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ABSTRACT

Algebraic neural networks (AlgNNs) are composed of a cas-
cade of layers each one associated to and algebraic signal
model, and information is mapped between layers by means
of a nonlinearity function. AlgNNs provide a generalization
of neural network architectures where formal convolution op-
erators are used, like for instance traditional neural networks
(CNNs) and graph neural networks (GNNs). In this paper
we study stability of AlgNNs on the framework of algebraic
signal processing. We show how any architecture that uses
a formal notion of convolution can be stable beyond particu-
lar choices of the shift operator, and this stability depends on
the structure of subsets of the algebra involved in the model.
We focus our attention on the case of algebras with a single
generator.

Index Terms— Algebraic neural networks, algebraic sig-
nal processing, representation theory of algebras, representa-
tion theory, stability properties.

1. INTRODUCTION

Convolutional architectures play a central role on countless
scenarios in machine learning and the numerical evidence
that proves the advantages of using them is overwhelm-
ing [1,[2]. Additonally, theoretical insights like the ones
developed in [[3H5] and [6] have provided solid explanations
about why such architectures work well. These analysis
apparently different in nature, have been performed consid-
ering signals defined on different domains and with different
notions of convolution but with remarkable similarities not
only in the final results but also in how the derivations are
performed, posing the question of whether there exists an
explanation for this at a more structural level.

Several notions of stability have been considered widely
in the literature, among which there are the first notion stabil-
ity for traditional CNNs introduced in [3]] by Mallat, and sim-
ilar notions adapted for invariant scattering networks in [4]]
and networks affected by group actions in [5] on one side,
while for irregular domains like GNNs notions of stability
have been considered in [7,[8] and recently in [6] where con-
crete stability calculations are performed.

In this work we discuss the notion of stability of neural
structures exploiting algebraic signal models whose particu-

lar instantiations lead to the convolutional operators used in
traditional CNNs and GNNs. We formulate the definition of
stability using the language of the representation theory of
algebras providing concrete calculations of stability when al-
gebras with a single generator are considered, and we point
out that those results for CNNs and GNNs can be obtained
as particular cases. Our results highlight the universality of
stability beyond particular instantiations of algebraic models
whenever the algebra involved is the same. This explains the
notorious similarities between the analysis and final results
about stability for CNNs and GNNss.

This paper is organized as follows. In Section 2 we dis-
cuss the basics about algebraic signal models and in Section 3
we introduce algebraic neural networks. In Section 4 we de-
fine the perturbations considered for the stability analysis and
in Section 5 we discuss the stability results. Finally in section
6 we present some conclusions.

2. ALGEBRAIC SIGNAL MODELS

An algebraic signal model (ASM) can be defined by the triple
(A, M, p), where A is an associative algebra with unity, M
is a vector space with inner product, and p : A — End(M) is
ahomomorphism between .4 and the set of endomorphisms in
M [9H12]. In the context of representation theory of algebras,
the pair (M, p) is a representation of .A. Notice that p is a
linear mapping that preserves the products in .A.

In the ASM the elements in M are the signals, the ele-
ments in A are the filters and p provides a physical realization
associated to M of the elements in .A. Then, the filtered ver-
sion of a signal x € M by an element in a € A is given by
y = p(a)x. As pointed out in [9] the operation p(a)x defines
a general and formal notion of convolution between p(a) and
x, which is the notion used in this paper to study stability in
algebraic neural networks.

Any element in an algebra A can be expressed as a poly-
nomial function of the generators of A. For the the discussion
in this paper we focus on algebras that are generated by one
element, i.e. all elements in .4 can be expressed as a = p4(g)
where ¢ is the generator of 4 and p 4 is a polynomial function.
As a consequence of the properties of p as an homomorphism,
we have that p (p4(g)) is a polynomial p o4 expressed in terms

of p(g), therefore p (pa(g)) = pm (p(g)). Notice that the
form of p 4 and p 4 is the same, therefore for the sake of sim-
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Fig. 1. Example of an Algebraic Neural Network = =

{(Ag, My, pe)}3_, with three layers. The input signal x is
mapped by = into x3.

plicity of drop the subindex to denote p (p(g)) = p(p(g))-
The operator p(g) = S is called shift operator.

Particular cases of the algebraic models lead to signal pro-
cessing frameworks well known in the literature. For instance
using the polynomial algebra, which has a single generator, it
is possible to derive discrete time signal processing (DTSP),
graph signal processing (GSP) and graphon signal process-
ing (WSP) considering different representations [9}|13], i.e.
different choices of M and p. DTSP uses a vector space
(countably infinite dimensional) where the elements are se-
quences of square summable coefficients and the shift oper-
ator is the delay function, while in GSP the vector space is
an N —dimensional vector space where N is the number of
nodes in the graph and the shift operator could be the adja-
cency matrix of the graph while in WSP the vector space is
the set of functions with finite energy in the interval [0, 1] and
the shift is associated to an integral transform whose kernel is
given by a graphon [9}13]].

3. ALGEBRAIC NEURAL NETWORKS

An algebraic neural network (AIgNN) consists of a stacked
layered structure, where each layer is associated to an alge-
braic signal model. Then, if we have an AIgNN with L layers,
there is an algebraic model (. Az, My, p,) associated to the ¢th
layer. The information is mapped from the layer / to the layer
{41 by amap oy = P, o, that is the composition of a point-
wise nonlinearity and a pooling operator. For our discussion
we consider oy as a Lipschitz map with zero as fixed point.
In Fig. [T)a pictorial representation of an AIgNN is presented.
Notice that the relationship between the output signal of the

layer £ — 1 and the output signal of the layer £ is then give by
x¢ = oy (pelag)xe—1) = P(x¢-1,Pr-1,80-1), (1)

with a; € Ay. We use the symbol ®(x¢_1,Pr—1,S¢—1) to
emphasize that the filters used in the processing of the signal
xy_1 belong to the subset P, C A,. This will become rele-
vant once we state stability results. The map associated to the
whole AIgNN is represented by ® (x, {P;}{, {S¢}{') acting
on an input signal x. We point out that the filtering in each
layer of the AIgNN can be performed by means of several fil-
ter banks. This allows the generation of several features, case
in which the output signal associated to the feature f in the
layer ¢ is given by x{ .

4. DEFORMATIONS IN ALGEBRAIC SIGNAL
MODELS

In previous sections we mentioned the role of p in the alge-
braic signal model (A, M, p) as a physical realization of the
algebraic filters in A, therefore it is natural in this context to
associate the perturbation of the filters to p. One can think that
p will provide an ideal realization of the filters in .4 but that
in practice one gets a realization p that is an approximate ver-
sion of p. We consider deformations or perturbations of ASM
analyzing changes in p. More specifically, we say that the
triple (A, M, p) is a perturbed version of (A, M, p) where p
is defined according to

p(p(9)) = p(plg)) = p(S) 2)

where S is related to the shift operator S = p(g) by means of
S = S + T(S), and the term T(S) is called the perturbation
associated to (A, M, p). It is important to point out that p
is not necessarily a homomorphism. As pointed out in [[13]]
perturbations in the domain of the signals can be reframed in
terms of this perturbation model.

For our discussion we focus on deformations of the type

T(S) = eI + TS, 3)

which consists of an additive or absolute perturbation el
where € > 0 is a small scalar and I is the identity matrix and
a relative perturbation T1S. The operator T; is a compact
normal operator with operator norm || Ty || < 1. The measure
of the non commutativity between the operator T and S is
modeled as ST, = TS + SP;, and by the factor § given
by

_ max [l

0 = max ,
[Tl

“4)
where T¢1 = Y, priu;(uy, -), (144, u,) is the ith eigenpair T,
u; are the eigenvectors of S, and (, ) is the inner product. As
proven in [[13]] the value of § is upper bounded by the weighted
difference between the eigenvectors of x and T .



5. STABILITY RESULTS

Now we introduce the notion of stability for our discussion.
We emphasize the notation presented in previous section,
where (A, M, p) denotes the perturbed version of (A, M, p),
p(g) =S, p(g) = S being g the generator of the algebra.

Definition 1. Given p(S) and p(S) defined on the algebraic
signal model (A, M, p) and (A, M, p) we say the operator
p(S) is Lipschitz stable if there exist constants Cy,C; > 0
such that

[p(s)x—p(S)|| <

{co sup [ T(S)]| + C1 sup || Dx(S)]| + © (||T(S)||2)] ™
Ses Ses

&)

forallx € M. In (3) Dt (S) is the Fréchet derivative of the
perturbation operator T.

We point out that the right hand side in eqn. (3) provides a
measure of the size of the perturbation T'(S). Then, the defi-
nition[I] says that the operators representing a given algebraic
filter are stable to the action of a perturbation if the change in
the operator is proportional to the size of the perturbation. It
is worth pointing out that this is the same principle considered
in the concept of stability presented in [3]]. Additionally, as a
particular case of this definition we obtain also the notion of
stability used for GNNs in [6].

5.1. Characterizing subsets of the algebra

While determining if subsets of filters in the algebra are sta-
ble or not, a characterization of such subsets is necessary. For
algebras with a single generator this can be done using func-
tions of an independent variable. It is worth pointing out that
when considering algebras like the polynomial algebra of a
single variable, generated by one element, it is not necessary
to assume that the independent variable of the algebra takes
values in a particular field. However, this type of assumption
can be useful to define subsets of the algebra. For our discus-
sion we assume that the independent variable of the algebra
takes values in C.

In the the following definition, we describe the properties
of the subsets of filters involved in the stability calculations.

Definition 2. Let p : C — C be a one variable function.
Then, we say that p is Lipschitz if there exists Ly > 0 such
that

Ip(A) = p(p)| < LolA — pl (6)

Sor all \, u € C. Additionally, we say that p(\) is Lipschitz
integral if there exists Ly > 0 such that

dp(\)
< .
‘)\ X ‘ Ly for all A 7

We denote by Ay, the subset of .4 whose elements are
Lipschitz functions with constant Ly and by Ay, the subset
of elements in A that are Lipschitz integral with constant L.

5.2. Stability of Algebraic Filters

Before stating concrete stability calculations for the particu-
lar type of deformation we are considering, we introduce a
theorem, that provides essential insights for our discussion.

Theorem 1. Let A be an algebra generated by g and let
(M, p) be a representation of A with p(g) = S € End(M).
Let p(g) = S € End(M) where the pair (M, p) is a per-
turbed version of (M, p) and S is related to S by the pertur-
bation model in eqn. [B). Then, for any p € A we have

[p(8)x = p(8)x|| < l1xIl (I1Do(S) {T(S)} | + O (IT(S)]I*))
®)

where D\, (S) is the Fréchet derivative of p on S.

Proof. See [13]] O]

Theorem [I] show how the filters act directly on the
deformation. In particular, we can see from the therm
|1 D,(S) {T(S)}|| that the Fréchet derivative of the physi-
cal representation of the filter acts directly on T(S), and this
is independent from the properties of T(S), i.e. the perturba-
tion is not restricted to be the one we are considering for our
discussion.

Now we present a theorem where an upper bound of the
right hand side of eqn. (§) is determined in terms of the prop-
erties of T(S) for a specific type of filters.

Theorem 2. Let A be an algebra with one generator element
g and let (M, p) be a finite or countable infinite dimensional
representation of A. Let (M, p) be a perturbed version of
(M, p) associated to the perturbation model in eqn. (3). If
pa € AL, N Ay, then

ID,T(S)] < (146) (Lo sup [ D(S)| + L1 sup |DT<S>||)
©)]

Proof. See [13]] O

From theorem [2| and taking into account Theorem |1} we
can conclude that AIgNNs are stable to the perturbations con-
sidered, indeed the norm of the Fréchet derivative of the filter
acting on the perturbation is bounded by the size of the per-
turbation. Notice also that the non commutativity between
the operators S and T does not change the functional form
of the upper size in eqn. (9)), however it does increase the size
of the constants.



5.3. Stability of Algebraic Neural Networks

We have shown that algebraic filters defined in the alge-
braic context are stable to the deformations considered in
the model (3). In this section we discuss how this re-
sults are inherited by AlgNN. This is associated directly
to the fact that the functions o, mapping information be-
tween layers are Lipschitz functions. We start pointing
out the effect of the functions o, mapping information be-
tween the layers of the AIgNN. Before doing so we clarify
that the AIlgNN E = {(A,, My, pg)}le is perturbed into
= = {(Ag,/\/lg,ﬁg)}le if (Ag, My, p¢) is a perturbed ver-
sion of (A, My, pe).

Theorem 3. Let E = {(Ag,/\/lg,pg)}éz1 be an algebraic
neural network with L layers, one feature per layer and alge-
bras A with a single generator. Let = = {(Ag, My, po) Y5y
be the perturbed version of = by means of the pertur-
bation model in eqn. . Then, if ® (x¢—1,P¢,Se) and

P <Xg,1,7)g,‘§g) represent the mapping operators associ-

ated to = and = in the layer £ respectively, we have

H‘I’ (x¢-1,Pe, S¢) — @ <X471,7’z7c§z> H <

Cut14) (£ sup [T + L sup 1D (S0 ) e |
14 £

where Cy is the Lipschitz constant of oy, and Py = Ap,NArL,
represents the domain of py. The index (£) makes reference to
quantities and constants associated to the layer (.

Proof. See [13] O

From theorem 3 we see that the functions oy do not af-
fect the stability properties of the algebraic filters although a
modification of the constants is produced. This highlights the
goodness of g, as they do not affect the stability and enrich
the way the network handles information with different spec-
tral content allowing an arbitrary degree of selectivity.

We introduce our final result of stability for a general Al-
gNN with L layers and one generator.

Theorem 4. Let = = {(As, My, pe)}s_, be an algebraic
neural network with L layers, one feature per layer and alge-
bras A, with a single generator. Let = = {(Ag, My, pe) by,
be the perturbed version of Z by means of the perturba-

tion model in egn. . Then, if ® (x, {Pe}{,{Se}f) and
o (x, (P} {SE ) represent the mapping operators asso-

ciated to = and = respectively, we have

[ (e Py 453E) — @ (x. Pyt 4803 |

(1) (11 2) e o o

r=~0+1

where Cy is the Lipschitz constant of oy,
Pe, and Py = Ap, N AL, is the domain of pe. The functions
Ay are given by

A= (145) (Lé“ sup [T (8.)] + 147 sup [ Do <sg>||)
14 '

(12)
with the index (¢) indicating quantities and constants associ-
ated to the layer (.

Proof. See Section [13]] O

This final result provides a guarantee of stability for Al-
NN at an algebraic level. It is worth remarking that:

e The representations used in each layer can be substan-
tially different from one another, i.e. the pairs (My, p¢)
can change substantially from layer ¢ to layer £+ 1, and
still the stability results hold. This highlights the rich
variety of options for the representation and processing
of information with different types of operators without
affecting the stability.

e A particular instantiation of the algebraic model con-
sidering the polynomial algebra and a vector space
whose dimension equals the number of nodes in a
graph, leads to results of stability for GNNs obtained
in [6].

(10» The fact that AIgNNs inherit stability from the stability
of the algebraic operators resides on the properties of
the maps o and the composition of several layers does
not affect the functional expressions defining the stabil-
ity but instead they increase the size of the constants.

We remark that this results are generalized for algebras
with multiple generators, the reader interested in this exten-
sion can check the details of the proofs in [[13] where the
analysis is performed considering algebras with multiple gen-
erators.

6. CONCLUSIONS

We discussed algebraic neural networks (AIgNNs) consider-
ing algebras with a single generator in order to generalize the
notion of stability when considering general convolution op-
erators. Particular choices of the algebras and their repre-
sentations in a AIgNN lead to traditional CNNs and GNNs,
therefore the results obtained in this paper provide a unifying
framework for the stability analysis. Indeed, we can say that
stability transcend particular choices of spaces and operators
whenever a formal representation is behind the structure of
each layer. Additionally, we show that the physical realization
of the algebraic filters as elements of End (M) acts directly on
the perturbation by means of its Fréchet derivative, and it is
precisely the action of this operator on the perturbation what
determines the structure of the subsets of the algebra that will
guarantee stability.

pe(§)|l < Byforall¢ e
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