
Graphon Pooling in Graph Neural Networks
Alejandro Parada-Mayorga, Luana Ruiz and Alejandro Ribeiro

Abstract—Graph neural networks (GNNs) have been used
effectively in different applications involving the processing of
signals on irregular structures modeled by graphs. Relying on the
use of shift-invariant graph filters, GNNs extend the operation
of convolution to graphs. However, the operations of pooling and
sampling are still not clearly defined and the approaches proposed
in the literature either modify the graph structure in a way that
does not preserve its spectral properties, or require defining a
policy for selecting which nodes to keep. In this work, we propose
a new strategy for pooling and sampling on GNNs using graphons
which preserves the spectral properties of the graph. To do so,
we consider the graph layers in a GNN as elements of a sequence
of graphs that converge to a graphon. In this way we have no
ambiguity in the node labeling when mapping signals from one
layer to the other and a spectral representation that is consistent
throughout the layers. We evaluate this strategy in a synthetic and
a real-world numerical experiment where we show that graphon
pooling GNNs are less prone to overfitting and improve upon other
pooling techniques, especially when the dimensionality reduction
ratios between layers is large.

Index Terms—graph neural networks, pooling, graphons.

I. INTRODUCTION

Convolutional neural networks (CNNs) have become essen-
tial in diverse applications, overcoming the scalability issues of
traditional neural networks related to the number of learnable
parameters of the architecture, which previously led to compu-
tational issues. In a CNN, the linear transformation is modeled
using convolutions between the signals and a set of filters
whose parameters can be chosen to be small and independent
of the size of the data. This allows the architecture to scale, and
plenty of numerical evidence shows impressive performance in
classification and regression applications [1], [2]. On the other
hand, CNNs can only process information defined on Euclidean
spaces, which makes them unsuitable for handling data on
irregular domains, i.e., where the convolution operation is not
trivially defined. Graph neural networks (GNNs) emerged as
tools to generalize CNNs to non-Euclidean domains by leverag-
ing consolidated developments of graph signal processing and
exploiting the shift operator to perform graph convolutions [3].

In this paper, we introduce graphons as a way to capture
structural properties of the graphs in the layers of a GNN
and to preserve these properties through the pooling operation.
The approach we propose exploits the spectral similarities of
the graphs that are obtained from a graphon. This allows
reducing the losses and distortions introduced by coarsening
or zero-padding. Additionally, our approach provides a natural
ordering of the nodes that allows to map the downsampled

All the authors contributed equally. The authors are with the
Dept. of Electrical and Systems Eng., Univ. of Pennsylvania. Email:
{alejopm,rubruiz,aribeiro}@seas.upenn.edu. Supported by NSF CCF 1717120,
ARO W911NF1710438, ARL DCIST CRA W911NF-17-2-0181, ISTC-WAS
and Intel DevCloud.

signal from one layer to the next without ambiguity. This
eliminates the node selection step and thus offers a method that
is computationally more efficient than coarsening approaches
presented in the literature. This approach also opens the door
for a new class of GNNs where the graphs in each layer are
known with some degree of uncertainty as they are obtained as
samples of a probability space defined by a graphon.

Besides the extension of the convolution operation to GNNs,
the notion of pooling plays a central role as it provides
dimensionality reduction from one layer to the other. In CNNs
this step is straightforward as the reduction of the dimension
is performed on a Euclidean space, so the intrinsic properties
of the domain of the signal remain invariant. In GNNs, that
is not the case. In [4], graph coarsening is considered as a
way to provide dimensionality reduction, however as pointed
out in [3] this process can distort the structure and properties
of the original graph, leading to loss in performance. In [3],
zero-padding is proposed to replace the sampling operation
between layers. This approach is the functional equivalent of
doing coarsening with the induced subgraphs that are obtained
from the nodes whose signal value is different than zero after
zero-padding. The downside of this method is that it requires
an optimal selection of the nodes to keep which usually relies
in sampling techniques like the one presented in [5], which up
to date is the sampling technique that provides better results
for the reconstruction of bandlimited signals.

We perform numerical simulations in two scenarios where
GNNs employing different pooling strategies are used to high-
light the advantages of graphon pooling. In the first scenario,
we consider the problem of predicting the source node of a
synthetic diffusion process on a graph. In the second, we use the
MovieLens 100k dataset to construct a user similarity network
and predict the ratings a user has given to a set of movies.
Graphon coarsening can be seen to outperform other pooling
techniques in terms of accuracy and mean squared error in
both cases, especially when the dimensionality reduction ratio
between layers of the GNN is big. We also observe distinctively
less overfitting in comparison with other approaches.

This paper is organized as follows. Section II provides basic
concepts about GNNs. In Section III we introduce the basics
of graphon signal processing and in Section IV we discuss
graphon neural networks and graphon-based pooling strategies.
Section V presents a set of numerical experiments and we finish
with conclusions in Section VI.

II. CONVOLUTIONAL GRAPH NEURAL NETWORKS

We define graphs as triplets G = (V (G), E(G), α), with set
of nodes V (G) = {1, . . . , N}, set of edges E(G) and weight
function α : E(G) → R+. Graph signals are functions x :
V (G) → R. The image of x(V (G)) is identified with vectors

in RN and the value of x at a given node i ∈ V (G) is given by
the component [x]i. We focus on undirected graphs where the
elements of E(G) are considered to be unordered pairs and
therefore α({i, j}) = α({j, i}). The sparsity pattern of G is
captured by its adjacency matrix W whose elements are given
by [W]ij = α({i, j}), where {i, j} ∈ E(G).

The building block in GSP is the graph shift operator (GSO)
of G, defined as any matrix S ∈ RN×N operating on signals
defined on V (G) that satisfies that [S]ij = 0 if i 6= j and
{i, j} /∈ E(G). A particular case of this operator is S = W
which is the choice for this paper, but other operators like the
Laplacian can be also considered [3]. With the specification of
S we can define graph convolutions [3] as

Hx =

K−1∑
k=0

hkS
kx (1)

where the hk are the graph filter taps. Like time convolutions,
graph convolutions are also shift-invariant: it is easy to see that
a shift to the input Sx produces the shifted output SHx.

For a training set T = {(x,y)} with input samples x and
output samples y, a GNN learns a representation or mapping
capable of producing output estimates to unseen inputs x̂ /∈ T .
The GNN is a stacked architecture consisting of graph layers
where information is mapped from one graph layer to the other
by means of a linear operator and a point-wise nonlinearity [3].
The output of the `th layer is given by

x` = σ` (H`x`−1) (2)

where x`−1 is the output of the layer ` − 1, H` is a graph
convolution like in (1) and σ` is the composition of a point-
wise nonlinear operator and a pooling operator. The filter taps
hk` are calculated in the training of the GNN and K � N .
Like in the case of CNNs, several versions of the operator in (1)
can be used in the same layer of a GNN considering different
values of the hk` to extract multiple features.

The notion of pooling in the GNN is described by the
properties of the pooling operation in σ` which, like in CNNs,
composes a summarizing operator like the average or the max
with a sampling operator. One substantial difference with re-
spect to CNNs is that in the sampling operation, the assignment
of the sample at a given node in layer ` − 1 to a node in the
next layer ` is not trivial. Indeed, there are essentially two
issues regarding to the pooling operation on GNNs. The first
is determining the graph in each layer taking into account that
the dimensionality of the signals is being reduced. The second
is the mapping of the sampled values of a signal to the nodes
of the graph of the next layer. As we will see in the following
sections, graphons provide a natural way to tackle these issues.

III. GRAPHON SIGNAL PROCESSING

A graphon is a bounded symmetric measurable function
W : [0, 1]2 → [0, 1]. Originally conceived as “limit graphs”
of sequences of dense graphs whose number of nodes grows
to infinity [6], graphons have also been used as generative
models for random graphs [7]. In these graphs, the entries of
the adjacency matrix are sampled as Bernoulli random variables

with probability κW (ui, uj), where the constant κ defines the
sparsity of the graph and ui, uj ∈ [0, 1] are selected at random.

Thinking of the graphon as a graph with an uncountable
number of nodes, we can represent data on graphons as graphon
signals X : [0, 1] → R, which map points of the unit interval
(the graphon “nodes”) to the real line [8]. In the same way that
graphs can be obtained from graphons by evaluating W (u, v)
at points ui ∈ [0, 1], a graph signal x can be obtained from X
by setting [x]i = X(ui).

Conversely, we can also define graphons and graphon signals
induced by graphs and graph signals. For any finite graph G
with |V (G)| = N and shift operator S, we can associate a
graphon WG given by

WG(u, v) =

N∑
i,j=1

[S]ijχτi(u)χτj (v) (3)

where χτi(u) is the characteristic function of the interval τi
and {τi}Ni=1 forms a partition of [0, 1] with sup τi < sup τi+1.
Notice that the node i in G is naturally associated to τi.
Accordingly, if there is a graph signal x defined on G it is
possible to associate to it a step-function graphon signal given
by

XG(u) =

N∑
i=1

[x]iχτi(u). (4)

Every graphon W induces a Hilbert-Schmidt operator acting
on graphon signals X as

(TWX) (v) =

∫ 1

0

W (u, v)X(u)du. (5)

We refer to TW as the graphon shift operator (WSO). This
notion of shift allows extending filter convolutions to graphon
signals, and so we define shift-invariant graphon filters as H =∑K
k=0 hkT

k
W where T kW stands for k consecutive applications

of TW . Applied to X , this yields

H ∗X =

K−1∑
k=0

hkT
k
WX. (6)

Note that (6) is the continuous counterpart of (1) and that,
in particular, for graphons and graphon signals induced by
graphs these expressions yield the same result. This parallel
is important because it allows thinking of graph filtering
operations as graphon filtering operations. The advantage of
operating in the graphon domain is that we can leverage the
probabilistic interpretation of graphons to sample graphs of
smaller or larger size whose structure is faithful to that of the
original graph. This motivates the definition of graphon pooling
in Section IV.

IV. GRAPHON POOLING

We propose to process information on the GNN using
the underlying graphon model of the graph to generate the
graphs at each layer of the GNN. This provides a natural
way of performing pooling, as dimensionality reduction can
be achieved by sampling graphs of smaller size.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Different ways to obtain a graph from a graphon.

Finite graphs can be obtained from graphons in multiple
ways. For instance, as described in Section III and depicted
in the third diagram of Figure 1, an N -node graph G =
(V (G), E(G), α) can be sampled from the graphon by using
a function ρ : V (G)→ [0, 1] to map each node i ∈ V (G) to a
number ρ(i) ∈ [0, 1], such that, for any two nodes i, j ∈ V (G),
we have {i, j} ∈ E(G) and α({i, j}) = W (ρ(i), ρ(j)).
Another possibility is to generate graphs through piece-wise
approximations, as pictured in the two left diagrams of Figure
1. In this case, the weight of the edge (i, j) is given by

α({i, j}) =
1

∆

∫ ρ(j+1)

ρ(j)

∫ ρ(i+1)

ρ(i)

W (u, v)dudv (7)

for 1 < i, j < N , where ∆ = (ρ(i+1)−ρ(i))(ρ(j+1)−ρ(j))
and ρ(i) ≤ ρ(i + 1) for all i. We focus on the piece-
wise approximation method, and generate the graphs in each
layer of the network using (7) to obtain the `th layer GSO
S` ∈ RN`×N` . The operations performed in each layer of
this graphon neural network are then given by (2), where
H` =

∑K−1
k=0 hk`S

k
` and N` ≤ N`−1 for 1 ≤ ` < L. When

N` < N`−1, the convolution output H`−1x`−1 ∈ RN`−1×N`−1

at each layer is mapped to x` ∈ RN` using the natural ordering
of the nodes induced by the domain of the graphon signal (i.e,
the unit interval). This pooling method is illustrated in Fig. 2,
where a GNN with three layers is built from a graphon.
A. Spectral motivation

We recall that for x defined on G, the graph Fourier
transform (GFT) is obtained by diagonalizing the GSO as
S = UΣUT and calculating x̂ = UTx, where the diagonal
matrix Σ contains N eigenvalues given by σ1 ≥ σ2 ≥ · · · 0 and
σ−1 ≤ σ−2 ≤ · · · 0. The component of x̂ associated with σj is
represented as x̂(σj). As for the graphon, since TW is compact
and bounded it possesses a countable set of eigenvalues given
by 1 ≥ σ1 ≥ σ2 ≥ · · · 0 and −1 ≤ σ−1 ≤ σ−2 ≤ · · · 0 (with
0 as an accumulation point), and associated eigenfunctions
ϕi(u). Using the functions ϕi, it is possible to obtain a spectral
decomposition of the graphon signal X as

X =

∞∑
i=1

(
X̂(σi)ϕi + X̂(σ−i)ϕ−i

)
(8)

where X̂(σj) =

∫ 1

0

X(u)ϕj(u)du. (9)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Graphon Neural Network with three layers

The discrete function X̂ is known as the graphon Fourier
transform (WFT) of X and the graphon signal X is called
ω-bandlimited if there exists ω ∈ (0, 1) such that X̂(σj) = 0
for all |σj | < ω [8].

The motivation for graphon pooling comes from the fact that
graphs obtained from the same graphon with the same proce-
dure have similar spectral characteristics. Indeed, as proven
in [6] (Theorem 11.53), the eigenvalues of the graphs in a
convergent graph sequence converge to the eigenvalues of the
graphon itself, and, as proved in [8] and reproduced here
as Theorem 1, the graph Fourier transform converges to the
graphon Fourier transform.

Theorem 1. Let {(Gn,xn)} be a sequence of graph
signals converging to the ω−bandlimited graphon signal
(W,X), where TW does not have repeated eigenvalues.
Then, there exists a sequence of permutations πn such
that GFT(πn(Gn), πn(x)) →WFT(W,X) in the sense that
[x̂]j/

√
n→ X̂(σj) as n→∞ [8].

An important implication of Theorem 1 with respect to
graphon pooling is that, if the signals considered in each layer
are equivalent in spectrum—i.e., if they are all bandlimited with
the same bandwidth—, then filtering on every graph obtained
from the graphon is equivalent. We observe that this attribute is
shared with the approach proposed in [3], but graphon pooling
has the advantage of eliminating ambiguity when mapping
signals from one layer to the other.

V. NUMERICAL EXPERIMENTS

We evaluate the advantages of graphon pooling in two sets
of experiments. The first is a classification problem where,
given a synthetically generated graph diffusion process on
graphs obtained from several graphon models, the objective
is to predict the node corresponding to the process’ seed. The
second consists of predicting the rating given by a user to a
movie from ratings that other users gave to the same movie.
The users are connected through a user similarity network built
from real data, which we use to build a piecewise constant
graphon. In all experiments, we compare graphon pooling with
two other pooling strategies: graph coarsening [4] and selection
GNNs [3]. All of the GNNs are trained in parallel using the

0 250 500 750 1000 1250 1500 1750
Training steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

GraphonGNN

Training
Validation

(a) Graphon poooling

0 250 500 750 1000 1250 1500 1750
Training steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

Coarsening

Training
Validation

(b) Graph coarsening

0 250 500 750 1000 1250 1500 1750
Training steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

SelGNN2Ly

Training
Validation

(c) Selection GNN

Figure 3: Average training and validation losses for predicting the ratings given by user 1 over 10 different training-test splits.

ADAM algorithm for stochastic optimization [9] with decaying
factors β1 = 0.9 and β2 = 0.999.

A. Source localization

Consider an N -node graph with shift operator S ∈ RN×N
and let x0 ∈ RN be a graph signal such that [x0]i = 1 for node
i = c and 0 everywhere else. We define the graph diffusion
process {xt} as [10]

xt = Stx0 (10)

and consider the problem of locating the source node c given xt
for arbitrary t. The node c is chosen among 10 possible sources,
making for a classification problem on C = 10 classes.

We train GNNs to solve this problem by optimizing the
cross-entropy loss on 1, 000 (xt, c) training samples divided in
batches of 20, over 300 epochs and with learning rate 5×10−4.
The learned models are validated and tested by evaluating the
classification accuracy on sets containing 240 and 200 input-
output samples respectively. All models consist of GNNs with
L = 2 layers, where both layers have F1 = F2 = 8 output
features and graph convolutional filters with K1 = K2 = 5
filter taps each.

First, we analyze the advantages of graphon pooling in
graphs obtained from different graphon models. We con-
sider three graphons: the exponential graphon W (x, y) =
exp(−β(x−y)2) with β = 2.3; the bilinear graphon W (x, y) =
xy; and the polynomial graphon W (x, y) = 0.5(x2 + y2). We
generate graphs with N = 200 nodes by integrating W (x, y)
as in equation (7), and the numbers of selected nodes in the
first and second layers of all GNNs are N1 = 20 and N2 = 10
respectively. The test classification accuracies achieved with
graphon pooling, graph coarsening and the selection GNN are
presented in Table I for all three graphons. We report the
average accuracy and standard deviation for models trained on
10 different dataset realizations. We observe that, in the case
of the exponential and bilinear graphons, the graphon pooling
method outperforms the selection GNN, but achieves lower
accuracy than graph coarsening. In the case of the polynomial
graphon, graphon pooling outperforms both methods with a
significantly smaller variance. For all graphons, the smaller
variances achieved by graphon pooling can be explained partly
by the fact that the graphon pooling technique does not require
choosing which nodes to keep, eliminating node selection bias.

W (x, y)
Architecture exp(−β(x− y)2) xy 0.5(x2 + y2)
Graphon pooling 46.4± 18.4 89.4± 8.0 91.2± 5.3
Graph coarsening 66.3± 27.2 99.7± 24.5 87.5± 16.8
Selection GNN 37.8± 14.3 73.0± 31.0 69.6± 20.7

Table I: Source localization test accuracy (%) achieved by
graphon pooling, graph coarsening and selection GNN on 200-
node graphs obtained from exponential, bilinear and polyno-
mial graphons.

This could also be the reason why graph pooling outperforms
the selection GNN in all scenarios. Finally, we note that, unlike
the bilinear and polynomial graphons, the exponential graphon
with parameter β = 2.3 is not smooth; hence, integrating it
over a coarser grid might result in graphs that do not resemble
much the original graph. This explains the poorer performance
of graphon pooling with respect to graph coarsening in the
exponential case.

In our second analysis, we investigate the effect of the
layer-wise dimensionality reduction ratios N1/N (layer 1) and
N2/N1 (layer 2) on GNN performance. We fix the polynomial
graphon W (x, y) = 0.5(x2+y2) and vary the number of nodes
N and the numbers of selected nodes N1 and N2 as indicated
in the rows of Table II. The reported accuracies are averaged
over 10 dataset realizations. In the first three rows, we fix
the reduction ratio of the first layer at N/N1 = 2 and vary
N1/N2. We observe that graphon pooling is outperformed by
both graph coarsening and the selection GNN. In the following
rows, we fix N2/N1 and only modify N1/N . In this scenario,
graphon pooling outperforms both methods, and we observe
that as N/N1 increases the gaps in accuracy also increase.
In the last row in particular, graphon pooling achieves almost
70% accuracy by only keeping 5% of the original nodes. We
conclude that graphon pooling is the most reliable pooling
strategy when the graph size is large but GNN layer size is
restrained. This is the case, for instance, of systems with limited
memory or high speed requirements for training and inference.

B. Movie rating prediction
For this experiment, we build a user similarity network from

the MovieLens 100k dataset [11], which consists of 100,000
ratings given by U = 943 users to M = 1682 movies. This
network is built by computing Pearson correlations between the
ratings that pairs of users have given to the same movies [12],

[N,N1, N2]

[
N

N1

,
N1

N2

]
Graphon Coarsening Selection

[100, 50, 10] [2, 5] 96.8± 3.8 99.5± 0.4 97.8± 3.9
[200, 100, 10] [2, 10] 70.4± 16.6 87.5± 26.2 78.5± 23.1
[400, 200, 10] [2, 20] 61.7± 10.6 70.9± 25.7 63.6± 21.2
[100, 20, 10] [5, 2] 99.0± 0.9 98.2± 2.3 96.3± 6.5
[200, 20, 10] [10, 2] 91.2± 5.3 87.5± 16.8 69.55± 20.7
[400, 20, 10] [20, 2] 69.5± 9.8 47.7± 3.8 52.2± 30.1

Table II: Source localization test accuracy (%) achieved by
graphon pooling, graph coarsening and selection GNN on
graphs obtained from W (x, y) = 0.5(x2 + y2), for different
values of N , N1 and N2.

Architecture [N1, N2] = [100, 10] [N1, N2] = [50, 10]
Graphon pooling 1.0987± 0.1196 1.1783± 0.0977
Graph coarsening 0.9791± 0.1287 1.1932± 0.1747
Selection GNN 1.0996± 0.1264 1.2871± 0.3868

Table III: Prediction RMSE for user 1’s ratings to movies in the
test set. Average over 10 train-test splits. The number of nodes
is N = 943, and [N1, N2] stands for the number of selected
nodes in the first and second layers of the GNN.

[13] and keeping the 50 nearest neighbors to each user. The
full network, with all U users, can then be used to define a
step function graphon with U × U blocks.

The graph data consists of the movies’ rating vectors, where
the uth element of the vector corresponding to movie m is the
rating—between 1 and 5—given by user u to movie m, or 0 if
she has not yet rated this movie. Given a movie’s incomplete
rating vector, our objective is to predict the rating given by,
say, user u = 1 to any movie m. We do this by feeding GNN
models with movie vectors where the ratings given by user 1
have been zeroed out and then computing the mean squared
error (MSE) loss between the real and the predicted ratings.

To assess the advantages of graphon pooling in this setting,
we train a GNN with graphon pooling, one with graph coars-
ening and a selection GNN to predict the ratings given by user
1. All architectures contain 2 layers, with F1 = 32 features in
the first layer, F2 = 8 in the second, and K1 = K2 = 5 filter
taps in both. We use 90% of the movies rated by user 1 for
training (out of which 10 % are used for validation) and 10%
for testing, and train the GNNs over 40 epochs with learning
rate 10−3 and batch size 5.

Two scenarios are analyzed. In the first, we select N1 = 100
and N2 = 10 nodes in the first and second layers respec-
tively, and N1 = 50 and N2 = 10 in the second. The
average prediction RMSEs over 10 different train-test splits
are presented in Table III. For [N1, N2] = [100, 10], the GNN
with graph coarsening achieves lower test RMSE than the
one with graphon pooling; but when N1 is reduced to 50,
graphon pooling outperforms both the graph coarsening and
the selection GNNs, corroborating the findings of subsection
V-A. In the second scenario, we also look at the evolution of
the training and validation losses of the three models, whose
average curves are graphed in Figure 3. Note that, while the
graphon pooling GNN only slightly overfits the training set,
the graph coarsening GNN overfits it significantly. As for the
selection GNN, the large error bars reflect the selection bias
associated with the sets of nodes that are kept in each run.

VI. CONCLUSIONS

In this work we introduced graphons as a tool to perform
pooling in a GNN, obtaining the graphs in each layer of the
GNN from the graphon by sampling. Graphon pooling pre-
serves the structural and spectral properties of the graph, thus
leading to layers where the spectral filtering is consistent, and
also eliminates the ambiguity in the mapping of signals between
layers. The numerical experiments provide clear evidence that
this approach outperforms other approaches in the literature
when there is a big change in the size of the graph from
the first layer to the second one. Additionally, this approach
offers considerably less overfitting in comparison with the other
approaches, and reduces errors produced by the selection bias
associated with choosing which nodes to keep when pooling is
done through zero padding.

Our approach also opens the door for the design of GNN
architectures in which is possible to handle the uncertainty in
the properties of the graphs used in each layer as a graphon
itself can model a family of random graphs.

REFERENCES

[1] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: Going beyond euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[2] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
deep locally connected networks on graphs,” arXiv:1312.6203v3 [cs.LG],
21 May 2014.

[3] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, “Convolutional neural
network architectures for signals supported on graphs,” vol. 67, no. 4,
pp. 1034–1049, Feb. 2019.

[4] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” Barcelona, 5-10
Dec. 2016, NIPS Foundation.

[5] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection
for bandlimited graph signals using graph spectral proxies,” IEEE
Transactions on Signal Processing., vol. 64, no. 14, July 2016.

[6] L. Lovász, Large networks and graph limits, vol. 60, American
Mathematical Society, 2012.

[7] M. Avella-Medina, F. Parise, M. Schaub, and S. Segarra, “Centrality
measures for graphons: Accounting for uncertainty in networks,” IEEE
Transactions on Network Science and Engineering, 2018.

[8] L. Ruiz, L. F. O. Chamon, and A. Ribeiro, “The graphon fourier
transform,” in ICASSP 2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 5660–5664.

[9] D. P. Kingma and J. L. Ba, “ADAM: A method for stochastic optimiza-
tion,” in 3rd, San Diego, CA, 7-9 May 2015, Assoc. Comput. Linguistics.

[10] Luana Ruiz, Fernando Gama, and Alejandro Ribeiro, “Gated graph
recurrent neural networks,” arXiv preprint arXiv:2002.01038, 2020.

[11] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Transactions on Interactive Intelligent Systems (TiiS), vol.
5, pp. 1–19, Jan. 2016.

[12] W. Huang, A. G. Marques, and A. Ribeiro, “Rating prediction via graph
signal processing,” vol. 66, no. 19, pp. 5066 – 5081, Oct. 2018.

[13] L. Ruiz, F. Gama, G. Marques, and A. Ribeiro, “Invariance-preserving
localized activation functions for graph neural networks,” IEEE Trans-
actions on Signal Processing, vol. 68, pp. 127–141, 2019.

