ),E G  does not nec-
essarily produce aggregate patterns with ideal characteristics. 
The VAC algorithm may open the door to a new generation of 
vertex-domain algorithms whose aim is to produce ideal pat-
terns per set of edges ( ),E G  yet produce combined sampling 
patterns with ideal aggregate properties. At the very least, it 
will demonstrate the flexibility of the vertex-domain interpre-
tation of blue noise.

For multigraph sampling, we generalize the VAC algorithm 
from the “Void and Cluster” section by measuring the sample 
density in each graph Gl  using Gaussian kernels ( , )u vKl = 

/( ( , ) )exp u vl
2 vC-  with a final density, denoted as ,C  comput-

ed as the sum of graph densities, ,cl  according to .cC l
p

l1R= =  
As before, each density vector cl  is computed for the sam-
pling nodes as ( ( )) ( ( ), ( ))s s ssupp supp suppc Kl lR=  and for the 
remaining nodes ( ( ) ) ( ( ), ( ) ) .s s ssupp supp suppc Kl

c
l

c xR= -  
The new location of the nodes is selected depending on the 
multigraph density measure C  as ( { )( )}argmaxs i 0Ci =  and 

{ ,( )}( )argmins i 1Ci =  moving 1s from high-density regions 
[large values of ( )iC ] to regions of low density [low values 
of ( )].iC  This will force the selected vertices to be spread 
apart as far apart as possible in the multigraph as well as the 
individual graphs while maintaining an intersample spacing 
approximately equal to the blue-noise wavelength; alternative-
ly, a weighted sum could increase a particular layer’s influence. 
Regardless, it is clear that when ,p 1=  the algorithm reduces 
to the original VAC, which makes this algorithm a generalized 
version of VAC for .p 1$

To illustrate the performance of sampling on multigraphs, 
consider a multimodal sensing application using hyperspec-
tral images (HSIs) merged with 3D depth maps. HSIs pro-
vide spectral signatures of materials across a wide range of 
wavelengths, but they do not provide structural and elevation 
information. On the other hand, 3D depth cameras provide 
the size, structure, and elevation of different objects. Their 
fusion provides unmatched capabilities in an array of applica-
tions [25], [27]. To this end, a multispectral point cloud was 
captured in five spectral bands centered at 370-nm ultravio-
let (UV), 470-nm (blue), 530-nm (green), 700-nm (red), and 
783-nm near-infrared response (NIR) using a calibrated set 
of Intel Real-Sense D415 and Nurugo UV cameras. NIR-red-
green-blue-UV+ depth focal plane array measurements were 

captured over 15 viewing angles separated by 10° [26]. A 
19,812-multispectral point cloud was then obtained by fusing 
the multispectral measurements. The 3D point cloud consists 
of a set of points { , , },q j N1Q j f;= =  where each point has 
an associated 3D coordinate vector [ , , ]x y zt j =  representing 
its spatial location. The spectral information in q j  is stored in 
the vector [ , , , , ].b b b b bb j j j j j j

UV B G R NIR=

The multigraph ,G  representing a 3D point cloud, assigns 
each voxel in the point cloud to a vertex ( ).v V G!  Two sets of 
edges, ( )E G1  and ( ),E G2  are assigned based on the geometry 
of the point cloud and its relative luminance .Y b0 2126j j

R= + 
. . .b b0 7152 0 0722j j

G B+  In the case of ( ),E G1  two nodes, vi  and 
,v j  are connected if their 3D spatial distance t tDij i j 2< <= -  is 

among their K-nearest neighbors, assigning ( , ) .v vW Di j ij1 =  
For the set of edges ( ),E G2  node vi  is connected to node v j  if 
it is one of the K-closest and most similar neighbors accord-
ing to the relative luminances ,Y YD ij i jY ;;= -  assigning 

( , ) .v vW Di j ij2 Y=  Let { : { }}c UV, B, G, R, NIRb Rc N! !  
be a set of real signals on the graph, defined by the mapping 

: ( ) ,Vb RGc "  where ( )vbc  is the pixel value associated to 
( )v V G!  in the c spectral channel. We explore different sam-

pling methods using this multigraph in “Example 3.”

Conclusions
In this article, we reviewed the theory of blue-noise sam-
pling as an extension of spatial dithering to graphs in both 
the vertex and Fourier domains. Previous works in spectral 
graph sampling exist that can be considered blue noise, but 
this article demonstrated that popular vertex-domain halfton-
ing algorithms can be similarly effective with substantially 
lower computational complexity. We specifically looked at 
VAC as well as error diffusion. Although VAC outperformed 
error diffusion, error diffusion’s ( ( ))N d2O deg+ r  complexity 
makes it especially appealing for large graphs. Future re-
search in these spatial dithering techniques will look at how 
to optimally sample on large graphs, especially in light of 
the lack of alternate approaches. We hypothesize that VAC 
will be especially advantageous at sampling large graphs 
by independently processing partitions with a smoothing of 
sampling nodes along the boundaries. Additionally, we con-
sider that there is great potential in the mathematical tools 
presented in [13], where the properties of the ordered parti-
tions of nodes are studied in connection with uniqueness sets 
for band-limited signals.

In terms of its graphical structures, graph blue-noise 
sampling suits, in a natural way, signal processing approach-
es where the knowledge of local properties is essential. As 
shown with multigraphs, blue noise applied for each induced 
subgraph obtained from the different families of edges leads 
to a simple strategy that does not ignore the intrinsic struc-
ture of the multigraph and does not require the spectral 
decomposition of an equivalent graph. Now, in some applica-
tions where the key role is to find and process a compressed 
representation of the information, one equivalent graph rep-
resentation might not preserve or represent with fidelity the 
original properties of the signal on the multigraph. Beyond 
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To compare the effectiveness of sampling by means of void 
and cluster (VAC) on multigraphs, we perform a numerical 
experiment using a multigraph, G, with close to 20,000 
nodes representing a 3D multispectral point cloud [see 
Figure S5(a)]. The sampling patterns for .m N0 2=  using 
the different methods are depicted in Figure S5(b). Here, 
sampling methods proposed for simple graphs, such as the 
ones proposed by Anis et al. [15], Puy et al. [12], Tremblay 
[11], and the adaptive VAC introduced on multigraphs 
“Void and Cluster” section, use the equivalent weight matrix 
computed as ( ) ( )1W W WG 1 2c c= + - , where the individ-
ual weight matrices, W1  and ,W2  were first normalized 
and the parameter c  determines the influence of one set of 
edges over the other. The generalized VAC on G  considers 
instead ( )1 W1c-  and W2c  because, the smaller the 
weights the higher the influence of the edges when deter-
mining the sampling pattern, thus being the opposite effect 
when considering the addition of the weight matrices to 
compute ( ),W G  as is the case with the former approaches. 
Adaptive VAC with 3a =  and .0 6c =  were used for this 
experiment. Note that the methods proposed by Anis et al. 
[15], Puy et al. [12], and Tremblay [11] require either the 
estimation of the spectral decomposition or the computation 

of eigenvalues and eigenvectors, whereas VAC algorithms 
do not.

The mean square error (MSE) between the reconstructed 
and original signals was computed for all the spectral 
channels, and their average is displayed in Figure S6.  
Here, the proposed generalized VAC on the multigraph G  
significantly outperforms the adaptive VAC on the equiva-
lent weight matrix ( ),W G  random sampling, and sam-
pling on multigraphs G  proposed by Gjoka [22]. The 

Example 3

FIGURE S6. Reconstruction error for sampling patterns of different 
sizes using a down-sampled point cloud , ).(N 4 737=
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graphs and multigraphs, both multilayer and directed graphs 
are two important types of graphs where one can envision 
extending the concepts of VAC and error diffusion given 
the flexibility of the vertex-domain interpretation that ideal 
blue-noise sampling patterns on graphs have their sampling 
nodes spread as far apart as possible from each other.
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process on the reconstruction (3) to increase the chances 
of recovery. 

Here, signals sampled by Puy et al. [12] and Tremblay 
[11] methods were reconstructed using (3) and all the oth-
ers were reconstructed using (1). The equivalent Laplacian 

( )L G  in (7) was used for all the cases (see Figure S7).

Example 3 (Continued)

FIGURE S7. Absolute error between the original and reconstructed green (a) and ultraviolet (b) signals using different sampling methods. Gamma 
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