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ŝ(`)2

µ`
for the sampling

patterns generated by different sampling approaches on different
graphs. (a) Swiss roll graph; (b) Sensor network graph; (c) Sphere
graph; (d) Bunny graph. . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Illustration of how a random walk can be use to select sampling
points that can be far away an approximate distance of λ̃b. . . . . . 48

3.2 Vertex-domain distribution of a blue noise sampling pattern generated
by means of Algorithm 2 considering different densities on a sensor
network of 2000 nodes. Left: density d = 0.1. Right: density d = 0.2. 50

xvi



3.3 Pictorial illustration of how the error is diffused in the Error diffusion
algorithm. In (a) the error calculated in v1 is diffused to all the
neighbors of v1 and in (b) it is illustrated that the diffusion of the
error from v2 is diffused only to those nodes that have not been
visited. Notice that the the contribution of the error is normalized by
the weights of the edges that connect the actual node to the nodes to
which the error is going to be diffused. . . . . . . . . . . . . . . . . 55

3.4 Illustration of a Blue-Noise sampling pattern generated on a sensor
network with N = 50000 nodes. . . . . . . . . . . . . . . . . . . . . 55

3.5 Averaged MSE considering different sampling approaches. From left
to right we consider the graphs G1, G2 and G3 respectively. First row
is associated to the experiments considering the signal model SM1,
while the second row is associated to SM2. . . . . . . . . . . . . . 60

3.6 Averaged MSE for several sampling approaches on large graphs
(N = 50000 nodes). From left to right we consider the graphs G1, G2

and G3 respectively. First row is associated to the experiments
considering the signal model SM1, while the second row is associated
to SM2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Pictorial illustration of a possible partition of V (G), intended to
maximize Ki and to minimize Di. . . . . . . . . . . . . . . . . . . . 64

4.1 Representation of the spaces PWω(G), PW 0
ω and CPWω(G). . . . . 68

4.2 Top: Representation of the union operation between two graphs.
Bottom: Representation of the join operation of two graphs. . . . . 72

4.3 Top: Representation of the union operation between two graphs.
Bottom: Representation of the join operation of two graphs. . . . . 73

4.4 (a) The cotree representation of the cograph
G = (({v1} ∪ {v2}) ∪ ({v3} ∨ {v4})) ∨ {v5}. (b) The cotree
representation of the cograph G depicted in (a) using complements
and unions. (c) A tree representation showing the equivalence
G1 ∨G2 = (Gc

1 ∪Gc
2)c. (d) Representation of a cotree indicating the

construction of a cograph from smaller size cographs G1, G2 and G3. 73

xvii



4.5 Top: Pictorial representation of the results indicated in Lemmas 24.
Bottom: Pictorial representation of the results indicated in
Lemma 25. The sampling on the rows considering a given sampling
set is indicated by the indexes highlighted in blue color. The
resultant submatrix is always a block diagonal matrix when unions
are considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Pictorial representation of the results stated in Theorem 28. . . . . 77

4.7 Cotree represention of the cograph G = (Gc
1 ∪G2)c ∪Gc

3 that is built
from more elementary cographs G1, G2 and G3. (a) Indication of how
the set of eigenvectors associated to G are obtained from G1, G2, G3

and the transformations involved when moving on the cotree. (b)
Indication on the cotree of the Paley-Weiner subspaces of G1, G2, G3

involved in the calculation of the uniqueness set of PWω(G), and how
the bandwidth changes when moving on the cotree. . . . . . . . . . 79

4.8 Illustration of the support of the eigenvectors of the combinatorial
Laplacian for the complete multipartite graph. . . . . . . . . . . . . 83

4.9 Pictorial representation of the numerical experiments performed. A
cograph G is generated and then a subset of edges is modified to
generate a graph G (not necessarily a cograph), then the uniqueness
sets of PWω(G) are used on PWω(G). The numerical results of this
numerical tests can be appreciated in Fig. 4.10. . . . . . . . . . . . 83

4.10 First row: reconstruction error for random bandlimited signals
defined on a graph G with cograph approximation G. The number t
indicates the number of edges that differ between the graph G and G,
whereas m = ω indicates that the number of samples is equal to the
bandwidth of the signal. Second row: same results without the
random sampling approach. . . . . . . . . . . . . . . . . . . . . . . 84

4.11 (a) The cotree structure of a threshold graph. (b) An equivalent
representation of the threshold graph depicted in (a) using the
characterization indicated in Theorem 35. . . . . . . . . . . . . . . 85

4.12 Cotree representation of a threshold graph, G, obtained from the
binary sequence {x1, x2, . . . , xn}, showing the changes in the
bandwidth in the Paley-Wiener spaces involved in the calculation of
the uniqueness sets for PWω(G). . . . . . . . . . . . . . . . . . . . 86

xviii



4.13 Top: Representation of the union operation between two graphs.
Bottom: Representation of the join operation of two graphs. . . . . 94

5.1 Components of the CASSI with the use of a general coded aperture
T (x, y, λ). The multispectral scene f(x, y, λ) is modulated by
T (x, y, λ), and the resultant modulated field is dispersed by an Amici
prism with dispersion curve S(λ) to be finally integrated in the Focal
Plane Array (FPA). When the classical binary coded aperture is used
T (x, y, λ) ∈ {0, 1} ∀λ. . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 The graphic representation of the transfer function matrix H is
depicted, when the capture of one multispectral scene of L = 3 bands
and N = 3 is considered using K = 2 shots. On the indicated
diagonals the spectral response of the pixels of the coded aperture are
shown for each band respectively, i.e. on the diagonal of the band i,
the lexicographic ordering of the elements of T·,·,i is considered. . . 106

5.3 The structure of H is depicted showing how the different sets Ir are
defined and how its structure is related with the submatrices Ĥr. The
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ABSTRACT

New data science tools are emerging to process signals on graph structures and

concepts of algebraic and spectral graph theory are being merged with methods used in

computational harmonic analysis to analyze these signals. A common problem in these

networks is to determine which nodes play the most important role, assuming there

is a quantity of interest defined on the network. Graph signal sampling thus becomes

essential. In the first part of this dissertation, we explore a novel departure from prior

work, inspired by sampling patterns in traditional dithering and halftoning. Specifi-

cally, we design graph signal sampling techniques that promote the maximization of

the distance between sampling nodes on the vertex domain and that are characterized

on some subclasses of graphs by a low frequency energy. Sampling patterns with these

characteristics are referred to in the spatial dithering literature as blue-noise. The con-

nection between existing theoretical results about sampling signals on graphs and blue

noise sampling patterns on graphs is established, showing also how the spectral charac-

teristics of these patterns are shaped by their vertex domain attributes. Additionally,

for the generation of blue noise patterns a void and cluster algorithm on graphs is

proposed exploiting the vertex-domain distribution of the sampling nodes. Numerical

experiments show that the reconstruction error obtained with these patterns is similar

to the one obtained by the state of the art approaches. Additionally, we explore the

uniqueness sets for signals on cographs. Using the structure of the tree representation

of a cograph, we proposed an algorithm that find its uniqueness sets from very sim-

ple small size graphs without any spectral decomposition or extensive searches on the

vertex domain. The analysis performed on threshold graphs allowed us to calculate a

closed form solution for the uniqueness sets.
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In the second part of this dissertation we consider the problem of sampling

on regular grids for compressed sensing applications. We design optimal sampling

patterns in coded apertures for CASSI systems and compressive X-ray tomosynthesis

architectures, providing closed form solutions that outperform the results achieved

using designs obtained with previous approaches, at a very low computational cost.

Additionally, a rigorous estimate of the spectral resolution in general colored CASSI

systems is provided exploiting the structure of the non-ideal sampling patterns obtained

when wide spectral filters are considered.
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Chapter 1

GENERAL INTRODUCTION: UNIVERSAL PROPERTIES OF GOOD
SAMPLING PATTERNS

The problem of representing complex, large scale or high-dimensional quantities

with low size or low dimension representations has played a central role in numerical

analysis, mathematics, physics, engineering and recently in data sciencel [4]. When

these quantities were represented in Euclidean spaces, Shannon presented what would

become one of the corner stone results in signal processing, the Shannon-Nyquist theo-

rem. This result stated some minimum requirements over a sampling grid to provide a

unique representation of a bandlimited signal [4]. The consequences and implications

of such remarkable result are well known, as well as its scenario of applicability which

assumes the sampling performed is on a regular grid. Naturally, there was the question

about whether it was possible or not to obtain a generalization of this result to more

general spaces, non-necessarily Euclidean, and to scenarios where the sampling grid

was not necessarily regular.

Keeping the assumption that the signal of interest is defined on a Euclidean

space, the works in irregular sampling were prolific [4] and different insights have been

established in the context of several real life applications [4]. On the other hand, the

problem of sampling on general spaces non necessarily Euclidean has been addressed

more slowly with outstanding results obtained for the sampling of functions on man-

ifolds and graphs [5]. In particular, the work of Pesenson in [5–7] stated formally

for functions on manifolds a principle that lies behind almost every sampling strategy

no matter the context, uniformity. Pesenson presented a criteria that allows one to

compare the quality of sampling patterns on a manifold for the reconstruction of a
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bandlimited signal. It was shown that the sampling pattern that provides the low-

est error in the reconstruction is built as a uniformly spread pattern on the manifold,

where the points are spread as far apart as possible from each other. This result was

also connected with the results of irregular sampling if the manifold considered was

Rn. Pesenson also developed formal results to provide a measure of the quality of a

sampling pattern for signals on graphs, however a connection between these results and

that uniformity observed in manifolds was not established.

In the first part of this dissertation thesis we provide a connection between

this uniformity principle and the quality of sampling sets in graphs introducing the

concept of blue-noise sampling on graphs. Blue noise sampling has its roots in digital

halftoning where the central interest lies on finding a binary representation of a gray

scale image. We show that in subclasses of graphs with the same local isoperimetric

dimension, a uniform spreading of the sampling nodes leads to high frequency patterns

on the graph Fourier domain, and this result can be connected with parameters that

are associated to the quality of the reconstructions. We develop algorithms for the

generation of ideal blue noise sampling patterns and low complexity algorithms based

on random walks and error diffusion to state the basis for the development of efficient

algorithms of graph blue noise.

Additionally, we study uniqueness sets in cographs and threshold graphs. Ex-

ploiting the structure of the cotree representation of a cograph we provide an efficient

algorithm for the calculation of the uniqueness sets without requiring the use of geodesic

distances and/or spectral decompositions. In the case of threshold graphs, which is a

subclass of cographs, a closed form solution for the uniqueness sets is derived.

In the second part of this dissertation the sampling problem is considered in the

context of compressed sensing applications. In particular, we find optimal sampling

patterns for signals that are projected on low dimensional spaces associated to colored

CASSI systems and X-ray tomosynthesis architectures. The optimality of these sam-

pling patterns is determined by the coherence of a sensing matrix and surprisingly an

attribute of these patterns is the uniformity exhibited along the dimension of shots
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or captures. The solutions obtained in my research are represented with closed form

expressions that allow a fast design and computation that outperforms all the other

approaches in the literature. Additionally, analyzing the properties of non-ideal sam-

pling patterns in colored coded apertures, we provide a rigorous estimate of the spectral

resolution that can be achieved in CASSI systems when a given distribution of spectral

responses is used.

1.1 Dissertation Format

This dissertation contains eight chapters. In the first chapter a general intro-

duction is provided, showing a panoramic view of the contributions achieved. In the

second chapter the analysis of blue-noise sampling on graphs is considered, while in

chapter three low complexity algorithms for the generation of blue noise are consid-

ered stating the basis for future work in the short term. In chapter four uniqueness

sets for cographs are analyzed. Chapters five and six are devoted to the analysis of

optimal sampling patterns in coded apertures for compressed sensing applications. In

chapter seven a super-resolution analysis is performed on CASSI systems based on the

sampling patterns of colored coded apertures. Finally in chapter 8 general conclusions

and remarks about future work are presented.

1.2 My original contributions

Graph Signal Processing

1. Generalizing blue-noise sampling for signals on graphs.

2. Establishing a rigorous relationship between blue-noise sampling patterns on

graphs and the quality of sampling sets measured by theoretical parameters

stated in the literature.

3. Establishing a rigorous relationship between the vertex-domain and the spectral

characteristics of blue noise sampling patterns.
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4. Developing an algorithm for the generation of blue-noise sampling patterns on

graphs.

5. Performing a complete numerical validation of blue-noise sampling patterns

against sampling patterns generated by the state of the art approaches.

6. Establishing an estimate of the stability of blue-noise sampling patterns.

7. Developing an efficient algorithm for the calculation of uniqueness sets for the

sampling of signals on cographs, without requiring spectral decompositions or

the calculation of geodesic distances.

8. Performing a numerical validation of the effectiveness of the uniqueness sets of

cographs, on graphs that are approximately cographs.

9. Obtaining a closed form solution for the uniqueness sets in Threshold graphs.

Compressed sensing applications

1. The Calculation of a closed form solution for a family of optimal colored coded

apertures in CASSI systems. This solution provides up to the date the best

reconstruction results in terms of PSNR.

2. A complete numerical validation of the optimal codes against codes obtained by

the state of the art approaches.

3. The calculation of a closed form solution for a family of optimal coded apertures

in a compressive X-ray tomosynthesis architecture. With these designs the re-

sults obtained were far superior to the ones obtained by other approaches that

spent hundreds of hours for the computation of a solution.

4. The theoretical calculation of the spectral resolution limits in colored CASSI

architectures.
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5. Experimental validation of the spectral resolution limits in colored CASSI ar-

chitectures.

1.3 My publications

Journal Papers

1. A. Parada-Mayorga, D. Lau, Jhony H. Giraldo and G.R. Arce, ”Blue-Noise

Sampling on Graphs” (Accepted: IEEE Transactions on Signal and Information

Processing over Networks).

2. A. Parada-Mayorga, D. Guillot, S. Cioaba and G.R. Arce, ”Uniqueness sets

in the Paley-Wiener Space of Cographs” (To be submitted to IEEE Transactions

on Signal and Information Processing over Networks).

3. A. Parada-Mayorga and G. R. Arce, ”Colored Coded Aperture Design in Com-

pressive Spectral Imaging via Minimum Coherence,” in IEEE Transactions on

Computational Imaging, vol. 3, no. 2, pp. 202-216, June 2017.

4. A. Parada-Mayorga and G.R. Arce, ”Spectral Super-Resolution in Colored

Coded Aperture Spectral Imaging,” in IEEE Transactions on Computational

Imaging, vol. 2, no. 4, pp. 440-455, Dec. 2016.
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1.4 My collaboration with other students

During my Ph.D studies I had the pleasure of collaborating with some of my

colleagues here at UD. In particular, I collaborated with:

• Ph.D student Edgar Salazar. Collaboration in compressive spectral imaging.

• Ph.D student Juan Florez. Collaboration in inverse problems.
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• Ph.D student Jhony Giraldo. Collaboration in graph signal processing.

Additionally, I had the chance to play a role of mentorship with:

• Ph.D student Daniela Dapena. Collaboration in graph signal processing.

1.5 My collaboration work after my Ph.D studies

• Ph.D student Jhony Giraldo. I will be working after my Ph.D studies in collab-

oration with Jhony on the low complexity algorithms for graph blue-noise whose

basis is stated in this dissertation.

• Ph.D student Daniela Dapena. I will be working in collaboration with Daniela in

the analysis of optimal sampling patterns on directed graphs and its applications

to problems in finance and analytics. Additionally, Daniela and I will be analyz-

ing the role and effectiveness of graph blue-noise on classification and manifold

learning.
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Chapter 2

BLUE-NOISE SAMPLING ON GRAPHS

2.1 Introduction

Interesting phenomena in nature can often be captured by graphs since objects

and data are invariably inter-related in some sense. Social [8], financial [9], ecological

networks, and the human brain [10] are a few examples of such networks. Data in these

networks reside on irregular or otherwise unordered structures [11]. New data science

tools are thus emerging to process signals on graph structures where concepts of alge-

braic and spectral graph theory are being merged with methods used in computational

harmonic analysis [12–14]. A common problem in these networks is to determine which

nodes play the most important role, assuming there is a quantity of interest defined on

the network.

Graph signal sampling thus becomes essential. Naturally, the mathematics of

sampling theory and spectral graph theory have been combined leading to generalized

Nyquist sampling principles for graphs [12,15–19]. In general, these methods are based

on the underlying graph spectral decompositions [19–22].

This work explores a somewhat radical departure from prior work, inspired by

sampling patterns in traditional dithering and halftoning. Specifically, we intend to

design graph signal sampling techniques that promote the maximization of the distance

between sampling nodes on the vertex domain that are typically characterized by a low

frequency energy. Sampling patterns with these characteristics are referred to in the

spatial dithering literature as blue-noise [23, 24].

In this chapter, the connection between the properties of blue-noise sampling

patterns and the results related with sampling sets in graphs is established, showing
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that blue-noise like sampling patterns in graphs are connected with good sampling

sets in terms of preserving the uniqueness of the representation of the sampled signal

in a noise-free scenario. Additionally, it is shown how the inter-distance between the

sampling nodes affects the redness in a given sampling pattern. We provide a measure of

the bandwidth of the signals that can be uniquely represented from the vertex-domain

characteristics of blue-noise sampling patterns. A numerical algorithm is proposed in

order to compute these blue-noise patterns based on their vertex-domain distribution.

In particular, trying to exploit the distribution of the sampling points on the nodes

of the graph, a void and cluster algorithm on graphs is developed [25], allowing the

generation of patterns that lead to reconstruction errors of bandlimited signals, similar

to the ones obtained in the state-of-the-art literature.

2.2 Preliminaries

Sandryhaila [26] proposed a theoretical framework for the analysis and pro-

cessing of signals on graphs based on the properties of the adjacency matrix. This

approach is rooted in algebraic signal processing, whereas authors like Fuhr and Pe-

senson [15, 16, 27], Puy [28] and Shuman [12, 13, 29] based their analysis of signals on

graphs, relying on the properties of the Laplacian matrix. In both approaches the

Fourier transform of the signals on the graph is defined in terms of a spectral decom-

position of the adjacency matrix and the Laplacian matrix respectively, using the set

of eigenvectors as the Fourier basis for the representation of the signals.

The first approach offers a direct connection with the shift operator used in tra-

ditional signal processing, while the second resembles the main ideas of Fourier analysis

in linear spaces in which the eigenfunctions of the Laplacian operator are used as the

basis representation of the signal. The two approaches use a unitary operator, and

problems like sampling and filtering can be successfully considered in both scenarios.

In this work, the combinatorial Laplacian matrix is used as the building block, and

the graphs considered are undirected, weighted, connected and simple. Consequently,
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part of the developments proposed rely on the theoretical results obtained by Furh and

Pesenson [15,16,27] in harmonic analysis on graphs.

2.2.1 Graph Signal Sampling

Let G = (V (G), E(G)) be an undirected, weighted, connected, simple graph

with a set of nodes, V (G), and a set of edges, E(G). W is the adjacency matrix

(symmetric), with W(u, v) ≥ 0 the weight connecting the nodes u and v and u ∼ v

indicates that W(u, v) > 0. The degree matrix, D, is a diagonal matrix whose entries

are given according to:

D(u, u) =
∑

v∈V (G)

W(u, v). (2.1)

For any graph G, its volume is defined as vol(G) =
∑

u∈V (G) D(u, u), and the volume

of a subset S ⊂ V (G) is defined as vol(S) =
∑

u∈S D(u, u). On the graph G, the

combinatorial Laplacian operator is defined as the positive semi-definite operator:

L = D−W, (2.2)

whose eigenvalues are organized as 0 ≤ µ1 ≤ µ2 ≤ . . . ≤ µN , N = |V (G)| [30]. A real

signal, x, on the graph is then defined as the mapping x : V (G) −→ R denoted by

the vector x ∈ RN where x(v) is the value of the signal associated to v ∈ V (G). The

support of x is denoted by supp(x), and the restriction of x, to any subset S ⊂ V (G),

is denoted by x(S). It is worth noticing that:

(Lx)(v) =
∑

u∈V (G)

(x(v)− x(u)) W(v, u). (2.3)

If the spectral decomposition of the operator L is denoted by L = UΛUT, then

the Graph Fourier Transform (GFT) of the signal x on G is given by x̂ = UTx. There

is a direct analogy between the concept of frequency in traditional Fourier Analysis

and the behavior of the Graph Fourier Transform as is stated in [12]. Considering this

analogy, the bandwidth of a signal x can be defined using the nonzero components of

x̂. It is said that x has bandwidth ω ∈ R+ on the spectral axis if x̂ ∈ PWω(G) =
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span{Uk : µk ≤ ω}, where PWω(G) is the Paley-Wiener space of bandwidth ω [15]

and Uk indicates the first k column vectors in U. In some cases the bandwidth is also

represented with the largest integer k such that µk ≤ ω.

Given a notion of bandwidth, one invariably questions the notion of sampling

rate and whether the number of samples or nodes of a graph can be reduced without loss

of information to the signal. We, therefore, define sampling of a signal x on the graph

G, by choosing the components of x on a subset of nodes, S = {s1, . . . , sm} ⊂ V (G).

The sampled signal is given by x(S) = Mx where M is a binary matrix whose entries

are given by M = [δs1 , . . . , δsm ]T and δv is the N− dimensional Kronecker column

vector centered at v. Given x(S), it is possible to obtain a reconstructed version of

x in different ways depending on whether the bandwidth of the signal is known. We

assume that the bandwidth is known and that the reconstruction is given by:

xrec = argmin
z∈span(Uk)

‖Mz − x(S)‖2
2 = Uk (MUk)

† x(S) (2.4)

where (MUk)
† is the Moore-Penrose pseudo-inverse of MUk [31, 32]. Alternatively,

in [1] it is shown that a consistent reconstruction of the signal can be obtained from

its samples using interpolation splines.

The problem of optimally sampling a signal on a graph can now be summarized

as choosing S such that we maximize the available bandwidth of x(S). To this end,

Pesenson defines [15,16] a Λ-removable set for Λ > 0 as the subset of nodes, S ⊂ V (G),

for which:

‖x‖2 ≤ (1/Λ)‖Lx‖2 ∀ x ∈ L2(S), (2.5)

where L2(S) is the set of all signals, x, with support in S ⊂ V (G) (i.e. elements of x

not included in S are equal to zero) and finite `2 norm. The largest value of Λ for which

eqn. (2.5) holds is denoted by ΛS. Notice that for any subset of nodes there exists a

Λ-removable set with larger or smaller ΛS. Therefore, ΛS ultimately determines how

much importance a given set has in the sampling process of a signal with a specific

bandwidth. The relationship between properties of removable sets and the sampling

problem was established by Pesenson in the following theorem:

11



Theorem 1 (Theorem 5.1 in [15]). If for a set S ⊂ V (G), its compliment Sc = V (G)\S

is a ΛSc−removable set, then all signals in PWω(G) are completely determined by its

values in S, whenever 0 < ω < ΛSc.

In [27], another result related with sampling sets is established using a constant that

can be calculated directly with the weights, W, of the graph, G, stated in the following

theorem:

Theorem 2 ( [27]). Every S ⊂ V (G) is a uniqueness set for all functions in PWω(G)

with any ω < KS, where

KS = inf
v∈Sc

wS(v) (2.6)

and wS(v) =
∑

s∈S W(s, v).

Theorems 1 and 2 play a central role in the description of properties for different classes

of sampling sets as it is possible to consider that a good sampling set, S, promotes

the maximization of constants, ΛSc and KS. In particular, it will be shown in the

following sections that blue-noise sampling patterns indeed promote high values of

these constants.

Recently Pesenson [33] introduced results that characterize the representation

of a band limited signal in terms of induced subgraphs obtained from partitions of

V (G) that cover V (G). This statement can be summarized in the following theorem.

Theorem 3 (5.1,6.1,6.2 [33]). Let G be a connected finite or infinite and countable

graph. Suppose that P = {V (Ωj)}j=|P|j=1 is a disjoint cover of V (G) by connected

and finite subgraphs Ωj. Let LΩj be the Laplace operator of the induced graph Ωj

whose first nonzero eigenvalue is µ1,j. If ΛP = infj µ1,j > 0 and ΛP > 1+α
α
ω with

α > 0, then every signal x ∈ PWω(G) is uniquely determined by the values xTξj,

where ξj = χj/
√
|V (Ωj)| with χj(V (Ωj)) = 1 and χj(V (Ωj)

c) = 0. Additionally, x

can be reconstructed from this set of values in a stable way.

It is important to remark the meaning and implications of Theorem 3. This result

shows that V (G) can be divided into disjoint subsets that cover V (G), and a given
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band limited signal can be reconstructed from the average values of the signal in those

regions. Additionally, the constant ΛP associated to the partition provides a measure

of the quality of the reconstruction obtained from the regions on V (G) defined by

P . It is also worthy to point out that the size of the elements in the partition has a

natural limit as LΩj is expected to have at least one nonzero eigenvalue, which would

not be the case when Ωj consist of one single vertex. This result will allow us to

establish a connection between the spectral and vertex domain behavior of sampling

patterns in some classes of graphs. Additionally, we will show that from a blue-noise

sampling pattern s, it is possible to build a partition that can be used to estimate the

bandwidth of signals that are uniquely represented by their samples on the sampling

nodes indicated by s.

2.2.2 Optimal Graph Sampling

The problem of finding the best S is a combinatorial problem of calculating ΛSc

for all sampling sets and choosing the set with the largest value of ΛSc , a prohibitively

expensive process for large graphs. Allowing for some short cuts, a simple, greedy

procedure for finding a good sampling set starts with an empty set of nodes and

iteratively adds one node at a time, taking the best available node at each iteration

according the value of a cost function. Several authors have formulated the problem

of sampling and reconstruction in the presence of measurement noise, and in these

works objective functions have been proposed that minimize the reconstruction error

in terms of the worst case [21], where Sopt = arg max|S|=m σ
2
1, the mean case [31],

where Sopt = arg max|S|=m
∑min{m,k}

i=1 σ−2
i , and the maximum volume case [32], where

Sopt = arg max|S|=m
∏min{m,k}

i=1 σ2
i ; and σi represents the ith singular value of the matrix

MUk consisting of the first k eigenvectors of W or L respectively, sampled on the

rows indicated by S. In [34] the optimal sampling set is obtained considering the same

cost function for the mean case, but using the singular values of ΛUTdiag(S), where

diag(S) is the diagonal matrix whose entries are given by diag(S)i,i = 1⇔ i ∈ S.

In order to reduce computational complexity, Anis et. al. [31] defines graph
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spectral proxies of order q as estimates of the cutoff frequency of a given signal which

can be used to define cutoff frequency estimates for a subset of nodes S according to:

Ωq(S) = min
φ∈L2(Sc)

(
‖Lqφ‖2

‖φ‖2

) 1
q

, (2.7)

with Lq being the qth power of L [20,31]. Anis et. al. further shows that, for any q ∈ N

and S, it is possible to have perfect reconstruction when ω < Ωq(S). The value of

Ωq(S) can be calculated as Ωq(S) = (σ1,q)
1
2q , where σ1,q denotes the smallest eigenvalue

of the reduced matrix L2q
Sc,Sc . The optimal sampling set can then be represented as the

solution of the problem:

Soptq = arg max
|S|=m

Ωq(S), (2.8)

which is still combinatorial; however, Anis et. al. proposes a heuristic rule to solve

eqn. (2.8) using the first eigenvector of Lq
Sc,Sc . Basically, a node is added to the sampling

set according to the index of the component with maximum absolute value for the first

eigenvector of Lq
Sc,Sc . The quality of the sampling set is also related to the value of q,

which should be selected as large as possible at the expense of a higher computational

cost. In [35], some performance theoretical bounds for these greedy sampling techniques

are derived.

In some scenarios for sampling signals on graphs a spectral decomposition of

the operators is not available, and therefore, there is a strong need for vertex domain

sampling schemes that attempt to build good sampling patterns based entirely on the

local graph structure around a node. In particular, for those cases where the graphs are

too large for calculating the eigenvalues and eigenvectors of the GFT, several authors

have looked at the problem of sampling using subsets of nodes that may not be optimal

but are still very good at preserving band-limited signals. In the case of Puy et. al [28],

the authors perform a random selection of nodes with a recovery algorithm that involves

a probability distribution on a diagonal matrix, P, in addition to the sampling matrix

operator M. The reconstructed signal xrec can then be calculated as:

xrec = arg min
z∈RN

(∥∥P−1/2(Mz − x(S))
∥∥2

2
+ τzᵀg(L)z

)
, (2.9)
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where x(S) = Mx is the sampled version of the signal x, τ is a regularization parameter

selected empirically and g(·) is a polynomial function selected also empirically.

Puy et. al [28] further show that an optimal P can be determined by the use of

the local graph coherence, νk, on the nodes of the graph. The value of νk(i) at the node

i can be calculated as νk(i) = ‖Ukδi‖2, where δi is the Kronecker vector centered at

node i, and it provides a measure about how important is the node i for the sampling

of a signal with bandwidth k. If νk(i) is equal to 1 for a particular node i, then there

exists k-bandlimited graph signals whose energy is solely concentrated in this ith node.

If νk(i) is equal to 0, then no k-bandlimited graph signal has any energy in this ith

node. Therefore, node i can be deleted with no repercussions.

Because the calculation of νk(i) requires the knowledge of the spectral decom-

position, Puy et. al propose an approximate estimation of νk(i) that can be obtained

without the calculation of any spectral decomposition, which allows the solution of

eqn. (2.9). When the optimal P is used, Puy et. al show that the matrix MP−1/2

satisfies a restricted isometry property when the number of samples is on the order

of O(k log k), which provides a strong guarantee for the exact recovery of the signal.

This represents an elegant result but with the drawback that O(k log k) is substantially

higher than k, which is the optimal number of samples required to reconstruct a signal

of bandwidth k.

Recently, Tremblay et. al. [32] proposed the use of determinantal point processes

(DPP) in order to obtain the matrix P used in [28]. It is shown in [32] that an optimal

P can be obtained using DPP when Uk is known. Additionally, when the spectral

decomposition is not accessible, it is shown how a variant of the Wilson’s Algorithm

introduced in [36] can be used in order to obtain a sampling set that can be shown

is related with a DPP that leads to an approximate version of the optimal P. The

reconstruction of the signal is obtained by as solution of eqn. (2.9); however, these

results do not represent an improvement with respect to Anis et. al. [31] or Chen et.

al. [21] and may lead to larger reconstruction errors when the graph considered does

not have a strong community graph structure [32]. Wang et. al. [37] consider the
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sampling and reconstruction of signals adapting concepts and ideas from frame theory,

developing an iterative approach based on the concept of local sets.

Marques et. al. [38], proposed a different approach with respect to previous

works, considering the sampling and reconstruction of the signal using its samples on

a single node. The central idea is based on the information provided by the sequential

application of the shift operator. The technique itself represents a novel alternative

with potential applications in network analysis and its computational cost may be a

drawback when large size graphs are considered.

2.3 Blue-noise Sampling on Graphs

This work proposes a different approach to graph signal sampling: the appli-

cation of spatial dithering to the graph vertex domain where the spectral properties

of well formed sampling patterns will equally benefit the graph vertex domain as they

do the spatial. This approach is motivated by the well established research in digital

halftoning, which is the process of converting a continuous tone image or photograph

into a pattern of printed and not-printed dots for reproduction by inkjet or laser print-

ers [23,24,39]. Halftoning algorithms based on error-diffusion are of particular impor-

tance because they produce random patterns of homogeneously distributed dots where

minority pixels (black dots in highlights or white dots in shadows) are spaced as far

apart as possible. These patterns have power spectra dominated by high frequency

energy, earning the name, “blue-noise,” since blue is the high frequency component of

white light. Low frequency energy or red-noise contributes to halftone patterns looking

fuzzy or noisy to the human visual system and are, therefore, to be avoided [23,39].

In order to establish a blue-noise model for sampling signals on a graph, we

first propose the idea of a binary dither pattern on a graph, G = (V (G), E(G)), as the

binary graph signal, s ∈ {0, 1}N . We refer to the fraction of samples that we intend

to preserve as the density d = m/N , where ‖s‖0 = m. In the case of a white-noise

dither pattern as illustrated in Fig. 2.1 (top) on a Sensor Network graph for d = 0.1, s

is selected uniformly at random from the space of binary signals for which ‖s‖0 = dN ;
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therefore each component of s can be modeled as a Bernoulli random variable with

expected value E{s(`)} = d.

2.3.1 Vertex-domain Characteristics

We define blue-noise sampling on graphs in terms of its desired vertex domain

characteristics which resemble the spatial characteristics of blue-noise sampling in tra-

ditional halftoning. As such, we need to define a measure of spacing between neighbor-

ing nodes on a graph by defining a path between the nodes va and vb by the sequence

(va, u1, u2, . . . , un, vb) where each node in the sequence indicates the nodes visited when

going from va to vb, visiting between nodes with edge weights that are different from

zero. Having a sequence of nodes defining a path, we define the length of this path

according to:

|(va, u1, u2, . . . , un, vb)| = W(va, u1) + W(u1, u2) + · · · + W(un, vb), (2.10)

where the shortest path between two nodes, va and vb, is the path with minimum length

and is represented by γva,vb . For any v ∈ V (G), the open ball of radius ρ and centered

in v is defined as B(v, ρ) = {u ∈ V (G) : |γv,u| < ρ}. The symbol Γ ∈ RN×N represents

the matrix of geodesic distances in the graph, where Γ(u, v) = |γu,v|. We will refer to a

collection of subsets of V (G) as a cover if the union of such subsets is equal to V (G),

and the cover will be called disjoint if the subsets are pairwise disjoint.

Having defined the notion of distance on the vertex domain of the graph, we

can introduce blue-noise sampling taking into account its characteristics in traditional

halftoning. Blue-noise halftoning is characterized on the spatial domain by a distribu-

tion of binary pixels where the minority pixels are spread as homogeneously as possible.

Distributing pixels in this manner creates a pattern that is aperiodic, isotropic (radially

symmetric), and does not contain any low-frequency spectral components. Halftoning

a continuous-tone, discrete-space, monochrome image with blue-noise produces a pat-

tern that, as Ulichney [23] describes, is visually “pleasant” and “does not clash with

the structure of an image by adding one of its own, or degrade it by being too ‘noisy’ or
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Figure 2.1: Illustration of the spatial and spectral properties of (top) a white-noise
dither pattern on a Sensor Network graph with density, d = 0.1, with (center) a flat
pair correlation approximately equal to 1.0 for all internode distances, ρ, and (bottom)
an approximately flat power spectra for all frequencies, µ.

uncorrelated.” Similarly on a graph, the minority nodes composing the binary signal

are expected to be equally spaced apart when measuring distance as the sum of the

weights forming the shortest path. With these ideas, we formally introduce blue-noise
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in the following definition.

Definition 1 (Blue-Noise on Graphs). Let S ⊂ V (G) be a subset of nodes in the

graph G with S = {s1, s2, . . . sm}. Then, it is said that S represents an ideal blue-noise

sampling pattern, if the following conditions are satisfied:

• There is a collection of open balls B(si, λ) that forms a cover of V (G).

• The value of λ is the minimum possible for all the subsets of nodes of size m.

Definition 1 implies that ideal blue-noise sampling patterns have their sampling nodes

located as far as possible from each other, or in other words, there is a typical vertex

domain spreading of the sampling nodes. Figure 2.5 (top) illustrates a typical blue-

noise pattern on a sensor network. We use this attribute as the defining characteristic

of a blue-noise sampling pattern; however, we will show in later sections that, in some

classes of graphs this vertex domain spreading implies or is correlated with a high

frequency behavior on the spectral domain.

2.3.1.1 Vertex-domain Metrics

For any v ∈ V (G), the annulus of radius ρ, width θ, and center v is defined

as Bθ(v, ρ) = {u ∈ V (G) : ρ − θ ≤ |γv,u| < ρ + θ}. Figure 2.2 illustrates an example

of Bθ(v, ρ). With a notion of concentric rings in Bθ(v, ρ), we can now define the pair

correlation on a graph. Specifically, let S = supp(s) = {s1, s2, . . . , sm} be the support

of the sampling pattern s and let ‖s(Bθ(si, ρ))‖0 be the number of 1s of s on Bθ(si, ρ),

then the sample pair correlation function, Rs(ρ), associated to s is defined by

Rs(ρ) =

1
m

m∑
i=1

‖s(Bθ(si, ρ))‖0

1
N

∑
v∈V (G)

‖s(Bθ(v, ρ))‖0

. (2.11)

Notice that the numerator in (2.11) indicates the average number of 1s in s on a ring

of width θ that is centered on a 1 of s, while the denominator indicates the average

number of 1s on the ring of the same width when it is centered at any arbitrary node.
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Figure 2.2: Illustration of Bθ(v, ρ) in a graph. Left: representation of Bθ(v, ρ) for small
values of ρ and θ. Right: Illustration of Bθ(v, ρ) for large values of ρ and θ. The nodes
in blue color are located in the annulus of radius ρ and width θ centered at the node
v indicated in red color.

Now, the pair correlation for q realizations s1, . . . , sq of a random sampling pattern is

defined as

R(ρ) =
1

q

q∑
r=1

Rsr(ρ), (2.12)

as the influence of a sampling point at node v on all other nodes in the geodesic annular

region Bθ(v, ρ). Notice that for the computation of eqn. (2.11) several values of θ can

be considered, in this work the value of θ is the average of nonzero edge weights.

Note that a maxima of R(ρ) can be considered as an indication of the frequent

occurrence of the inter-node distance, ρ, between nodes set to 1 whereas minima in-

dicate a reduced occurrence. Since for random patterns the expected number of 1s in

any annular ring is proportional to the number of nodes within the ring, we expect a

pair correlation equal to 1 for all ρ > 0 as illustrated in Fig. 2.1 (center).

Blue-noise, when applied to an image of constant gray-level g, spreads the mi-

nority pixels of the resulting binary image as homogeneously as possible such that the

pixels are separated by an average distance, λb, referred to as the principal wavelength

of blue-noise. These minority pixels are the pixels that are used to represent the prop-

erties of a region on a grayscale image, for instance in a dark region the minority pixels

are labeled with 1 while in white regions the minority pixels are labeled with 0. Then,
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the value of λb is defined as the radius of a round disc, surrounding a minority pixel,

such that the ratio of the surface area of a minority pixel to the surface area of the

disc is equal to the density of minority pixels, d = g for 0 < g ≤ 1/2 and d = 1− g for

1/2 < g ≤ 1, which we can write as:

d =
DxDy

λ2
b

, (2.13)

where Dx and Dy are the sampling periods (distance between samples) of the digital

image in the x and y directions, respectively.

In order to extend the notion of principal wavelength to graphs, we need a notion

of surface area as the expected number of graph nodes, E{N (λ)}, within a distance or

path length, λ, of a given minority node. We expect the ratio of our single, minority

node to all nodes within a path length, λb, to equal the density level according to:

d =
1

E{N (λb)}
. (2.14)

Being that E{N (λb)} is graph dependent, the graph blue-noise wavelength, λb, is

likewise graph dependent and its characterization is still an open area of research [40–

42]. In general, one can derive λb versus d experimentally as we have in Fig. 2.3 where

we show the principal wavelength versus the density sampling d for some commonly

used graphs. We note that in the case of the sensor graph, λ varies smoothly with

d = 1/E{N (λb)} while, in the case of the community graph, it varies with a piecewise

constant behavior with respect to d.

In light of the nature of graph blue-noise to isolate minority nodes, we can

begin to characterize blue-noise graph signals in terms of the pair correlation, R(ρ),

by noting that: (a) few or no neighboring minority nodes lie within a path length of

ρ < λb; (b) for ρ > λb, the expected number of minority nodes per unit area tends

to stabilize around a constant value; and (c) the average number of minority nodes

within the path length, ρ, increases sharply nearly λb. The resulting pair correlation

for blue-noise is, therefore, of the form in Fig. 2.4 (top), whereR(ρ) shows: (a) a strong

inhibition of minority nodes near ρ = 0, (b) a decreasing correlation of minority nodes
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Figure 2.3: Principal wavelength λb versus the density of the sampling pattern for four
different graphs traditionally considered in the literature.
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Figure 2.4: The ideal (top) pair correlation and (bottom) power spectra for blue-noise
sampling patterns.

with increasing ρ (limρ→∞R(ρ) = 1), and (c) a frequent occurrence of the inter-node

distance λb, the principal wavelength, indicated by a series of peaks at integer multiples

of λb. The principal wavelength is indicated in Fig. 2.4 (top) by a diamond located

along the horizontal axis. Returning to the sample blue-noise signal of Fig. 2.5 (top),

the resulting pair correlation of Fig. 2.5 (center) has a principal wavelength of λb = 0.56

with a clearly visible peak of 1.55, meaning that nodes equal to 1 are 55% more likely

to occur at a distance of ρ = 0.56 from an existing 1 than for the unconstrained

probability of a node being equal to 1.

2.3.2 Spectral Characteristics

Blue noise sampling patterns are characterized in traditional halftoning for a

high frequency behavior [24]. In this section we state a connection between the spectral
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Figure 2.5: Illustration of the spatial and spectral properties of (top) a blue-noise
dither pattern on a Sensor Network graph with density, d = 0.1, with (center) a pair
correlation peak at the principal wavelength, λb, and (bottom) an approximately high
frequency only power spectrum for frequencies, µ.

characteristics of a sampling pattern and its vertex domain characteristics, using the

local properties of partitions of V (G) that are measured by the isoperimetric constants
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of local induced subgraphs. In order to characterize the frequency content of a sampling

pattern, a cost function is proposed. In particular, we propose a scalar measure of low-

frequency energy, Rs, in the signal s, as the weighted sum of all Fourier coefficients’

energies:

Rs =
1

‖ŝ‖2
2

N∑
`=2

ŝ2(`)

µ`
=

1

m

N∑
`=2

ŝ2(`)

µ`
, (2.15)

where ŝ is the graph Fourier transform of s. Rs is coined as the redness of s as it

measures low frequency spectral content.

In order to establish a connection between Rs and the vertex domain charac-

teristics of a sampling pattern, it is important to consider the following theorems.

Theorem 4. For the graph G = (V (G), E(G)), let P =
{
V (Ω1), V (Ω2), . . . , V (Ω|P|)

}
be a partition of V (G), where Ωj is the induced subgraph given by V (Ωj). Let δj be the

isoperimetric dimension of Ωj. Then if

δ1 = δ2 = . . . = δ|P| = δ (2.16)

it follows that

ΛP > min

{
Cδ

(
1

vol(Ω1)

) 2
δ

, . . . , Cδ

(
1

vol(Ω|P|)

) 2
δ

}
(2.17)

where Cδ is a constant that depends on δ.

Proof: See Appendix 2.7

Theorem 4 indicates that when the graph has a local invariant isoperimetric dimension,

the quality of a partition P for the representation of bandlimited signals, measured by

ΛP , is defined by the set in P with the largest volume. The concept of isoperimetric

dimension, originally defined on manifolds, provides a measure of how similar is the

global behavior of a manifold with respect to a Euclidean space [43]. Similarly, in the

case of graphs, the isoperimetric dimension indicates how close the behavior of a graph

is with respect to regular grid-like graphs. For instance, the isoperimetric dimension of

the n−dimensional regular grid is n [43]. In the following theorem, we indicate when

the right-hand side of eqn. (2.17) is maximized.
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Figure 2.6: Partition of V (G) for a graph G. Each color indicates the subgraph Ωj

induced by V (Ωj). Illustration shows how a sampling pattern can be built from the
partition selecting the sampling nodes on the set S, whose nodes are indicated in black
color. Notice that the sampling pattern indicated satisfies eqn. (2.19) and eqn. (2.20).

Theorem 5. Under the conditions stated in Theorem 4 and for a fixed value of |P|,

the partition that maximizes the right hand side of eqn. (2.17) satisfies that

vol(Ωi) = vol(Ωj) ∀i, j. (2.18)

Proof: See Appendix 2.8

Under the conditions stated in Theorem 4, Theorem 5 provides the characteristics of

the partition that will maximize the bandwidth of signals that can be represented in a

unique way via their average values on the elements of the partition.

Now, it is important to notice that for any partition P = {V (Ω1) ,

V (Ω2), . . . , V (Ω|P|)
}

, it is possible to build a sampling pattern, locating one sampling

node per partition element (see Fig. 2.6). In the following theorem, we show that the

spectral characteristics of such sampling patterns, measured by Rs, are bounded by

the local characteristics of the elements in P .
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Theorem 6. Let P =
{
V (Ω1), V (Ω2), . . . , V (Ω|P|)

}
a partition of V (G) and let s ∈

{0, 1}N a sampling pattern chosen according to

‖s(V (Ωj))‖0 = 1 ∀j (2.19)

If s(v) = 1, then s(u) = 0 ∀u ∼ v (2.20)

then

Rs ≤
(µ2 + µN)2(1− |P|/N)2

4µ2µN min
j

{
Cδj

vol(Ωj)
2/δj

} . (2.21)

If in addition, δ = δ1 = . . . = δ|P| and vol(Ω) = vol(Ω1) = . . . = vol(Ω|P|), then

Rs ≤
(µ2 + µN)2(1− |P|/N)2vol(Ω)

2
δ

4Cδµ2µN
. (2.22)

Proof: See Appendix 2.9

In order to discuss the meaning and implications of Theorem 6, it is important to

mention that eqn. (2.19) and eqn. (2.20) imply that there is one sampling node per

element of the partition with ‖s‖0 = |P|, and that there is a minimum interdistance

between the sampling nodes in s (see Fig. 2.6). In particular, eqn. (2.20) assures that

the sampling points in s are far from the boundaries of the elements of the partition.

Notice that eqn. (2.21) presents a general upper bound for the redness of an ar-

bitrary sampling pattern subject to eqn. (2.19) and eqn. (2.20). Meanwhile, eqn. (2.22)

provides a tighter bound that is connected with blue-noise sampling patterns as a con-

sequence of having the elements in the partition with the same volume and the same

isoperimetric dimension. In this second case, we see that as the size of the partition,

P , increases (and therefore the number of sampling nodes in s) vol(Ω) decreases and

so it is the value Rs, making clear the connection between a uniform vertex spread-

ing of the sampling nodes in s and a low redness. As a consequence, a behavior like

the one depicted in Fig. 2.5 (bottom) is expected. It is important to emphasize that

this statement is connected to Theorems 4 and 5, where the characteristics of good
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partitions for the representation of bandlimited signals is stated. In the case of the

traditional halftoning scenario where the problem is modeled on a 2-dimensional grid,

the conditions of Theorems 6, 5 and 4 hold and a typical response like the one shown

in Fig. 2.4 (bottom) is obtained.

Theorem 6 also implies that there is an upper limit about the number of elements

in the partition P that can be considered, and with that, it comes a limitation in the

number of sampling nodes for which these inequalities hold. In particular, for very

large values of |P|, eqn. (2.19) and eqn. (2.20) cannot be satisfied. We point out that

this does not diminish the quality of the sampling patterns, but instead points out that

the relationship between the spectral domain and the vertex domain is not guaranteed

to be governed by eqn. (2.21).

2.3.2.1 Spectral Metrics

It is also possible to characterize the spectral properties of binary dither patterns

on a graph where we extend the idea of periodograms to graphs such that the GFTs of q

realizations of x, i.e. x1,x2, . . . ,xq, are averaged together to form the power spectrum:

p(`) =
N

q

q∑
i=1

x̂i(`)
2

‖x̂i‖2
2

` = 2, . . . , N. (2.23)

Notice that the `th component of p is associated with the `th eigenvalue µ`. Like its

binary halftone counterpart, the GFT of a white-noise sampling pattern is expected

to be flat for all µks, and to visualize this power spectra, Fig. 2.1 (bottom) shows an

estimate of the power spectra for 100 unique white-noise dither patterns generated on

the 2000-node Sensor Network graph with pattern density d = 0.1.

2.3.3 Blue-noise Sampling Sets

In the following corollary we state how from a blue-noise sampling pattern a

good partition in the sense of Theorem 3 can be obtained.
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Corollary 7. Let s be a blue-noise sampling pattern obtained according to Definition 1,

with ‖s‖0 = m and supp(s) = {s1, s2, . . . , sm}. Let B(sj, λ) be as specified in Definition

1. Then, there exists a partition P =
{
V (Ω1), V (Ω2), . . . , V (Ω|P|)

}
of V (G) such that

u ∈ V (Ωj)⇔ u ∈ B(sj, λ), u /∈ B(si, λ) ∀ i 6= j (2.24)

and the elements in the intersection between the sets B(si, λ) are distributed on the

V (Ωi) such that the quantity
∑

i 6=j |vol(Ωi)− vol(Ωj)| is minimized. Additionally if

ΛP > (1 + 1/α)ω, α > 0 any x ∈ PWω(G) can be uniquely determined from its values

at {s1, s2, . . . , sm} always that x(sj) = xT(ξj ◦ ξj) ∀j.

Proof: See Appendix 2.11.

This corollary indicates that given a sampling pattern whose sampling points are lo-

cated as far as possible from each other, it is possible to build a partition from which

a unique representation of a set of bandlimited signals is possible. Additonally, if the

conditions of Theorem 4 are satisfied, then the partitions obtained are the ones that

maximize the value of ΛP .

Theorem 1 tells us that when a fixed value of the bandwidth ω is considered

and a signal has to be sampled taking m samples, it is necessary to look for the set

of nodes, S, such that Sc is a ΛSc-removable set with ω < ΛSc . Finding the subset of

m nodes with the maximum ΛSc would, therefore, give the best sampling set. On the

other hand, if a signal has to be sampled taking a number of m samples, choosing a set

of nodes S with the maximum value of ΛSc will extend the class of signals, PWω(G),

that can be sampled and represented in a unique way with m samples.

Now if one can show that minimizing the redness in a sampling signal promotes

high values of ΛSc , one could argue blue-noise was a desirable attribute for efficient

sampling. The following theorem establishes this relationship:

Theorem 8. Let s : V (G) −→ {0, 1} be a sampling pattern with s(S) = 1, s(Sc) = 0

for S ⊂ V (G) and |S| = ‖s‖0 = m, then the ΛSc−constant of the set Sc satisfies

ΛSc > Cδ

(
Rs

vol(G)Rs −m
(
1− m

N

)2

) 2
δ

(2.25)
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where Rs is the redness in s from eqn. (2.15); δ is the isoperimetric dimension of

G [27, 44]; and Cδ a constant that depends only on δ.

Proof: See Appendix 2.12.

To summarize, Theorem 8 tells us that the best sampling set, S, is the one for which

the value of ΛSc is a maximum; therefore while blue-noise sampling patterns (which

minimize Rs) are not necessarily the best sampling sets, they are good sampling sets.

Notice that eqn. (2.25) is well defined as vol(G)Rs −m
(
1− m

N

)2
> 0, which is tight

when Sc ∪ bSc = V (G) where bSc is the boundary of Sc. This criteria can be satisfied

making the nodes in S as spread apart as possible in the graph, which is reasonable as

a sampling set where all the nodes are too concentrated in one area could lead to poor

reconstructions of signals that exhibit fast changes in the sparsely sampled areas left

elsewhere.

As an approach to reinforce the benefits of blue-noise sampling sets, we can

use the quantities introduced in Theorem 2 to show how blue-noise promotes those

sampling sets that maximize the bandwidth of the signals that can be represented in

a unique way on a given sampling set as indicated in the following theorem:

Theorem 9. Let s : V (G) −→ {0, 1} with s(S) = 1, s(Sc) = 0, S ⊂ V (G). If KS > 0,

then

KS ≥

(
m
(
1− m

N

)2

Rs

− γ

)1/2

(2.26)

where γ = maxS,v′ ,v

(∑
v∈Sc\v′ wS(v)2

)
, and Rs is, again, the redness in s from eqn. (2.15).

Proof: See Appendix 2.13.

Theorem 9 indicates that lowering the redness of the sampling pattern raises the min-

imum possible value of KS and, therefore, extends the set of signals, PWω(G), that

can be represented in a unique way on a given sampling set. Therefore, again the

blue-noise sampling patterns that are characterized by small values of Rs represent a

better option than arbitrary random sampling, which leads to large values of Rs.
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2

Figure 1: 2 Figures side by side

1

Figure 2.7: Void and cluster blue-noise sampling patterns for different intensities d for
a sensor network graph. First row: Localization on the graph of the nodes selected
in a blue-noise sampling pattern. Second row: The pair correlation function R(ρ) for
the sampling patterns indicating with a diamond marker the value of λb. Third row:
Power spectral density for the different blue-noise sampling patterns.

It is important to point out that, under the conditions stated in Theorem 4,

Theorems 8 and 9 show that the reduction of the redness is a desirable attribute for

any sampling pattern, which is something that can be considered with other sam-

pling approaches. Additionally, the tightness of the inequalities depends on the graph

structure which makes these results stronger in some families of graphs.

2.3.4 Stability and blue-noise sampling Sets

The selection of a sampling set, S, is not only associated to a possible unique

representation of a signal but also to the stability of its reconstruction when the samples

are corrupted by noise, or when the signal considered is not exactly bandlimited. This

stability can be measured considering the condition of the matrix Uk(S, :), which is the

matrix obtained by sampling Uk on the rows indicated by S [31]. Several cost functions

can be formulated in terms of the condition of Uk(S, :), such that their minimum or

maximum values are given by the sampling set that provides the best condition [31].

The measures of stability provided in [31] can be equivalently obtained from
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a formal general definition of stability for sampling sets in arbitrary spaces [4]. In

particular, recalling the definition of stability presented in [4] for general sampling

schemes, we can say that PWω(G) posses a stable sampling expansion or reconstruction

on S ⊂ V (G) if there exists C ≥ 1 such that ‖x(Sc)‖2
2 ≤ (C − 1)‖x(S)‖2

2 ∀x ∈

PWω(G). The value of C provides a measure of stability associated to S; the larger

the value of C the less stability we have. In the following theorem we provide an

estimate of C − 1 in terms of ΛSc .

Theorem 10. Let x ∈ PWω(G). Then, if ΛSc > ω̃, it follows that

‖x(Sc)‖2
2 ≤

(
ω̃r

ΛSc

)2

1−
(
ω̃r

ΛSc

)2‖x(S)‖2
2 r ∈ R+ (2.27)

where ω̃ is the bandwidth of x1, x1(Sc) = x(Sc) and x1(S) = 0.

Proof: See Appendix 2.14

From this theorem, it is important to point out that finding the sampling set S

for which ΛSc is maximum not only provides a unique representation of a bandlimited

signal, but also provides the sampling set in which the highest stability is achieved.

This result is consistent with the findings in [31].

As it was stated in Theorem 8, patterns with a low redness promote large

values of ΛSc , therefore blue-noise sampling patterns not only promote uniqueness of

the representation but also stability in the reconstruction.

2.3.5 Connection with other works

The implications and properties of spreading the sampling points as far as pos-

sible from each other on non Euclidean domains were formally established by Pesenson

in [5] considering functions on compact Riemmanian manifolds. In [45–47] the concept

of blue-noise was used for the sampling of surfaces embeded in R3 for applications in

computer graphics. This last result can be considered an application of the results

in [5] for two-dimensional manifolds embedded in R3. It is important to point out that
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the results in [45–47] rely on the mapping that can be established between the surface

and a subset of the 2-dimensional Euclidean domain, but they do not offer any insight

of how to deal with the problem in higher dimensions. In [48] a method is proposed

for the optimal location of sensors in Euclidean spaces. Exploiting the concepts of

entropy, mutual information and Gaussian processes (GPs), the problem of selecting a

subset of sensors among a predefined set of discrete positions, defined on a grid of an

n−dimensional Euclidean space, is addressed. To deal with a large number of possi-

ble sensor locations some relaxations based on lazy evaluations and local structure of

(GPs) are used.

In a different context, and before the emergence of graph signal processing,

functions defined on the vertices of a graph have been considered under the concept of

fitness landscapes [30, 49], which were introduced as a tool for the study of molecular

evolution. In this context, the length of the autocorrelation function has been useful

for the analysis of a landscape. In particular, the correlation length of a landscape, x,

on a K-regular graph is given by [49]

`x =
K

‖x̂‖2
2

N∑
`=2

x̂(`)2

µ`
. (2.28)

The values of eqn. (2.28) provide an indication about how correlated are a given set

of samples of the landscape obtained using a random walk. As can be observed in

eqn. (2.28) this is proportional to the redness of x. In this context, it is possible

to conceive blue-noise sampling patterns on graphs as landscapes with a low length

correlation.

2.4 Generating Blue-Noise Sampling Sets

Given that blue-noise graph signal sampling promotes the finding of good sam-

pling sets, it is natural to ask how such sampling patterns can be generated. An

algorithm that has been particularly successful in digital halftoning and that intu-

itively translates to graphs is the Void-And-Cluster (VAC) algorithm, introduced by
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Figure 2.8: Void and cluster blue-noise sampling patterns for different intensities d for
a community graph. First row: Localization on the graph of the nodes selected in a
blue-noise sampling pattern. Second row: The pair correlation function R(ρ) for the
sampling patterns indicating with a diamond marker the value of λb. Third row: Power
spectral density for the different blue-noise sampling patterns.
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Figure 2.9: Illustration of the redness, Rs = 1
m

∑N
`=2

ŝ(`)2

µ`
, of the void and cluster

blue-noise sampling patterns on a sensor network with N = 2000 nodes, considering
different densities.
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Ulichney [25]. VAC allows for the construction of artifact-free homogeneous dither-

ing patterns by iteratively measuring the concentration of minority pixels in a binary

halftone image, using a gaussian low-pass filter, and swapping the minority pixels in

the area of highest concentration with the non-minority pixel in the area of lowest

concentration. The adaptation of this algorithm to sampling signals on graphs consists

roughly speaking of the sequential computation of distances between sampling points

in such a way that points with short geodesic distances between them are relocated

trying to put them far from each other.

In order to exploit the above principle for the selection of sampling nodes on a

graph, a Gaussian kernel K(u, v) = exp(−Γ(u, v)2/σ) is evaluated on the set of geodesic

distances, Γ. This provides a new set of distances that can be tuned according to the

parameter, σ, where a small value of Γ(u, v) leads to a value of K(u, v) that is close

to unity while a large value of Γ(u, v) leads to a value of K(u, v) close to zero. As

a measure of how homogeneously distributed the sampling points are, the sum of all

distances from one node to the others via the kernel K is calculated as c = K1N×1.

With this, an initial sampling pattern is generated selecting the m components of c at

random, where m = dN is the number of 1’s in the sampling pattern with density d.

The components of c whose index is given by the location of the 1’s in s, are

then updated to be c(supp(s)) =
∑

K(supp(s), supp(s)), where
∑

K(A,B) is defined

by ∑
K(A,B) =

∑
ai,bj

K(ai, bj) ai ∈ A, bj ⊂ B. (2.29)

The remaining components of c are updated according to c(supp(s)c) =
∑

K(supp(s),

supp(s)c)−τ , where τ is selected as a large scalar value. With this update the distances

between sampling points in the pattern are represented as positive quantities without

adding the distances to other nodes. The distance between supp(s) and supp(s)c is

then represented with a negative value. Now the index of the component of c with

the highest value will indicate the sampling point that is closest to the other sampling

points, and then the value of s at that index is forced to be 0 whereas in the index
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Algorithm 1 Void and cluster algorithm for graphs

Input: m: number of samples, σ, NumIter.
Output: s: sampling pattern

Initialisation : s = 0, IndA=-1, IndB=-1.

Calculate K(i, j) = e−
Γ(i,j)2

σ for all 1 ≤ i, j ≤ N .
2: c = K1N×1.

Get M as m nodes selected at random.
4: s(M) = 1.

for r = 1 : 1 : NumIter do
6: c(supp(s)) =

∑
K(supp(s), supp(s)).

c(supp(s)c) =
∑

K(supp(s), supp(s)c)− τ .
8: s (arg maxi{c(i)}) = 0.

s (arg mini{c(i)}) = 1.
10: if IndA=arg maxi{c(i)} and IndB=arg mini{c(i)} then

break
12: else

IndA=arg mini{c(i)}.
14: IndB=arg maxi{c(i)}.

end if
16: end for

return s

where c is minimum, s is forced to be 1. Notice that the role of τ is to make sure that

always c(supp(s)c) < 0 and a variety of values for τ would serve this purpose. Taking

into account that
∑

K(supp(s), supp(s)c) ≤ N , it is possible to select τ as any value

such that τ > N .

Repeating the above process iteratively, it is possible to achieve a sampling

pattern with no clusters of 1s that exhibits a homogeneous distribution on V (G).

The details of the VAC algorithm can be appreciated in Algorithm 1 with example

sampling patterns using VAC depicted in Fig. 2.7 for the Sensor Network graph and in

Fig. 2.8 for a community graph. From observation, one can see a clear distinction with

respect to random sampling when it comes to the nodes distribution of the sampling

set. The spatial and spectral blue-noise-like behavior is obtained as a byproduct of the

algorithm.

At this point, we note that the value of σ in the kernel exp(−Γ(u, v)2/σ) plays a
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(a) (b) (c)

(d) (e) (f)

Figure 2.10: Averaged MSE using the reconstruction stated in (2.4) vs the sampling
rate considering the reconstruction of 100 different signals from its samples using several
sampling schemes and considering several graphs: (a) The graph G1 and the signal
model SM1. (b) The graph G2 and the signal model SM1. (c) The graph G3 and the
signal model SM1. (d) The graph G1 and the signal model SM2. (e) The graph G2

and the signal model SM2. (f) The graph G3 and the signal model SM2.

critical role in VAC as it defines which sampling nodes are close enough to another one

in order to produce a relocation of the 1’s in the sampling pattern. Taking into account

the definition of λb presented in previous sections, it is possible to establish a natural

connection between σ and λb. In order to do so, we note that if the blue-noise sampling

pattern is ideally distributed on the set of nodes, V (G), then when u and v are sampling

nodes it follows that exp(−Γ(u, v)2/σ) ≈ 0 if Γ(u, v) ≥ λb. This criteria is considered

to be satisfied when σ = λ2
b/ln(10), i.e selecting σ in this way the exponential reaches

a value of 0.1 when Γ(u, v) = λb. The number of iterations NumIter is selected as a

multiple of N . In the numerical experiments performed, we have found that choosing

NumIter = N is enough for the algorithm to reach a stationary behavior. As indicated

in Fig. 2.9, there is a clear reduction of the redness of the patterns as they get better

distributed on the nodes of the graph. It is important to mention that the number

of iterations required for the redness to drop to its minimum value increases as the

value of d increases. This is related with the fact that, as d is reduced, there are more

possibilities for the relocation of the 1’s in the sampling pattern.
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(a) (b) (c)

(d) (e) (f)

Figure 2.11: Averaged MSE using the reconstruction method proposed in [1] vs the
sampling rate considering the reconstruction of 100 different signals from its samples
using several sampling schemes and considering several graphs: (a) The graph G1 and
the signal model SM1. (b) The graph G2 and the signal model SM1. (c) The graph
G3 and the signal model SM1. (d) The graph G1 and the signal model SM2. (e) The
graph G2 and the signal model SM2. (f) The graph G3 and the signal model SM2.

2.5 Experiments

In order to evaluate the benefits of blue-noise sampling, a set of numerical exper-

iments is performed comparing the obtained results against state of the art techniques.

The simulations are performed considering different graphs and signal models. The

experiment is described by the following steps:

• For each graph model, a set of 100 signals is generated according to the specific

signal models selected.

• Each signal is sampled by means of different sampling schemes.

• The signal reconstructed from the samples is compared to the original one, and its

mean squared error (MSE) is calculated.

• The values of the MSE are averaged over 100.

The schemes of sampling considered for the experiment are the following:

• Blue noise sampling by void and cluster.
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• Sampling scheme proposed by Chen et. al. [21].

• Sampling scheme proposed by Anis et. al. [31].

• Sampling scheme proposed by Tsitsvero et al. [34].

The signal models are:

• Signal model 1 (SM1): A random signal of bandwidth k = 50, where the Fourier

coefficients are generated from the Gaussian distribution N (1, 0.52). The samples

captured are contaminated with additive Gaussian noise such that the Signal to

Noise Ratio is SNR = 20dB.

• Signal model 2 (SM2): A random signal with Fourier coefficients generated from the

Gaussian distribution N (1, 0.52). This signal is modulated on the spectral axes by

h(µ), where

h(µ) =

 1 If µ ≤ µ50

e−4(µ−µ50) If µ > µ50

(2.30)

The graphs considered in the simulations are different from each other in their nature

and represent typical graphs that can be found in different scenarios and applications.

The graph models used are:

• Graph G1: A random sensor network with N = 1000 nodes. The weights in the

graph are given by the Euclidean distance between points. The maximum number

of neighbors for each node is 6.

• Graph G2: A community graph with N = 1000 nodes, 16 communities generated

using the GSP toolbox [50].

• Graph G3: A Barabási-Albert random network [11] with N = 1000 nodes.

The reconstructions are performed by means of eqn. (2.4) and by the interpolation

splines proposed in [1] and implemented in [50]. In Figs. 2.10 and 2.11, the performance

of different algorithms can be appreciated including VAC sampling. Notice that the
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(a) (b)

(c) (d)

Figure 2.12: Illustration of the redness Rs = 1
m

∑N
`=2

ŝ(`)2

µ`
for the sampling patterns

generated by different sampling approaches on different graphs. (a) Swiss roll graph;
(b) Sensor network graph; (c) Sphere graph; (d) Bunny graph.

decay rate of the error curves show consistently the benefits of blue-noise sampling.

The results obtained using VAC are close to the ones obtained in [31]. Additonally,

in Fig. 2.12, the redness of the sampling patterns obtained by different techniques

are presented considering different graphs. It is possible to see how low redness is a

characteristic attribute of good sampling patterns.

2.6 Conclusion

Blue-noise sampling on graphs is defined based on the traditional blue-noise

model associated with digital halftones. The properties and benefits of blue-noise

sampling on graphs are linked with theoretical results related to uniqueness sets in

sampling, showing why blue-noise patterns promote good sampling sets. We also ex-

tended void and cluster, a popular halftoning scheme to generating blue-noise sampling

sets on graphs. Numerical tests on different graphs corroborate the good qualities of

sampling with blue-noise. We specified conditions under which the traditional rela-

tionship between vertex-domain spreading and frequency behavior is preserved. We
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further note that the results obtained in this work can be extended for specific families

of graphs. The delimitation of the properties for the graphs under consideration could

lead to sharper bounds and could allow the definition of other quantities extensively

used in halftoning, like the principal frequency.

An overlooked benefit to blue-noise sampling is the wealth of computationally

efficient algorithms used in digital halftones that can be extended to graph sampling

without spectral estimation, namely error-diffusion where the produced halftone pat-

terns conform to the local spectral content of the image to optimally preserve salient

features like edges, gradients, flood fills, etc. Also, a very valuable attribute of error-

diffusion that is not widely recognized outside the halftoning community is that error-

diffusion can be trained to produce arbitrary spectral profiles (blue-noise, green-noise,

etc) and even designed to match the dither patterns produced by other means, includ-

ing ones with high computational complexity [24, 51]. For graph signal sampling, this

opens up the possibility of error-diffusion algorithms trained to mimic sampling algo-

rithms based on spectral estimation and vertex-domain characteristics. We consider

that an interesting topic for future research would be the analysis and implications of

blue-noise sampling on graphs for signals that are bandlimited but not necessarily low

pass [52]. This could provide a generalization of the results that were stated in this

work.

It is important to point out that blue-noise sampling promotes large values of

ΛSc , but there is not a guarantee about reaching the maximum value of ΛSc . For this

reason the stability is affected when the value of ΛSc is not large enough, which also

happens when m is not large enough. This aspect is something that can be improved in

future works adding additional constraints to the method used to generate blue-noise

sampling patterns.
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2.7 Proof of Theorem 4

Proof. As stated in [44] (page 168), by means of Sobolev inequalities, it is possible to

state that

µ1,j ≥ Cδj
1

vol(Ωj)
2
δj

(2.31)

where δj is the isoperimetric dimension of Ωj and Cδj is a constant that depends only

on δj. Taking into account the definition of ΛP in Theorem 3 we do have that

ΛP > min

 Cδ1

vol(Ω1)
2
δ1

, . . . ,
Cδ|P|

vol(Ω|P|)
2

δ|P|


if δ1 = δ2 = . . . = δ|P| = δ, then it follows that

ΛP > min

{
Cδ

vol(Ω1)
2
δ

, . . . ,
Cδ

vol(Ω|P|)
2
δ

}

2.8 Proof of Theorem 5

Proof. In order to simplify notation let us represent xi = vol(Ωi)
2/δ/Cδ and let us

consider the optimization problem

maximize
{x1,x2,...,x|P|}

min{1/x1, 1/x2, . . . , 1/x|P|}

subject to

|P|∑
i=1

xi = c1, xi > 0 ∀i
(2.32)

where c1 is a constant. Now, taking into account that

min{1/x1, 1/x2, . . . , 1/x|P|}
|P|∑
i=1

xi ≤
|P|∑
i=1

xi
1

xi
= |P|

min{1/x1, 1/x2, . . . , 1/x|P|} ≤ |P|/c1.

Then, the maximum value of the objective function in eqn. (2.32) is |P|/c1. Let

(x∗1, x
∗
2, . . . , x

∗
|P|) the optimal solution of (2.32), then it follows that |P|/c1 ≤ 1/x∗i .
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Let us assume there exists a subset of indexes {j1, j2, . . . , jq} ⊂ {1, . . . , |P|} such that

|P|/c1 < 1/x∗jr which implies x∗jr < c1/|P|. Then it follows that

|P|∑
i=1

xi = (|P| − q) c1

|P|
+
∑
jr

xjr < c1 (2.33)

which is a contradiction. Therefore x∗i = c1/|P| which implies x∗1 = x∗2 = . . . = x∗|P|.

2.9 Proof of Theorem 6

Proof. Let s ∈ {0, 1}N selected according to (2.19) and (2.20), then it follows that

sTLs =
∑|P|

j=1 s(V (Ωj))
TLΩjs(V (Ωj)). Additionally, directly from the definition of µ1,j

and using the Raleyigth coefficient we have µ1,j ≤ s(V (Ωj))
TLΩjs(V (Ωj)). Therefore

|P|∑
j=1

µ1,j ≤
|P|∑
j=1

s(V (Ωj))
TLΩjs(V (Ωj)) = sTLs. (2.34)

Now, taking into account eqn. (2.31) we have

|P|min
j

Cδj

vol(Ωj)
2
δj

≤
|P|∑
j=1

µ1,j ≤ sTLs =
N∑
`=2

µ`ŝ(`)2 (2.35)

and using lemma 11, we obtain

Rs ≤
(µ2 + µN)2(1− |P|/N)2

4µ2µN min
j

{
Cδj

vol(Ωj)
2
δj

} .

Now, when δ = δ1 = . . . = δ|P|, it follows that

Cδ|P|
vol(Ω)

2
δ

≤
|P|∑
j=1

µ1,j ≤ sTLs =
N∑
`=2

µ`ŝ(`)2 (2.36)

and from lemma 11, it follows that

Rs ≤
(µ2 + µN)2(1− |P|/N)2vol(Ω)

2
δ

4Cδµ2µN
.
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2.10 Redness inequality

In this section an important and useful lemma used in several proofs is stated.

Lemma 11. For any sampling pattern s : V (G)→ {0, 1}, it follows that

m
(
1− m

N

)2∑
`=2 µ`ŝ(`)2

≤ Rs ≤
m(µ2 + µN)2

(
1− m

N

)2

4µ2µN
∑

`=2 µ`ŝ(`)2
(2.37)

Proof. By Cauchy inequality we know that

m2
(

1− m

N

)2

=

(
N∑
`=2

√
µ`ŝ(`)

1
√
µ`
ŝ(`)

)2

≤

(
N∑
`=2

µ`ŝ(`)2

)(
N∑
`=2

1

µ`
ŝ(`)2

)
(2.38)

Now, as indicated in [53] when µ`ŝ(`) > 0 for all ` we have that(
N∑
`=2

µ`ŝ(`)2

)(
N∑
`=2

1

µ`
ŝ(`)2

)
≤
(
α + β

2
√
αβ

)2
(

N∑
`=2

√
µ`ŝ(`)

1
√
µ`
ŝ(`)

)2

=

(
α + β

2
√
αβ

)2

m2
(

1− m

N

)2

with 0 < α ≤ µ` ≤ β. Then, with α = µ2 and β = µN it follows that

4µ2µN
(µ2 + µN)2

(
N∑
`=2

µ`ŝ(`)2

)(
N∑
`=2

1

µ`
ŝ(`)2

)
≤ m2

(
1− m

N

)2

(2.39)

combining eqn. (2.38) and eqn. (2.39) we obtain

m
(
1− m

N

)2∑
`=2 µ`ŝ(`)2

≤
N∑
`=2

ŝ(`)2

mµ`
≤

(µ2 + µN)2
(
1− m

N

)2
m

4µ2µN
∑

`=2 µ`ŝ(`)2
(2.40)

2.11 Proof of Corollary 7

Proof. The first part of the proof follows directly from the Definition 1. Now, let

us assume ΛP > (1 + 1/α)ω with α > 0, then according to Theorem 3 any signal

x ∈ PWω(G) is uniquely determined by the values xTξj =
√
|V (Ωj)|xT(ξj ◦ ξj),

therefore if x(sj) = xT(ξj ◦ ξj), x is uniquely determined from x(si).
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2.12 Proof of Theorem 8

In order to prove Theorem 8, some preliminary lemmas and theorems are dis-

cussed.

Lemma 12. For any subset of nodes S ⊂ V (G) and sampling pattern s ∈ {0, 1}N with

supp(s) = S, it follows that

vol(S) ≥
m2
(
1− m

N

)2

N∑̀
=2

1
µ`
ŝ(`)2

(2.41)

where m = ‖s‖0 = |S|.

Proof. Let us consider the Laplacian matrix L. Multiplying on the left by sT and

on the right hand side by s it follows that sTLs = sTDs − sTWs, which leads to∑N
`=2 µ`ŝ(`)2 = vol(S)−sTWs and therefore

∑N
`=2 µ`ŝ(`)2 ≤ vol(S). Now, taking into

account the Lemma 11 eqn. 2.41 is obtained.

2.12.1 Proof of Theorem 8

Proof. Fuhr and Pesenson [27] show that if a subset of nodes S ⊂ V (G) is removable

with constant ΛS, it follows that ΛS ≥ µD(S), where µD(S) is the Dirichlet eigenvalue

of the induced subgraph1 of S. This inequality is tight always that S ∪ bS = V (G),

where bS is the vertex boundary of S.

As stated in [27], µD(S) satisfy the following inequality

µD(S) > Cδ

(
1

vol(S)

)2/δ

(2.42)

where δ is the isoperimetric dimension of the graph, Cδ is a constant that depends only

on δ and vol(S) =
∑

v∈S D(v, v).

1 Definitions and inequalities about induced subgraphs can be found in [44]
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Now, taking into account that vol(G) = vol(S) + vol(Sc) for any S ⊂ V (G),

and the lemma 12, we have that

vol(G)− vol(S) ≤ vol(G)−
m2
(
1− m

N

)2

N∑̀
=2

1
µ`
ŝ(`)2

(2.43)

and then

Cδ

(
1

vol(G)− vol(S)

) 2
δ

≥ Cδ

( ∑
`=2

1
µ`
ŝ(`)2

vol(G)
∑

`=2
1
µ`
ŝ(`)2 −m2

(
1− m

N

)2

) 2
δ

. (2.44)

Now, taking into account that ΛSc ≥ µD(Sc), it follows that

ΛSc ≥ Cδ

( ∑
`=2

1
µ`
ŝ(`)2

vol(G)
∑

`=2
1
µ`
ŝ(`)2 −m2

(
1− m

N

)2

) 2
δ

2.13 Proof of Theorem 9

In this section the proof of Theorem 9 is provided. Before this proof is presented

an important lemma is introduced.

Lemma 13. Let s : V (G) 7−→ {0, 1}N a binary signal defined on V (G) and let s̄ =

1− s, then it follows that

N∑
`=2

µ`ˆ̄s(`)2 =
N∑
`=2

µ`ŝ(`)2 (2.45)

Proof. Let us consider the Laplacian matrix L and multiply on the left by sT and on

the right by s, it follows that

sTLs = (1− s̄)T L (1− s̄) = s̄TLs̄. (2.46)

Now, taking into account that xTLx =
∑N

`=1 µ`x̂(`)2, it follows that

N∑
`=2

µ`ˆ̄s(`)2 =
N∑
`=2

µ`ŝ(`)2. (2.47)

Notice that µ1 = 0 and consequently the sum can be computed for ` ≥ 2.
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2.13.1 Proof of Theorem 9

Proof. Taking into account that

(Lx) (v) =
∑

u∈V (G)

(x(v)− x(u)) W(v, u) (2.48)

and wS(v) =
∑

u∈S W(u, v). It is possible to infer that

(Ls̄) (v) =

 wS(v) if v ∈ Sc

−wSc(v) if v ∈ S
(2.49)

where s̄ = 1− s. Now, taking into account eqn. (2.49) and Lemma 13 it follows that

s̄TLs̄ =
N∑
`=2

µ`ˆ̄s(`)2 =
∑
v∈Sc

w2
S(v)

N∑
`=2

µ`ŝ(`)2 = K2
S +

∑
v∈{Sc\v′}

wS(v)2

KS =

 N∑
`=2

µ`ŝ(`)2 −
∑

v∈{Sc\v′}

wS(v)2

 1
2

which leads to

KS ≥

(
N∑
`=2

µ`ŝ(`)2 − γ

) 1
2

where γ is given by γ = maxS,v,v′
∑

v∈{Sc\v′}wS(v)2 and taking into account Lemma

11, it follows that

KS ≥

(
m2
(
1− m

N

)2∑N
`=2

1
µ`
ŝ(`)2

− γ

) 1
2

2.14 Proof of Theorem 10

Proof. Let us consider x ∈ PWω(G) written as x = x1 + x2 with x1(Sc) = x(Sc),

x1(S) = 0, x2(S) = x(S) and x2(Sc) = 0. From eqn. (2.5) we have that ‖x1‖2
2 ≤

(1/Λ2
Sc)‖Lx1‖2. Now, using Bernstein’s inequality [27,54] we get ‖x1‖2

2 ≤ (1/Λ2
Sc)ω̃

2r‖x1‖2
2.

From this we have ‖x1‖2
2 ≤ (1/Λ2

Sc)ω̃
2r (‖x1‖2

2 + ‖x2‖2
2) leading to eqn. (2.27).
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Chapter 3

LOW COMPLEXITY BLUE-NOISE ALGORITHMS

3.1 Introduction

As shown in the previous chapter, blue-noise sampling on graphs relies essen-

tially on the simple principle of spreading up the sampling nodes of a sampling pattern.

Having shown that there is a strong connection between the characteristics of these

sampling patterns and the theoretical measures of the quality of sampling sets, we

state the basis for the development of low computational cost algorithms that can fol-

low these basic principles. The void and cluster algorithm proposed before provides

sampling patterns close to the expected ideal blue noise sampling pattern relying on

the use of geodesic distances. In this chapter we propose to exploit random walks on

graphs and the concept of error diffusion, extensively used in digital halftoning, in

order to generate blue-noise like sampling patterns. The notation and symbols used in

this chapter are the same used in Chapter 2.

3.2 Random Walk Sampling

Figure 3.1: Illustration of how a random walk can be use to select sampling points that
can be far away an approximate distance of λ̃b.
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Algorithm 2 Random Walk Sampling: RWS-1

Input: W, λb, numiter.
Output: A blue-noise-like sampling pattern, s.

Initialisation : s = 0N , count = 0
Randomly select v ∈ V (G).

2: s(v) = 1
while count < numiter do

4: dt = 0
while dt < λb do

6: Select u ∈ N (v) at random
dt = d(u, v) + dt

8: v = u
end while

10: count = count + 1
s(u) = 1

12: v = u
end while

14: return s.

The central idea in the definition of a blue-noise sampling pattern, is related

with the minimum inter-distance between closest points. Ideally, this distance should

be λb, which is graph dependent. Therefore, a blue-noise-like sampling pattern on

the graph can be built jumping from one sampling node, u, to other nodes marking

every node, v, that is at a distance greater than a given value λb, i.e., d(v, u) > λb.

Figure 3.1 illustrates the intuition behind this idea. This approach offers a simple way

to mark the sampling nodes at the expense of using a distance between nodes that is

not necessarily geodesic, as it would be calculated as the length of a path followed by

the random walk. These ideas are formalized in Algorithm 2 that we called random

walk sampling (RWS1), where N (v) indicates the set of nodes that are connected to a

given node v.

It is important to remark that because the distance considered in the random

walk is not geodesic, a rough estimate of λb is enough to run the algorithm and therefore

no prior calculation before the sampling set search are needed. Indeed, as it will be

shown in later sections, the guarantee of a minimum interdistance is going to be affected

by the density of the sampling pattern as well as the size of the graph. However,
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Figure 3.2: Vertex-domain distribution of a blue noise sampling pattern generated by
means of Algorithm 2 considering different densities on a sensor network of 2000 nodes.
Left: density d = 0.1. Right: density d = 0.2.

Algorithm 2 offers an extremely low computational cost, O(numiterdλb
w̄
e), where w̄

is the average of nonzero weights in W. Additionally, the results for some densities

exhibit characteristics on the vertex domain close to the ideal blue-noise sampling

patterns, as can be appreciated in Fig. 3.2 for a density of d = 0.1.

3.2.1 Ensuring a minimum distance and a minimum number of sampling

nodes

Algorithm 2 exhibits a characteristic that is convenient when it comes to per-

form computations in large graphs, it requires only knowledge of the local structure

around one node and no pre-calculations are needed for the search of the sampling set.

Additionally, this local information is not stored as the random walk is performed on

the graph. As a consequence, it is not possible to guarantee that two sampling nodes

are not going to be connected by an edge. It is important to point out that the number
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of sampling nodes cannot be controlled in advance. In this subsection we introduce a

variant of Algorithm 2 in which we add the following constraints:

1. (C1) The sampling nodes cannot be connected by an edge.

2. (C2) The information of the nodes visited when marking the sampling nodes is

stored.

3. (C3) The number of sampling nodes is fixed.

The first constraint is ensured as a post processing stage after having performed the

random walk on the graph. Line 23 of Algorithm 3 shows how this condition is imposed.

It is worth noticing that imposing this constraint will change the number of ones in

the sampling pattern. Additionally, for high sampling densities this constraint is not

well suited and may not be applied.

The second constraint is imposed taking into account not only the nodes visited

in the random walk, but also the neighbors of those points. In this way, we try to

maximize the distance between sampling points, and also promote a random walk that

is not concentrated on one region of the graph. Algorithm 3 shows how this task can

be performed by means of sets T , Q and R. The set Q is meant to store the neighbors

of those nodes that have not been visited on the random walk. In that way, we can

promote a random walk that is spread enough on the vertex domain. The set R keeps

track of the nodes that are marked as sampling nodes, while set T has the cumulative

storing of the neighbors locally stored in Q.

The imposition of the first and the second constraint affects the total num-

ber of sampling nodes generated by the algorithm. In some applications, the use of

Algorithm 2 or Algorithm 3 would be satisfactory, but in some others the number of

sampling points is fixed and the optimal distribution of those points has to be obtained.

If the number of sampling points, m, has to be fixed, challenges in two scenarios

are faced. On one side we have the case where the number of sampling nodes is larger

than the number of desired samples, and on the other side we have the case where
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Algorithm 3 Random Walk Sampling: RWS-2

Input: W, λb, numiter.
Output: A blue-noise-like sampling pattern, s.

Initialisation : s = 0N , count = 0
Randomly select v ∈ V (G).

2: s(v) = 1
while count < numiter do

4: dt = 0, T = ∅, R = ∅.
while dt < λb do

6: Q = N (v)
Q = Q \ (T ∪R)

8: if Q = ∅ then
dt = λb

10: v ∈ supp(s)
else

12: u ∈ Q
dt = W(v, u) + dt

14: R = {v} ∪R
T = Q ∪ T

16: v = u
end if

18: s(u) = 1
end while

20: count = count + 1
s(u) = 1

22: end while
x(N (v)) = 0 ∀s(v) = 1

24: return s.
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Algorithm 4 Random Walk Sampling: RWS-3

Input: W, λb, numiter, m: number of sampling nodes.
Output: A blue-noise-like sampling pattern, s.

Initialisation : s = 0N , count = 0
Randomly select v ∈ V (G).

2: s(v) = 1
while count < numiter do

4: dt = 0, T = ∅, R = ∅.
while dt < λb do

6: Q = N (v)
Q = Q \ (T ∪R)

8: if Q = ∅ then
dt = λb

10: v ∈ supp(s)
else

12: u ∈ Q
dt = W(v, u) + dt

14: R = {v} ∪R
T = Q ∪ T

16: v = u
end if

18: s(u) = 1
end while

20: count = count + 1
s(u) = 1

22: end while
x(N (v)) = 0 ∀s(v) = 1

24: if ‖s‖0 > m then
Get S ⊂ supp(s), with |S| = m

26: s(S) = 1, s(Sc) = 0
end if

28: if ‖s‖0 < m then
Get J = {v ∈ supp(1− s) : N (v) ∈ supp(1− s)}

30: s(J̃) = 1, with J̃ ⊂ J , |J̃ | = min{m− ‖s‖0, |J |}
end if

32: while ‖s‖0 < m do
q(v) = |N (v) ∩ supp(s)c| if v ∈ supp(s) and q(v) = 0 if v ∈ Sc

34: Get J , the m− ‖s‖0 indexes where q has the largest value

U = ∪m−‖s‖0i=1 Ui, with Ui = {ui} and ui ∈ N (v), v ∈ J
36: s(U) = 1

end while
38: return s.
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the number of selected sampling nodes is lower than m. The solutions we propose to

deal with these issues differ substantially for each case. In particular we propose the

following solutions:

• When the number of sampling points is larger than the desired number

of samples m: The impositions of the first and second constraints considered

above focus on the spreading of the nodes and try to ensure a minimum interdis-

tance between sampling nodes. As a way to still preserve the overall distribution

of the sampling nodes and reduce the number of sampling nodes, we discard the

excess uniformly at random.

• When the number of sampling nodes is lower than the desired number

of samples m: This scenario exhibits more difficulties than the previous one,

as the random selection of a set of nodes on the complement set can affect seri-

ously the characteristics and benefits achieved by the imposition of the first (C1)

and second (C2) constraints i.e., the uniform spreading and minimum distance

between sampling nodes. To deal with these challenges, we propose a two-stage

solution. In the first stage we fill the voids identifying nodes are not selected in

the sampling pattern and whose neighbors are not selected either. On the second

stage, we select at random the nodes that are needed to complete the pattern.

We formalize these ideas in Algorithm 4 that we call fast blue-noise sampling.

3.3 Error Diffusion on Graphs

Error diffusion in traditional halftoning represents an efficient way to generate

dither patterns and has been extensively used for the generation of blue noise-like

sampling patterns [39, 51]. The basic principle in error diffusion relies on the idea of

using the error obtained as the difference between a signal at a given pixel and its

halftone approximation, to influence the halftone approximation of the signal in other

pixels. The way this error is diffused is known as the error diffusion algorithm. The

application of these ideas to build sampling patterns on graphs is quite natural as
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(a)

(b)

Figure 3.3: Pictorial illustration of how the error is diffused in the Error diffusion
algorithm. In (a) the error calculated in v1 is diffused to all the neighbors of v1 and in
(b) it is illustrated that the diffusion of the error from v2 is diffused only to those nodes
that have not been visited. Notice that the the contribution of the error is normalized
by the weights of the edges that connect the actual node to the nodes to which the
error is going to be diffused.

Figure 3.4: Illustration of a Blue-Noise sampling pattern generated on a sensor network
with N = 50000 nodes.
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nodes are the direct analogous of the pixels in an image and the edges define how

the interaction between nodes is defined. The set of edges E(G) in the graph offer

the structure over which an error can be diffused. The main difference between the

diffusion of the error in a regular rectangular grid and the graph will rely on the fact

that there is not a standard way to label the nodes in order to visit them when it comes

to the generation of the diffusion error. However, it will be possible to follow any given

labeling of the nodes in the graph and diffuse the error according to that ordering.

Error diffusion on graphs proceeds as follows. Given a constant signal x =(
m
N

)
1N×1 with amplitude d = m/N and following the ordering given by the labeling

of the nodes in the graph, an error is generated in the first node as ep = s(1) − x(1),

where s(1) = 1 if x(1) > tth or s(1) = 0 if x(1) < tth. Then, the value of ep is diffused

to the neighbors of the first node, N (1), as e(i) = W(1,i)ep∑
i∈N (1) W(v,i)

, i ∈ N (1). This

process is repeated iteratively following the ordering given by the labels of the nodes

in such a way that the error at the node v would be computed as ep = s(v) − u with

s(v) = 1 if u > tth or s(v) = 0 if u < tth and u = x(v) − e(v), diffusing this error

as e(i) = e(i) + W(v,i)ep∑
i∈N (v) W(v,i)

. In this way, the error is cumulated according to the

local connections of each node. Notice that this diffusion of the error is completely

equivalent to the one performed in traditional halfoning [39]. The only difference is

that the concept of directions on V (G) is not defined and therefore the error is diffused

as dictated by the neighbors of the nodes that are visited. This represents a substantial

difference with its classical counterpart.

The steps and details of this approach are given in Algorithm 5. In Fig. 3.4

a sample of an error diffusion pattern is depicted indicating the distribution of the

sampling points on V (G) on a large sensor network graph.

3.4 Computational Complexity

We now compare the computational complexity of the developed algorithms

with respect to the state of the art techniques and with respect to the void and cluster

algorithm. This complexity is considered in two separated components. The first
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Algorithm 5 Error diffusion Algorithm on Graphs

Input: tth = 0.5,m
Output: s: sampling pattern

Initialisation : x =
(
m
N

)
1N×1, V = ∅, e = 0N×1.

1: for v = 1 : 1 : |V| do
2: u = x(v)− e(v)
3: if u > tth then
4: s(v) = 1
5: else
6: s(v) = 0
7: end if
8: ep = s(v)− u
9: for i ∈ N (v) do

10: e(i) = e(i) + W(v,i)ep∑
i∈N (v) W(v,i)

11: end for
12: V = V ∪ {v}
13: end for
14: return s

component states the calculations that are involved before the sampling set search

(SS), while the second part states the cost of finding the sampling set assuming the

knowledge of some quantities. Table 3.1 illustrates the computational cost of void

and cluster (VC), the approach in [31], fast blue noise sampling (RWS-3) and error

diffusion.

It is important to point out that approaches like [31] and void and cluster

require previous calculations before performing the search of the sampling sets, while

error diffusion and RWS-3 do not. This is a key component when it comes to the

sampling scenario in huge graphs, where pre-calculations cannot be afforded.

Notice that in table 3.1 q is the power of the Laplacian considered in the appli-

cation of [31], n corresponds to numiter in Algorithm 4, m is the number of sampling

nodes, k is the bandwidth of the signals considered, w̄ represents the average of the

non-zero elements in W, d̄deg is the average number of neighbors of each node, α is

a constant associated to the difference between the desired number of sampling nodes

and its effective value and T1 is the average number of iterations required for the
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convergence of a single eigendecomposition pair.

Table 3.1: Computational Complexity.

Case VC Anis [31] RWS-3 Error diffusion

pre-SS O(N(|E(G)|+N) logN) O(q|E(G)|kT1) 0 0

SS O((N − 1)(m+ 2)) O(Nk) O(ndλb

w̄ e+ 2N +m− α) O(N(2 + d̄deg))

3.5 Numerical tests

In order to test the algorithms developed in this chapter in terms of the re-

construction error, we perform a set of numerical experiments considering two main

scenarios: medium size graphs and large size graphs. In the first case, we consider

graphs with one thousand nodes while in the second case we use graphs with fifty

thousand nodes. In the first part of the experiments, we can use the approaches con-

sidered in the previous chapter. However, in the second case, it is impossible because

of the high computational cost.

3.5.1 Medium Size Graphs

Considering three graphs and two types of signal models a set of sampling and

reconstruction simulations is performed. The graphs considered are:

• Graph G1: A random sensor network with N = 1000 nodes. The weights in

the graph are given by the Euclidean distance between points. The maximum

number of neighbors for each node is 6.

• Graph G2: A community graph with N = 1000 nodes, 16 communities generated

using the GSP toolbox [50].

• Graph G3: A Barabasi-Albert random network [11] with N = 1000 nodes.

The signal models considered are
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• Signal model 1 (SM1): A random signal of bandwidth k = 2500, where the

Fourier coefficients are generated from the Gaussian distribution N (1, 0.5). The

samples captured are contaminated with additive Gaussian noise, making the

Signal to Noise Ratio to be SNR = 20dB.

• Signal model 2 (SM2): A random signal with Fourier coefficients generated from

the Gaussian distribution N (1, 0.5). This signal is modulated on the spectral

domain by the function h(µ), defined as

h(µ) =

 1 If µ ≤ µ2500

e−4(µ−µ50) If µ > µ50

(3.1)

The details of these simulations are the following:

• We generate a set of 100 signals for each signal model.

• Each signal is sampled considering several approaches and then reconstructed by

means of eqn. (2.4), calculating the mean squared error (MSE).

• The values of MSE are averaged.

The sampling approaches considered for this experiment are

• Uniform random sampling.

• Blue noise sampling by void and cluster.

• Blue noise by error diffusion.

• Blue noise sampling by RWS-3 (fast blue noise).

• Sampling scheme proposed by Chen et. al. [21].

• Sampling scheme proposed by Anis et. al. [31].

• Sampling scheme proposed by Tsitsvero et. al. [34].
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Figure 3.5: Averaged MSE considering different sampling approaches. From left to
right we consider the graphs G1, G2 and G3 respectively. First row is associated to the
experiments considering the signal model SM1, while the second row is associated to
SM2.

The results of these experiments are given in Fig. 3.5. Notice that the perfor-

mance exhibited by error diffusion is close to the one obtained by the other approaches

in graphs whose local isoperimetric dimension is homogeneous, like the sensor network

for instance. However, in graphs like the community type its performance is still not

competitive. In the case of the fast blue noise, we observe a poor performance on the

sensor network, but a superior behavior on the community graph.

3.5.2 Large size graphs

The benefits of blue-noise sampling on graphs can be better appreciated when it

comes to the analysis of signals on large graphs. The numerical evidence on medium size

graphs shows that blue-noise can compete with the optimal state of the art approaches

for the sampling of bandlimited signals, and the scenario in large graphs is substantially

different as the applicability of approaches like the ones proposed in [21], [31], and [34] is

not an option because of the computational complexity. The details of these simulations

are follows:

• We generate a set of 100 signals for two signal models.

• Each signal is sampled considering several approaches and then reconstructed by

means of eqn. (2.4), calculating the mean squared error (MSE).
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• The values of MSE are averaged.

The sampling approaches considered for this experiment are

• Blue noise by Error Diffusion.

• Blue noise sampling by RWS-3 (fast blue noise).

• Uniform random sampling.

The signal models considered are

• Signal model 1 (SM1): A random signal of bandwidth k = 2500, where the

Fourier coefficients are generated from the Gaussian distribution N (1, 0.5). The

samples captured are contaminated with additive Gaussian noise, making the

Signal to Noise Ratio to be SNR = 20dB.

• Signal model 2 (SM2): A random signal with Fourier coefficients generated from

the Gaussian distribution N (1, 0.52). This signal is modulated on the spectral

domain by the function h(µ), defined as

h(µ) =

 1 If µ ≤ µ2500

e−4(µ−µ2500) If µ > µ2500

(3.2)

The graphs used in the simulations are:

• Graph G1: A swiss-roll graph with N = 50000 nodes. The weights are given by

the Euclidean distances between nodes.

• Graph G2: A sphere graph with N = 50000 nodes. The weights are given by the

Euclidean distances between nodes.

• Graph G3: A random sensor network with N = 50000 nodes. The weights in

the graph are given by the Euclidean distance between points. The maximum

number of neighbors for each node is 6.
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Figure 3.6: Averaged MSE for several sampling approaches on large graphs (N = 50000
nodes). From left to right we consider the graphs G1, G2 and G3 respectively. First row
is associated to the experiments considering the signal model SM1, while the second
row is associated to SM2.

The results of these experiments are given in Fig. 3.6. We observe that error diffusion

outperforms substantially random sampling, while fast blue noise sampling still exhibits

some instability when the number of samples is close to the bandwidth of the signal.

3.6 Admisible partitions of V (G) and future work

Now we discuss theoretical results that could represent a promising tool for

the development of low complexity algorithms for sampling signals on graphs. This

theoretical framework was developed by Fuhr and Pesenson [27] using a novel approach

to quantify the quality of a sampling set, using partitions of V (G) and quantities that

can be calculated without requiring spectral decompositions. This represents the basis

of the theoretical analysis that will be developed in the future to further advance the

low complexity blue-noise algorithms discussed in previous sections. Moreover, it will

serve as a tool to understand the performance of techniques like error diffusion.

3.6.1 Previous Theoretical Results

Let us consider a partition P of the set of nodes V (G) in the graph G as

P = {S0,S1, . . . ,Sn}, and let us define the following quantity for any subset A ⊂ V (G)

wA(v) =
∑
u∈A

W(u, v), (3.3)
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which is a measure of the connectivity between the node v and A. Now, given the

partition P we let

D` = max
v∈S`

{
wS`+1

(v)
}

(3.4)

and

K` = min
v∈S`+1

{wS`(v)} . (3.5)

The set S0 is called the initial set of the partition P . The following theorem is presented

in [27].

Theorem 14 ( [27]). If P = {S0,S1, . . . ,Sn} is a partition of V (G) with Di, Ki finite

and Ki > 0 for all i = 0, . . . n, then for all 1 < p <∞, 1 < q <∞ with 1/p+ 1/q = 1,

and x ∈ Dp(∇) with x|S0 ∈ Lp(S0), we have

‖x‖p ≤

(
n∑

m=0

m−1∏
j=0

Dj

Kj

) 1
p

‖x|S0‖p +

(
n∑

m=1

(
m∑
k=1

1

K
q/p
k−1

(
m−1∏
i=k

Di

Ki

))) 1
p

‖∇x‖p (3.6)

where Dp(∇) is the space of functions x : V (G) 7→ C with ‖∇x‖p <∞ and

‖∇x‖p =

 ∑
u,v∈V (G)

1

2
|x(u)− x(v)|p W(u, v)

 1
p

(3.7)

Additionally, in [27], it is established that
∥∥∥L 1

2x
∥∥∥2

2
= ‖∇x‖2

2 for all x ∈ `2(G)

contained in the domain of L.

From these results it is possible to conclude that for any signal x ∈ PWω(G)

the initial set S0 of a given partition is a uniqueness set when ω < 1/δ2
P,2, where δ2

P,2

is given by

δ2
P,2 =

n∑
m=1

(
m∑
k=1

1

Kk−1

(
m−1∏
i=k

Di

Ki

))
(3.8)

The problem of finding the best sampling set is then reformulated as the problem of

building partitions of V (G) such that the value of δ2
P,2 is minimized.

Notice that, as pointed out in [27], building the optimal partitions is a combi-

natorial problem. However, if this process has to start from an arbitrary set of nodes,
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Figure 3.7: Pictorial illustration of a possible partition of V (G), intended to maximize
Ki and to minimize Di.

it would be possible to eventually design the best possible partitions given the starting

set of nodes given.

3.6.2 Minimizing δ2
P,2

Despite the fact that the minimization δ2
P,2 is a computationally expensive task,

eqn (3.8) allows to establish some basic desirable properties of a given partition P of

V (G). The subsets S` in P should be selected such that:

• The values of Ki are as large as possible.

• The values of Di for i ≥ 1 are as small as possible.

These basic principles can be used in order to build sequences step by step. In Fig. 3.3

a pictorial illustration of a partition of V (G) is shown. It is intended to have large

values for Ki and low values for Di, always having Ki > 0.

3.7 Conclusions and Future work

In this chapter we presented two types of algorithms for a low complexity com-

putation of blue-noise patterns on graphs. We exploited the properties of random
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walks on graphs for the generation of patterns with a typical spreading of the sam-

pling nodes, and we proposed an extension of the error diffusion algorithm extensively

used in digital halftoning. The results obtained for large graphs are promising as they

provide lower reconstruction error than random sampling. Additionally, at the end of

the chapter, we proposed to explore the theoretical framework developed by Fuhr and

Pesenson in [27] as a tool for the design of sampling patterns and also as a framework

that would allow a better understanding of techniques like error diffusion.
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Chapter 4

UNIQUENESS SETS IN THE PALEY-WIENER SPACE OF
COGRAPHS

4.1 Introduction

The analysis and processing of signals on graphs has become a central topic

in data science, and problems like sampling, filtering, and representation have been

considered extensively in the literature [12, 21, 64–66]. These results are promoted for

arbitrary graphs in general without considering the differences among several classes

of graphs. As a consequence, some results that could be well suited for some graphs

might not be the best option for others, and the limitations of a given approach are

not completely highlighted.

In this work, we study the uniqueness sets for signals defined on cographs and

provide an efficient algorithm for their closed form solution calculation. Studying

the structure and tree representation of cographs, we show how the uniqueness set of

bandlimited signals can be obtained by simple operations on small size graphs, without

requiring spectral decompositions or the calculation of geodesic distances. The use of

cographs is linked to crucial applications in orthology analysis [59,60] and community

detection [61]. Additionally, we provide a closed form solution for the sampling sets of

threshold graphs. Taking into account that threshold graphs is a subfamily of cographs,

we exploit the properties of a tree representation in order to calculate the uniqueness

sets directly from the binary sequence that is traditionally used to represent threshold

graphs.

Given the potential applications of cographs and threshold graphs for the rep-

resentation of arbitrary graphs, we perform a set of numerical experiments in which

we evaluate the effectiveness of the uniqueness sets of graphs that are obtained from
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perturbed cographs. The numerical experiments show that these sampling sets are

robust under changes of a considerable number of edges. This opens the door for the

idea of considering the construction of a graph from data, forcing the resultant graph

to be a cograph or threshold graph. We also point out that the cotree structure itself

has potential applications on the analysis of power distribution grids [67].

4.2 Background and preliminaries

We will use the following notation. For any n ∈ N, we let [n] := {1, . . . , n}. We

identify vectors f = (f1, . . . , fn)T ∈ Rn with functions f : [n] → R, where f(i) = fi.

Given a n × n matrix A and subsets S, T ⊆ {1, . . . , n}, we will denote by AS,T the

submatrix of A with rows in S and columns in T . We also define AS := AS,S when

S = T to simplify the notation. Similarly, for a vector v ∈ Rn, we will denote by vS

the restriction of the vector to its entries corresponding to indices in S. The matrices

in Rm×n with all entries equal to 0 and 1 are denoted by 0m×n and 1m×n respectively.

Similarly, the vectors in Rn with all entries equal to 0 and 1 are denoted by 0n and 1n.

Central to this paper is the notion of a uniqueness set.

Definition 2. Let U be a subspace of Rn. We will say that a subset S ⊆ [n] is a

uniqueness set for U if for all g,h ∈ U , the condition g(i) = h(i) for all i ∈ S implies

g = h. A uniqueness set will be said to be minimal if it does not contain a uniqueness

set as a proper subset.

In other words, a set S ⊆ [n] is a uniqueness set for U if the entries of any vector

f ∈ U are entirely determined by its entries in S. Note that, equivalently, a subset

S ⊆ [n] is a uniqueness set for U if f(i) = 0 ∀i ∈ S implies f = 0n. The following

simple result provides a useful way to test if a given set is a uniqueness set.

Proposition 15. Let U be a k-dimensional subspace of Rn and let {w1, . . . ,wk} ⊆ Rn

be any basis of U . Let W be the n × k matrix with columns w1, . . . ,wk. Then the

following are equivalent for a subset S ⊆ [n]:

1. S is a minimal uniqueness set for U .
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Figure 4.1: Representation of the spaces PWω(G), PW 0
ω and CPWω(G).

2. |S| = k and det WS,[k] 6= 0.

Proof: See Appendix 4.7.2

4.2.1 The Paley–Wiener space of a graph

Let G = (V,E) be a simple graph with adjacency matrix A and graph Laplacian

LG := D−A, where D = diag(d1, . . . , dn) and di is the degree of the i-th vertex of G.

Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn denote the eigenvalues of LG, and let 1n = w1, . . . ,wn ∈

Rn be an associated orthogonal basis of eigenvectors. We identify functions f : V (G)→

R to vectors in RV (G).

Definition 3. For ω ≥ 0, the Paley–Wiener space PWω(G) is given by

PWω(G) := span{wi : λi ≤ ω}.

The Modified Paley-Wiener space PW0
ω(G) is defined as

PW0
ω(G) := span{wi : i ≥ 2 and λi ≤ ω}.

If 0 ≤ ω < λ2 with λ2 > 0, we set PW0
ω(G) := ∅. Finally, we define the Complementary

Paley-Wiener space CPWω(G) as

CPWω(G) = span {wi : λi ≥ ω} .
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Clearly, PWω(G),PW0
ω(G) and CPWω(G) are vector spaces over R of dimension

dim PWω(G) = k, dim PW0
ω(G) = k − 1 and dimCPWω(G) = n − k + 1, where k

is the largest integer in [n] such that λk ≤ ω. Notice that PW0
ω(G) = PWω(G) ∩ 1⊥|G|.

If ω ≥ λ2 and k is the largest integer in [n] such that λk ≤ ω, then the modified

Paley–Wiener space PW0
ω(G) is a subspace of R|V (G)| of dimension k − 1. For the

spaces PWω(G), PW 0
ω(G), and CPWω(G), the value of ω is going to be refered to as

the bandwidth of the space.

Remark 16. When some eigenvalues of LG are repeated, there is some ambiguity in

choosing a basis of eigenvectors of LG. When choosing such a basis below, we will

always assume 1n is an eigenvector associated to λ1 = 0, and that all the eigenvectors

are orthogonal.

Proposition 15 immediately implies the following characterization of uniqueness

sets for PWω(G), PW 0
ω(G), and CPWω(G).

Corollary 17. Let G be a simple graph on n vertices with Laplacian LG. Let W =

[w1, . . . ,wn] ∈ Rn×n be any matrix whose columns form a basis of eigenvectors asso-

ciated to the eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn of LG. Also, ω ≥ 0 and let k be the

largest integer in [n] such that λk ≤ ω. Then the following are equivalent for a subset

S ⊆ V (G):

1. S is a minimal uniqueness set for PWω(G).

2. We have |S| = k = dim PWω(G) and the matrix WS,[k] is non-singular.

Corollary 18. Let G be a simple graph on n vertices with Laplacian LG. Let W =

[w1, . . . ,wn] ∈ Rn×n be any matrix whose columns form a basis of eigenvectors asso-

ciated to the eigenvalues 0 = λ1 ≤ · · · ≤ λn of LG. Also, let ω ≥ λ2 and let k be the

largest integer in [n] such that λk ≤ ω. Then the following are equivalent for a subset

S ⊆ V (G):

1. S is a minimal uniqueness set for PW0
ω(G).
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2. We have |S| = k − 1 = dim PW0
ω(G) and the matrix WS,{2,...,k} is non-singular.

Corollary 19. Let G be a simple graph on n vertices with Laplacian LG. Let W =

[w1, . . . ,wn] ∈ Rn×n be any matrix whose columns form a basis of eigenvectors asso-

ciated to the eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn of LG. Also, ω ≥ 0 and let k be the

largest integer in [n] such that λk ≤ ω. Then the following are equivalent for a subset

S ⊆ V (G):

1. S is a minimal uniqueness set for CPWω(G).

2. We have |S| = n − k + 1 = dimCPWω(G) and the matrix WS,{k,...,n} is non-

singular.

Remark 20. In the case where LG has repeated eigenvalues, notice that Corollary 17

holds for any choice of a basis of eigenvectors of LG.

In traditional Fourier analysis, a common practice relies on separating the anal-

ysis in frequency of the signal in two essential components. A first component, called

the dc value, corresponds to the energy of the signal associated to the complex exponen-

tial of frequency zero, and a second component which contains the energy associated

to all the remaining complex exponentials. This second component describes how fast

the signal changes and determines where the signal can be sampled in order to have

a unique representation. Informally speaking, this is way to state that the signal is

essentially determined by the sampling set required to preserve its variation behav-

ior. Now, it is important to notice that any signal in PW 0
ω(G) can be considered the

representation of a signal in PWω(G) excluding its dc component. Therefore, there is

a close relationship between the uniqueness sets of PW 0
ω(G) and of PWω(G). This is

formalized in the following theorem.

Theorem 21. Let G be a graph on n vertices and let U the matrix whose columns form

an orthonormal basis for PWω(G) and let S a uniqueness set of PW 0
ω(G). Then, T is
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a uniqueness set of PWω(G) if and only if T = S ∪ {v} where v ∈ Sc. In particular, v

is any node for which x(v) 6= 1, where x is given by

x = U[n],[n]\{1}α (4.1)

with

α = U−1
S,[n]\{1}1|S|×1. (4.2)

Proof: See Appendix 4.7.3

Theorem 21 is going to play a central role in the calculation of sampling sets

of cographs as in some cases it is more convenient to work with PW 0
ω(G) than with

PWω(G).

4.3 Cographs

Cographs are a subclass of graphs that are built from simple operations and have

been considered as modeling tools in evolutionary biology and the study of evolution

of diseases among different species. The fact that cographs are define in terms of only

two basic operations endows these type of graphs with particular structures for the

uniqueness sets that we study in this chapter.

4.3.1 Definition and characterizations

Definition 4. Let G = (V (G), E(G)), H = (V (H), E(H)) be two graphs on disjoint

sets of vertices. The join of G and H, denoted G ∨H, is the union of the two graphs

G,H, together with all edges joining V (G) and V (H). Formally, V (G∨H) = V (G)∪

V (H) and ab ∈ E(G ∨H) if and only if either

• ab ∈ E(G) or ab ∈ E(H); or

• a ∈ V (G), b ∈ V (H) or a ∈ V (H) and b ∈ V (G).

Recall that the graph complement of G is the graph Gc := (V (G), E(G)c). The union

of two graphs G and H on disjoint sets of vertices is the graph on V (G ∪ H) :=
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Figure 4.2: Top: Representation of the union operation between two graphs. Bottom:
Representation of the join operation of two graphs.

V (G) ∪ V (H) where ab ∈ E(G ∪ H) if and only if either ab ∈ E(G) or ab ∈ E(H).

Using these notions one can equivalently define G ∨H = (Gc ∪Hc)c.

Definition 5. A cograph (or a complement-reducible graph) is a graph defined recur-

sively as follows:

1. Isolated vertices are cographs;

2. If G and H are cographs on disjoint vertex sets, then so is their join G ∨H;

3. If G and H are cographs on disjoint vertex sets, then so is their union G ∪H.

In other words, cographs are graphs that can be constructed from isolated ver-

tices by joints and unions.

Remark 22. Alternatively, cographs are often defined as follows [58]:

1. An isolated vertex is a cograph.

2. If G is a cograph, then so is its complement Gc.

3. If G and H are cographs, then so is their union G ∪H.

Clearly graphs that can be constructed from joins and unions can be constructed from

complements and unions since G∨H = (Gc∪Hc)c. Conversely, if G can be constructed
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Figure 4.3: Top: Representation of the union operation between two graphs. Bottom:
Representation of the join operation of two graphs.

Figure 4.4: (a) The cotree representation of the cograph G =
(({v1} ∪ {v2}) ∪ ({v3} ∨ {v4})) ∨ {v5}. (b) The cotree representation of the co-
graph G depicted in (a) using complements and unions. (c) A tree representation
showing the equivalence G1 ∨ G2 = (Gc

1 ∪ Gc
2)c. (d) Representation of a cotree

indicating the construction of a cograph from smaller size cographs G1, G2 and G3.
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from complements and unions, then every non-trivial connected induced subgraph of G

has a disconnected complement (see [58, Theorem 2]). Thus, if G1, . . . , Gk denote the

connected components of Gc, then G = Gc
1 ∨ · · · ∨ Gc

k and Gc
1, . . . , G

c
k are induced

subgraphs of G. It follows easily that G can be constructed from joins and unions and

so the two definitions are equivalent.

Cographs can be characterized in several interesting ways. The following result

shows that they are precisely the graphs with no induced paths of length 3 or more.

Denote by Pn the path graph on n vertices.

Theorem 23 ( [58, Theorem 2]). A graph is a cograph if and only if it does not contain

P4 as an induced subgraph.

4.3.2 Representations of Cographs

Cographs are traditionally represented by a rooted tree or cotree in which the

main nodes indicate the operations of join ∨, union ∪ and complement (·)c. For in-

stance, consider Figure 4.4(a) in which the cographG = (({v1} ∪ {v2}) ∪ ({v3} ∨ {v4}))

∨ {v5} is represented. The nodes of this cotree indicate the operations of joint and

union. In Figure 4.4(b) we show exactly the same cograph but using the operations of

union and complement.

It is important to point out that in Figure 4.4(b) the nodes of the cotree are

related to the union operation and the complements are considered operations realized

on each branch. In this chapter we will describe our main results in terms of unions and

complements, taking into account that any given cograph can be always represented

in this way since G1 ∨ G2 = (Gc
1 ∪ Gc

2)c. As we will show in the following sections,

the cotree representation provides a very useful tool for the calculation of the sampling

sets.

4.4 Uniqueness sets of cographs

Before doing a formal calculation of the uniqueness sets in cographs it is natural

to find the uniqueness sets for graphs that are obtain from unions and joins separately.
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4.4.1 Uniqueness sets of unions and complements

We start this section by describing the minimal uniqueness sets for PWω(G)

and PW0
ω(G) when G is a union of two graphs.

Lemma 24. Let G1 = (V1, E1), G2 = (V2, E2) be two simple graphs, let G := G1 ∪G2,

and let ω ≥ 0. Then

1. dim PWω(G) = dim PWω(G1) + dim PWω(G2).

2. The following are equivalent for a subset S ⊆ V (G1) ∪ V (G2):

(a) S is a minimal uniqueness set for PWω(G).

(b) S = S1 ∪ S2 where S1 is a minimal uniqueness set for PWω(G1) and S2 is

a minimal uniqueness set for PWω(G2).

Proof. The result follows easily from the fact that LG = LG1⊕LG2 and from Corollary

17.

The pictorial representation of Lemma 24 is presented in Fig. 4.5(top). Observe

that any submatrix that is obtained by sampling the eigenvectors associated to λi ≤ ω

on the rows related to a given subset of nodes is a block diagonal matrix whose deter-

minant is the product of the determinants of each block. Therefore, the determinant

of the submatrix is only different from zero when the determinant of each block is

different from zero.

The analogous statement for PW0
ω(G1 ∪G2) is more complicated.

Lemma 25. Let G1 = (V1, E1), G2 = (V2, E2) be two simple graphs, let G := G1 ∪G2,

and let ω ≥ 0. Then

1. dim PW0
ω(G) = dim PW0

ω(G1) + dim PW0
ω(G2) + 1.

2. The following are equivalent for a subset S ⊆ V1 ∪ V2:

(a) S is a minimal uniqueness set for PW0
ω(G).
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Figure 4.5: Top: Pictorial representation of the results indicated in Lemmas 24. Bot-
tom: Pictorial representation of the results indicated in Lemma 25. The sampling on
the rows considering a given sampling set is indicated by the indexes highlighted in
blue color. The resultant submatrix is always a block diagonal matrix when unions are
considered.

(b) S = S1 ∪ S2 where S1 is a minimal uniqueness set for PWω(G1) and S2 is

a minimal uniqueness set for PW0
ω(G2), or S1 is a minimal uniqueness set

for PW0
ω(G1) and S2 is a minimal uniqueness set for PWω(G2).

Proof: See Appendix 4.7.4

A simple graphical representation of Lemma 25 is indicated in Fig. 4.5(bottom).

Remark 26. It is important to point out that the pictorial representations indicated in

Fig. 4.5 can be considered even when one of the Paley-Wiener spaces involved is empty.

For instance, if Lemma 25 is applied in a scenario where PW 0
ω(G2) = ∅, the matrix

basis representation, U, for the calculation of the uniqueness sets of PW 0
ω(G1 ∪ G2)

would be given by

U =

 UPWω(G1)

0|V (G2)|×dimPWω(G1)

 . (4.3)
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Figure 4.6: Pictorial representation of the results stated in Theorem 28.

From this equation we can see clearly that if we want a submatrix with a determinant

different from zero, we cannot select nodes associated to G2.

We now introduce the characterization of the Paley-Wiener spaces for the com-

plement graph. In order to do so, let us consider the following lemma.

Lemma 27 (see e.g. [63, Section 1.3.2]). Let G be a graph with Laplacian eigenvalues

0 = λ1 ≤ λ2 ≤ . . . ≤ λn and associated eigenvectors 1n = u1,u2, . . . ,un. Then the

complement graph Gc has Laplacian eigenvalues {0, n− λn, . . . , n− λ2}, and eigenvec-

tors 1n = v1,v2 = un, . . . ,vn = u2.

Using the above lemma, we can now describe the Paley-Wiener space of the

complement of a graph.

Theorem 28. Let G = (V (G), E(G)) be a graph with |V (G)| = n. Then for any ω ≥

0, we have PW 0
n−ω(Gc) = span

(
UCPWω(G) \ {1n}

)
and span

(
UCPWn−ω(Gc) \ {1n}

)
=

PW 0
ω(G).

Proof: See Appendix 4.7.5

Theorem 28 provides a connection between the complementary and modified

Paley-Wiener spaces on a graph and its complement, and is going to play a central role

for understanding the structure of eigenvectors in a cograph.
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Remark 29. Notice that in light of Theorem 21, Theorem 28 provides a complete

characterization of the uniqueness sets of the Paley-Wiener spaces in the complement

graph.

Remark 30. In the applications of Lemmas 24, 25 and Theorem 28 we consider that

PWω(G) = PW 0
ω(G) = ∅ for any ω < 0.

4.4.2 Cotree representation and Paley-Wiener spaces

The results stated previously about PWω(G) when G is obtained from unions

or joints of graphs, can be connected to a cotree representation of G. Specifically,

given a cotree representation like the one depicted in Fig. 4.4(d), it is possible to

determine what is the bandwidth of the Paley-Wiener spaces associated to the smaller

cographs size that are being used to build a large size cograph. For instance, considering

Fig. 4.4(d), we can see that if we want to calculate the uniqueness sets of PWω(G), we

require the uniqueness sets of the two Paley-Wiener spaces associated to the cographs

seen from those branches, and therefore we can consider the bandwidth ω suffers no

changes when it propagates trough the cotree, while it changes after a complement node

is met. If we travel on the cotree, applying systematically Lemma 25 and Theorem 28

we reach G1, G2 and G3, knowing exactly what is the bandwidth of the Paley-Wiener

spaces involved in the calculation of the uniqueness sets of the cograph.

Lemma 31. Let G a cograph, then the uniqueness sets of PWω(G), PW 0
ω(G) and

CPWω(G) can be calculated with systematic and sequential application of Lemma 25

and Theorem 28 on the cotree structure of the cograph.

Proof: See Appendix 4.7.6.

As a consequence of the previous Lemma 31, the convention PWω(G) = PW 0
ω(G)

= ∅ for any ω < 0 and the fact that every cotree representation reaches its end on the

leaves always on a vertex, we can determine which nodes can be selected as part of

a uniqueness sets considering the sign of the bandwidth of the Paley-Wiener spaces

associated to each vertex.
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All ones vector

Figure 4.7: Cotree represention of the cograph G = (Gc
1 ∪G2)c ∪Gc

3 that is built from
more elementary cographs G1, G2 and G3. (a) Indication of how the set of eigenvectors
associated to G are obtained from G1, G2, G3 and the transformations involved when
moving on the cotree. (b) Indication on the cotree of the Paley-Weiner subspaces of
G1, G2, G3 involved in the calculation of the uniqueness set of PWω(G), and how the
bandwidth changes when moving on the cotree.
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Before stating these ideas formally, we introduce the following definition:

Definition 6. Let us consider a cotree representation of a cograph G where the leaves

end always on a vertex i.e., no knowledge of small cographs is used in the cotree repre-

sentation. Let ω̃(v) be the bandwidth of the Paley-Wiener spaces associated to the node

v that can be obtained applying Lemma 25 and Theorem 28 on the cotree. We define

Vω̃≥0(G) by

Vω̃≥0(G) = {v ∈ V (G) : ω̃(v) ≥ 0}. (4.4)

Definition 6 introduces a notation to represent the set of nodes in the cotree

representation of a cograph, that have a nonnegative bandwidth associated to the their

Paley-Wiener spaces once the cotree representation is considered for the calculation of

the uniqueness sets.

Corollary 32. Let G be a cograph and let ω̃(v) be the bandwidth of the Paley-Wiener

spaces associated to the node v on the cotree structure built from unions and joins.

Then, any subset S ⊂ Vω̃≥0(G) with |S| = dimPWω(G) nodes is a uniqueness set of

PWω(G).

Proof: See Appendix 4.7.7.

It is important to point out that this result is, as far as we know, the first broad

family of graphs for which the uniqueness sets can be computed in closed form.

Corollary 32 provides a concrete characterization of the nodes in the uniqueness

sets of cographs of a Paley-Wiener spaces with a given bandwidth. The application of

this corollary can be considered in those cases where the detailed cotree is known, i.e.

the leaves on the cotree structure reach their end on a vertex.

Remark 33. When the size of the cograph is large, we do not necessarily assume we

start building the cograph from a set of vertices, but instead we start with some small

size cographs as it is indicated in Figures. 4.4(d) and 4.7.
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Algorithm 6 Uniqueness set for Cographs

Input: Cotree of cograph G, ω.
Output: A minimal uniqueness set U of PWω(G).

Initialisation : U = ∅
P = PWω(·).

2: for i = 1 : 1 : cT do
Get the branches b = b`, br of c(i). Then for each b:

4: if b has no complement then
Ub = P(b).

6: else
P = CPW |b|−ω(·)

8: Ub = P(b→)
end if

10: U = Ub` ∪ Ubr ∪ U
end for

12: return U .

4.4.3 Complete multipartite graphs

An important example of cographs with extensive applications in communica-

tions and data sicence are complete multipartite graphs. In this section we derive the

uniqueness sets for these graphs from the above results.

Let Ki = (V (Ki), E(Ki)) be a family of complete graphs (i = 1, . . . , q; q ∈ N)

and consider an arbitrary complete multipartite graph M = Kc
1 ∨Kc

2 ∨ · · · ∨Kc
q . Now,

taking into account the connections between the join operation and unions and comple-

ments we have that M = (K1 ∩K2 ∩ · · · ∩Kq)
c. Therefore, considering Lemma 24 and

Theorem 28 and their pictorial representations in Fig. 4.7 we know that the eigenbasis

matrix associated to M is as indicated in Fig. 4.8, where the support of the eigen-

vectors is indicated in colors. From Fig. 4.8 we can see clearly the dependency of the

uniqueness sets in PWω(M) with respect to the uniqueness sets in the Paley-Wiener

spaces for each Ki. The results stated in Fig. 4.8 are formally presented in the following

theorem:

Theorem 34. Let M = Kc
1 ∨ Kc

2 ∨ · · · ∨ Kc
q , with |VK1| < |VK2| < . . . < |VKq | the

complete multipartite graph. Then the uniqueness sets for the Paley-Weiner space

PWω(M) are given by:

81



1. If 0 ≤ ω < n− |VKq |: Any node in ∪qj=1VKj .

2. If n− |VKq−r | ≤ ω < n− |VKq−(r+1)
|:(
r⋃
`=0

SKq−`

)⋃
{v} (4.5)

where SKq−` ⊂ VKq−`, |SKq−` | = |VKq−` | − 1 and

v ∈

((
q⋃
i=1

VKi

)
\

(
r⋃
`=0

SKq−`

))
(4.6)

with r = 0, . . . , q − 1.

3. If n ≤ ω:

(
q⋃
`=1

VK`

)
Proof: See Appendix 4.7.8

In Appendix 4.7.8 an alternative calculation of the uniqueness sets of PWω(M)

is presented as a confirmation of the results obtained.

4.5 Numerical Experiments with Uniqueness sets of Cographs

In this section we perform a set of numerical experiments in which the benefits of

the calculation of uniqueness sets in cographs show promising applications for the anal-

ysis of signals defined on more general graphs. The characteristics of the experiment

are given as follows:

• Considering a cograph G, a graph G is obtained from G by modifying a number

of edges.

• A uniqueness set of PWω(G) is calculated and used as a sampling set for PWω(G)

for several values of ω.

• A set of 100 signals are randomly generated from each PWω(G), then sampled

and reconstructed. The mean squared error is calculated and averaged over the

100 signals.
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Figure 4.8: Illustration of the support of the eigenvectors of the combinatorial Laplacian
for the complete multipartite graph.

Cograph Graph
Modify some edges

Figure 4.9: Pictorial representation of the numerical experiments performed. A cograph
G is generated and then a subset of edges is modified to generate a graph G (not
necessarily a cograph), then the uniqueness sets of PWω(G) are used on PWω(G). The
numerical results of this numerical tests can be appreciated in Fig. 4.10.
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Figure 4.10: First row: reconstruction error for random bandlimited signals defined on
a graph G with cograph approximation G. The number t indicates the number of edges
that differ between the graph G and G, whereas m = ω indicates that the number of
samples is equal to the bandwidth of the signal. Second row: same results without the
random sampling approach.

• The approaches considered are: uniform random sampling, sampling approach

proposed by Anis et al. [64] and the approach we proposed.

The results of this experiment are given in Fig. 4.10. It is possible to notice that the

values of the error attained by the use of the uniqueness sets obtained from PWω(G)

are similar to the ones obtained by using the approach in [64]. However the uniqueness

sets calculated from PWω(G) are obtained at a very low computational complexity.

4.6 Threshold graphs

A particular family of cographs is the threshold graphs.

Definition 7. A simple graph G is said to be a threshold graph if it can be constructed

from a one-vertex graph by repeated application of one of the following operations:

1. Adding an isolated vertex to the graph.

2. Adding a dominating vertex to the graph, i.e., adding a vertex that is adjacent to

all the other vertices.

It is important to point out that, as threshold graphs are a particular case of a

cograph. Figure 4.11 depicts the particular structure of the cotree for a threshold graph,

observe that any operation, join or union, is always performed between a cograph and
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Figure 4.11: (a) The cotree structure of a threshold graph. (b) An equivalent repre-
sentation of the threshold graph depicted in (a) using the characterization indicated in
Theorem 35.

a vertex. As we will show later, some results about the uniqueness sets for the join

between two graphs simplify considerably when threshold graphs are considered.

Threshold graphs admit several interesting characterizations. Recall that a sub-

set of vertices is said to be independent if no two vertices in the set are adjacent. In

what follows, we shall denote the neighborhood of a vertex a ∈ V in a graph G = (V,E)

by

n(a) = {x ∈ V : ax ∈ E}.

Theorem 35. Then following are equivalent for a simple graph G = (V,E):

1. G is a threshold graph.

2. There exist an integer vertex labeling c : V → N and an integer t ∈ N (called the

threshold) such that for any distinct vertices a, b ∈ V ,

ab ∈ E ⇐⇒ c(a) + c(b) > t.

3. There exist an integer vertex labeling c : V → N and an integer t ∈ N such that

for any subset of vertices S ⊆ V ,

S is independent ⇐⇒
∑
a∈S

c(a) ≤ t.
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ω

x1 x2 · · · xn−2 xn−1

v1 v2 v3 · · · vn−1 vn

ω̃(v1)
ω̃(v2)

Ωx2→x1

ω̃(v3)

Ωx3→x2

ω̃(vn−1)

Ωxn−2→xn−1 Ωxn→xn−1

ω̃(vn)

Figure 4.12: Cotree representation of a threshold graph, G, obtained from the binary
sequence {x1, x2, . . . , xn}, showing the changes in the bandwidth in the Paley-Wiener
spaces involved in the calculation of the uniqueness sets for PWω(G).

4. The set of vertices V can be partitioned as V = C∪I where C induces a maximal

clique in G, and I := {i1, . . . , ik} is an independent set such that

n(i1) ⊆ n(i2) ⊆ · · · ⊆ n(ik).

5. G does not contain P4, C4 and 2K2 as an induced subgraph, where P4 and C4

denote the path and cycle on 4 vertices respectively, and 2K2 denotes the union

of two disjoint edges.

Remark 36. Note that a vertex labeling satisfying property (3) in Theorem 35 auto-

matically satisfies property (2). The converse is false. However, if (2) is satisfied, the

theorem guarantees the existence of a (possibly different) labeling satisfying (3).

The following result provides a characterization of the eigenvectors of the Lapla-

cian matrix of the join of two graphs.

Theorem 37 ( [68, Theorem 2.1]). Let G1 = (V1, E1) and G2 = (V2, E2) be graphs on

disjoint sets of |V (G1)| and |V (G2)| vertices, respectively. Then

1. If the eigenvalues of the Laplacian of G1 are 0 = µ1 ≤ µ2 ≤ · · · ≤ µ|V (G1)|

with associated eigenvectors 1|V (G1)| = u1, . . . , u|V (G1)|, and those of G2 are 0 =

ν1 ≤ ν2 ≤ · · · ≤ ν|V (G2)| with eigenvectors 1|V (G2)| = v1, . . . , v|V (G2)|, then the

eigenvalues of the Laplacian of G1 ∨G2 are
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• 0.

• |V (G1)|+ |V (G2)|;

• µ2 + |V (G2)| ≤ · · · ≤ µ|V (G1)| + |V (G2)|;

• ν2 + |V (G1)| ≤ · · · ≤ ν|V (G2)| + |V (G1)|.

2. Assume u2, . . . , u|V (G1)| are orthogonal to 1|V (G1)| and v2, . . . , v|V (G2)| are orthog-

onal to 1|V (G2)|. The eigenvectors of G1 ∨G2 are as follows:

• 1|V (G1)|+|V (G2)| is associated to 0;

• (−|V (G2)|1V1)⊕ (|V (G1)|1V2) is associated to |V (G1)|+ |V (G2)|;

• u2 ⊕ 0V2 , . . . , u|V (G1)| ⊕ 0V2 are associated to µ2 + |V (G2)|, . . . , µ|V (G1)| +

|V (G2)|;

• 0V1⊕v2, . . . ,0V1⊕v|V (G2)| are associated to ν2+|V (G1)|, . . . , ν|V (G2)|+|V (G1)|.

We can now explain how to compute the uniqueness set of a join of two graphs.

Theorem 38. Let |V (G1)| ≤ |V (G2)| and let G1 = (V1, E1), G2 = (V2, E2) be two

simple graphs on |V (G1)| and |V (G2)| vertices, with spectrum 0 = µ1 ≤ µ2 ≤ · · · ≤

µ|V (G1)| and 0 = ν1 ≤ ν2 ≤ · · · ≤ ν|V (G2)| respectively. Let G := G1 ∨G2, and let ω ≥ 0.

Also, let S ⊆ V1 ∪ V2, and let S1 := S ∩ V1 and S2 := S ∩ V2. Then the following are

equivalent to S being a minimal uniqueness set for PWω(G):

a) If |V (G1)| > ω, then S = {a} for any a ∈ V1 ∪ V2.

b) If |V (G1)| ≤ ω < |V (G2)|, then either S2 is a minimal uniqueness set for

PWω−|V (G1)|(G2) and S1 = ∅, or S2 is a minimal uniqueness set for PW0
ω−|V (G1)|(G2)

and S1 = {a} for some a ∈ V1.

c) If |V (G2)| ≤ ω < |V (G1)|+ |V (G2)|, then either S1 is minimal uniqueness set for

PWω−|V (G2)|(G1) and S2 is a minimal uniqueness set for PW0
ω−|V (G1)|(G2); or S1

is minimal uniqueness set for PW0
ω−|V (G2)|(G1) and S2 is a minimal uniqueness

set for PWω−|V (G1)|(G2).

87



d) If ω ≥ |V (G1)|+ |V (G2)|, then S = V1 ∪ V2.

Proof: See appendix 4.7.9.

Theorem 38 can be applied recursively to compute the minimal uniqueness sets

of a cograph. However, in the process, ones needs to be able to compute minimal

uniqueness sets for the modified Paley–Wiener space PW0
λ(G1 ∨ G2). We now prove

an analog of Theorem 38 to address that case. Notice that when λ < min(|V1|, |V2|),

the space PW0
λ(G1 ∨G2) is empty and there is nothing to prove. We therefore restrict

ourselves to the case where λ ≥ min(|V1|, |V2|).

Theorem 39. Let |V (G1)| ≤ |V (G2)| and let G1 = (V1, E1), G2 = (V2, E2) be two

simple graphs on |V (G1)| and |V (G2)| vertices with spectrum 0 = µ1 ≤ µ2 ≤ · · · ≤ µm

and 0 = ν1 ≤ ν2 ≤ · · · ≤ νn respectively. Let G := G1 ∨ G2, let S ⊆ V (G1) ∪ V (G2),

and let S1 := S ∩ V (G1) and S2 := S ∩ V (G2). Then the following are equivalent to S

being a minimal uniqueness set for PW0
ω(G):

a) If |V (G1)| ≤ ω < |V (G2)| then S2 is a minimal uniqueness set for PW0
ω−|V (G1)|(G2)

and S1 = ∅.

b) If |V (G2)| ≤ ω < |V (G1)| + |V (G2)|, then S1 is minimal uniqueness set for

PW0
ω−|V (G2)|(G1) and S2 is a minimal uniqueness set for PW0

ω−|V (G1)|(G2).

c) If ω ≥ |V (G1)|+ |V (G2)|, then S is any subset of size dim PW0
ω(G) = |V (G1)|+

|V (G2)| − 1.

Proof: See Appendix 4.7.10

Remark 40. It is important to point out that the items a), b) and c) in Theorem 39

can be unified and reformulated in one statement considering the Paley-Wiener spaces

PW 0
ω−|V (G1)|(G2) and PW 0

ω−|V (G2)|(G1). In particular:

• If ω < |V (G1)| then PW 0
ω−|V (G1)|(G2) = ∅ and PW 0

ω−|V (G2)|(G1) = ∅ and therefore

PW0
ω(G) = ∅.
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• If |V (G1)| ≤ ω < |V (G2)|, then PW 0
ω−|V (G2)|(G1) = ∅ and therefore the unique-

ness sets are derived from PW 0
ω−|V (G1)|(G2).

• If |V (G2)| ≤ ω < |V (G1)|+|V (G2)| then both PW 0
ω−|V (G1)|(G2) and PW 0

ω−|V (G2)|(G1)

are nonempty and the uniqueness sets are derived from them.

4.6.1 Cotree structure of a Threshold graph

Any threshold graph is obtained as a sequence of joints and unions, therefore

Theorems 38 and 39 play a central role for the calculation of uniqueness sets. Now, it

is important to point out that in light of Theorem 21, we can focus on the systematic

application of Theorem 39. The consequence of the systematic application of these

results lead to closed form solution for the uniqueness sets in threshold graphs. In

order to show this, let us consider the following notation:

• A threshold graph G with |V (G)| = n nodes is represented by the ordered se-

quence {x1, x2, . . . , xn−1}, xi ∈ {0, 1}∀i.

• Starting with a single vertex unions and joins are computed according to xi. If

xi = 0 a union is performed, and if xi = 1 a joint is performed.

• The cotree of the threshold graph is depicted in Fig. 4.12, where the changes of

the bandwidth trough the cotree are shown. In particular ω̃(v) represents the

bandwidth of the Paley-Wiener spaces associated to the node v.

• In Fig. 4.12 the term Ωxk+1→xk indicates the bandwidth that propagates from the

node xk+1 to the node xk in the cotree.

• Remember from the remarks and results of previous subsections that if the band-

width in one of the branches of the cotree is negative, the Paley-Wiener space

associated to that branch is empty and therefore we do not select nodes associated

to that branch.
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• Notice that Theorem 39 simplifies substantially when we perform the join between

a cograph and a vertex, as it is always obvious which graph is G1 and which graph

is G2.

Then, the following result can be stated.

Theorem 41. Let the ordered binary sequence {x1, x2, . . . , xn−1} be the representation

of a threshold graph G. Then, any uniqueness set of PWω(G) is given by any subset

{vi1 , vi2 , . . . , viq} ⊂ V (G) of q nodes where ω − d(vir) ≥ 0, when d(vir) denotes the

degree of the node vir and q = dimPWω(G). Additionally, the uniqueness set with

maximum stability is obtained by the q nodes with the lowest degree.

Proof. From the cotree structure of the threshold graph depicted in Fig. 4.12, and

considering Lemma 25 and Theorems 38, 39 we have that:

ω̃(vk+1) =

 Ωxk+1→xk If xk = 0

Ωxk+1→xk − k If xk = 1
(4.7)

Additionally, we have

Ωxk+1→xk =

 Ωxk+2→xk+1
If xk+1 = 0

Ωxk+2→xk+1
− 1 If xk+1 = 1

(4.8)

Now, from eqn. 4.8 and the structure of the cotree, we can conclude that

Ωxk+1→xk = ω −
n∑

j=k+1

xj. (4.9)

Combining eqn. 4.9 and eqn. 4.7 we have

ω̃(vk+1) =

 ω −
∑n

j=k+1 xj If xk = 0

ω −
∑n

j=k+1 xj − k If xk = 1
(4.10)

Now, taking into account that

d(vk+1) =


∑n

j=k+1 xj If xk = 0

k +
∑n

j=k+1 xj If xk = 1
(4.11)
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we obtain

ω̃(vk) = ω − d(vk) (4.12)

With this result and the previous results we got for cographs in the cotree, we emphasize

that if ω̃(vk) < 0 the associated Paley-Wiener space is empty and therefore no nodes

are selected from that space.

4.7 Proofs

4.7.1 Schur Complement Lemma

Lemma 42. Let

M =

A 0n1×n2

C D


be a matrix with blocks A ∈ Rn1×n1 , C ∈ Rn2×n1, and D ∈ Rn2×n2. Then M is invertible

if and only if A and D are invertible.

Proof. (⇒) Suppose D is not invertible. Then the columns of D are linearly depen-

dent. Hence the last n2 columns of M are linearly dependent as well and so M is not

invertible. A similar reasoning applies to the rows of A if A is not invertible. Therefore

A and D are invertible if M is.

(⇐). Now, suppose A and D are invertible. Using the theory of Schur comple-

ments, we have

detM = (detD)× det(A− 0n1×n2D
−1C) = detA× detD 6= 0.

Thus, M is invertible.

4.7.2 Proof of Proposition 15

Proof. (2) =⇒ (1). Suppose |S| = k and WS,{1,...,k} is non-singular. Let f =
∑k

i=1 aiwi

be such that fS =
∑k

i=1 ai(wi)S = 0|S|. Since the vectors {(wi)S : i = 1, . . . , k} are

linearly independent, we conclude that ai = 0 for all i = 1, . . . , k, and so f = 0n as

desired.
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(1) =⇒ (2). now suppose (1) holds. If |S| < k, then the vectors (w1)S, . . . (wk)S are

linearly dependent. Thus, there exist scalars a1, . . . , ak ∈ R (not all zero) such that

k∑
i=1

ai(wi)S = 0|S|. (4.13)

Let f =
∑k

i=1 aiwi. Then fS = 0|S|. Since S is a uniqueness set, we conclude that

f = 0n. This contradicts the linear independence of w1, . . . , wk. Hence |S| ≥ k. now,

assume |S| > k, and suppose Equation (4.13) holds for some a1, . . . , ak ∈ R. By as-

sumption, it follows that
∑k

i=1 aiwi = 0n, and so a1 = · · · = ak = 0 by the linear

independence of w1, . . . , wk. Thus, the vectors (w1)S, . . . , (wk)S are linearly indepen-

dent. Since the row rank equals the column rank of a matrix, there exists S ′ ⊆ S of

size k such that (w1)S′ , . . . , (wk)S′ are also linearly independent. By the (2) =⇒ (1)

implication above, the set S ′ is a uniqueness set, contradicting the minimality of S.

Finally, suppose |S| = k and WS,{1,...,k} is singular. Then there exist scalars

a1, . . . , ak ∈ R (not all zero) such that Equation (4.13) holds. Defining f =
∑k

i=1 aiwi

as above, we obtain that fS = 0|S|. By (1), we conclude that f = 0n, contradicting the

linear independence of the eigenvectors w1, . . . , wk.

4.7.3 Proof of Theorem 21

Proof. Let us consider the matrix M given by

M =

 US,[n]\{1} 1|S|×1

U{v},[n]\{1} 1

 (4.14)

with v ∈ Sc. Calculating the determinant of M using the Schur-complement theorem,

we obtain

det(M) = (1−U{v},[n]\{1}U
−1
S,[n]\{1}1|S|×1) det(US,[n]\{1}) (4.15)

therefore det(M) 6= 0 if and only if

U{v},[n]\{1}U
−1
S,[n]\{1}1|S|×1 6= 1 (4.16)

92



We claim that there exists always v ∈ Sc such that eqn. (4.16) holds. Indeed, suppose

for a contradiction that there is no such v. Notice that the sampled version of a signal

x ∈ PW 0
ω(G) on a subset of nodes S is given by

x(S) = US,[n]\{1}α (4.17)

If S is a uniqueness set for PW 0
ω(G), then α is unique and can be calculated as

α = U−1
S,[n]\{1}x(S) (4.18)

If x(S) = 1, then

U{v},[n]\{1}α = U{v},[n]\{1}U
−1
S,[n]\{1}1|S|×1 (4.19)

Now, if there is no v ∈ Sc such that U{v},[n]\{1}α 6= 1, this would imply that

1|V (G)|×1 = U[n],[n]\{1}α (4.20)

which is a contradiction since the columns of U are assumed to be an orthonormal

basis.

4.7.4 Proof of Lemma 25

Proof. Let m := |V1| and n := |V2|. Also, let 0 = λ1 ≤ λ2 ≤ · · · ≤ λk1 and 0 =

µ1 ≤ µ2 ≤ · · · ≤ µk2 denote the eigenvalues of LG1 and LG2 that are less than λ,

respectively. Denote the associated eigenvectors of LG1 and LG2 by 1m =: u1, u2, . . . , uk1

and 1n =: v1, v2, . . . , vk2 . Then PW0
λ(G) = span(−n1m ⊕ m1n, u2 ⊕ 0n, . . . , uk1 ⊕

0n,0m ⊕ v2, . . . ,0m ⊕ vk2). Hence dim PW0
λ(G) = dim PW0

λ(G1) + dim PW0
λ(G2) +

1. Let W be the matrix with columns −n1m ⊕ m1n, u2 ⊕ 0n, . . . , uk1 ⊕ 0n,0m ⊕

v2, . . . ,0m ⊕ vk2 , and let S be a minimal uniqueness set for PW0
λ(G). By Corollary

18, we have |S| = dim PW0
λ(G1) + PW0

λ(G2) + 1. Proceeding as in the Proof of

Theorem 38(d), we obtain that |S1| ≥ dim PW0
λ(G1) and |S2| ≥ dim PW0

λ(G2). Hence,

either |S1| = dim PW0
λ(G1) + 1 and |S2| = dim PW0

λ(G2), or |S1| = dim PW0
λ(G1) and

|S2| = dim PW0
λ(G2) + 1. The result now follows by writing W in block form as in the

proof of Theorem 38(d) (see eqn. (4.36)).
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Figure 4.13: Top: Representation of the union operation between two graphs. Bottom:
Representation of the join operation of two graphs.

4.7.5 Proof of Theorem 28

Proof. Let 0 = µ1, µ2, . . . , µn denote the Laplacian eigenvalues of Gc. We know that

PWn−ω(Gc) is generated by all eigenvectors associated to the eigenvalues µi ≤ n− ω,

and by Lemma 27 the µi’s are given by 0, n − λn, . . . n − λi with i > 1. This implies

that n − λi ≤ n − ω ⇒ λi ≥ ω then PWn−ω(Gc) = 1n ⊕ CPWω(G). Similarly, we

have that CPWn−ω(Gc) is generated by the eigenvectors associated to the eigenvalues

µi ≥ n− ω which implies λi ≤ ω.

4.7.6 Proof of Lemma 31

Proof. Any cograph has a cotree representation based on unions or joins. At any node

in the cotree, the calculation of a uniqueness set for any modified or complementary

Paley-Wiener space is based on the application of Lemma 25 and Theorem 28. Now,

by means of Theorem 21 a uniqueness set of a Paley-Wiener space can be obtained as

described.
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4.7.7 Proof of Corollary 32

Proof. The proof follows by the systematic application of Theorems 38 and 39

4.7.8 Proof of Theorem 34

Lemma 43. The eigenvalues of Kq = (VKq , EKq) are given by {0, |VKq ||VKq |−1} with

eigenvectors given by: u1 = 1|VKq |×1 and

ui(`) =


(i− 1) ` = |VKq | − (i− 1)

−1 ` ≥ |VKq | − (i− 2)

0 otherwise

(4.21)

for i = 2, . . . , |VKq |.

Proof. Given that the components of the jth row, rj, of the Laplacian matrix for the

complete graph can be written as

rj(`) =

 |VKq | − 1 if ` = j

−1 ` 6= j
(4.22)

we have that

(Lui)(j) =
(
|VKq | − 1

)
ui(j) +

∑
`6=j

(−1)ui(`). (4.23)

Now, taking into account 4.21 for the resultant sum in equation 4.23, we have the

following possibilities:

• If j < |VKq | − (i− 1) then ui(j) = 0 and therefore

(
|VKq | − 1

)
ui(j) +

∑
` 6=j

(−1)ui(`) = 0 = |VKq |ui(j) (4.24)

• If j = |VKq | − (i− 1) then ui(j) = (i− 1) and therefore

(
|VKq | − 1

)
ui(j) +

∑
6̀=j

(−1)ui(`) = (|VKq | − 1)(i − 1) + (i − 1) = |VKq |ui(j)

(4.25)
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• If j ≥ |VKq | − (i− 2) then ui(j) = −1 and therefore

(
|VKq | − 1

)
ui(j) +

∑
` 6=j

(−1)ui(`) = (|VKq | − 1)(−1)− (i− 1) + (i− 2) = −|VKq |

= |VKq |ui(j) (4.26)

and therefore Lui = |VKq |ui for i = 2, . . . , |VKq |.

The fact that L1|VKq |×1 = 0 follows directly from the fact that r1|VKq |×1 = 0 for all

j.

Lemma 44 ( [63]). Let G be a graph with Laplacian eigenvalues µ1 ≤ µ2 ≤ . . . ≤

µn and eigenvectors u1 = 1, u2, . . . , un; then the complement graph Gc has Laplacian

eigenvalues {0, n− µn, . . . , n− µ2}.

Lemma 45. Considering the eigenvalues of the complement graph indicated in Lemma

44, it follows that the set of eigenvectors associated to the eigenvalues {0, n−µn, . . . , n−

µ`} with µ` 6= 0, are given by v1 = 1, v2 = un, . . . , u`.

Proof. Let us consider the Laplacian matrix of the complement graph L̄ = nI−J −L,

where J is the all ones matrix,. Then, let us consider µ` 6= 0 the eigenvalue of L with

eigenvector u`, then

L̄u` = nIu` − Ju` − Lu`

L̄u` = nu` − µ`u` = (n− µ`)u`

Additionally, considering the vector 1 we do have

L̄1 = n1− n1− L1 = 0

Lemma 46. Let us consider the complete graphs Ki with i = 1, . . . , q and |VK1| <

|VK2| < . . . < |VKq |. Then the set of eigenvalues of G = K1 ∪K2 ∪ · · · ∪Kq is given by

{
0q, |VK1 ||VK1

|−1, |VK2||VK2
|−1, . . . , |VKq ||VKq |−1

}
(4.27)
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with associated eigenvectors{
1n×1, ũ

K1
1 , . . . , ũ

Kq−1

1 , ũK1
2 , . . . , ũK1

|VK1
|, ũ

K2
2 , . . . ũK2

|VK2
|, . . . , ũ

Kq
2 , . . . ũ

Kq
|VKq |

}
, (4.28)

where n =
∑q

i=1 |VKi |, and

ũ
Kj
i =

 0 ` /∈ VKj
ui(`) ` ∈ VKj ,

(4.29)

with i ≥ 2 , j = 2, . . . , q and where ui denotes ith Laplalcian eigenvector of Kj.

Proof. By lemma 43, it is immediate that the eigenvalues of G = K1 ∪K2 ∪ · · · ∪Kq

are given by {
0q, |VK1 ||VK1

|−1, |VK2||VK2
|−1, . . . , |VKq ||VKq |−1

}
(4.30)

Now, since

LG =


LK1 0 0 0

0 LK2 0 0
...

...
. . . 0

0 · · · 0 LKq

 , (4.31)

it follows that

LGũ
Kj
i =



0

0
...

LKjui
...

0


= λ

Kj
i



0

0
...

ui
...

0


(4.32)

where λ
Kj
i ∈ {0, |VKj |

|VKj |−1} and ui is the ith eigenvector associated to λ
Kj
i . Addition-

ally LG1 = 0.

Theorem 47. Let M = Kc
1 ∨ Kc

2 ∨ · · · ∨ Kc
q with |VK1| < |VK2| < . . . < |VKq | the

complete multipartite graph. Then the set of Laplacian eigenvalues is given by

{
0, (n− |VKq |)|VKq |−1, . . . , (n− |VK2|)|VK2

|−1, (n− |VK1|)|VK1
|−1, nq−1

}
(4.33)
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and the set of eigenvectors associated to

{
0, (n− |VKq |)|VKq |−1, . . . , (n− |VK2|)|VK2

|−1, (n− |VK1|)|VK1
|−1
}

(4.34)

is given by {
1n×1, ũ

Kq
2 , . . . , ũ

Kq
|VKq |

, . . . , ũK2
2 , . . . ũK2

|VK2
|, ũ

K1
2 , . . . , ũK1

K1

}
(4.35)

Proof. M = (K1 ∪K2 ∪ · · · ∪Kq)
c. The result follows by applying Lemmas 46, 43,

and 44 to M .

4.7.8.1 Proof of Multipartite uniqueness sets

Proof. Let us take into account the results of lemma 47, that describes the set of

eigenvectors of the Laplacian matrix for all eigenvalues except nq and its pictorial

representation in Figure 4.8.

In Figure 4.8 It is possible to see the structure of the support of the set of vectors

that span each PWω space. For example on left side of the gray line there is just the

vector 1n×1, which indicates that the Paley-Weiner space PWω for 0 ≤ ω < n− |VKq |

is generated by 1n×1. On the left side of the magenta line, it is possible to see the

vectors that span PWω for n−|VKq−r | ≤ ω < n−|VKq−(r+1)
| which includes the vectors

whose support is in magenta color and the vector 1n×1. The use of this figure allows

to determine how the rows of the submatrices must be selected in order to guarantee

a full rank matrix.

1. When 0 ≤ ω < n − |VKq |, we do have that PWω = span(1n×1), therefore any

node in M is a minimal uniqueness set for PWω.

2. When n − |VKq−r | ≤ ω < n − |VKq−(r+1)
| it is possible to see in Figure 4.8 that

PWω = span(1n×1, ũ
Kq
2 , . . . , ũ

Kq
|VKq |

, . . . , ũ
Kq−r
2 , . . . ũ

Kq−r
|VK2

|). Additionally, from the

figure, notice that:
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• The selection of rows from the matrix (nodes in the graph) should be done

in such a way that no zero column is obtained in the resultant submatrix.

This happens only when at least |VKi | − 1 nodes (rows) are selected in each

VKi involved in the span of PWω.

• The size of the sampling sets is given by 1+
∑r

`=0(|VKq−`|−1), and therefore

it is possible to select one node v out of the VKi involved in the span of PWω.

3. If n ≤ ω PWω(M) is generated by the complete set of eigenvectors, therefore the

size of the sampling set must be n and all nodes in the graph are part of the

minimal uniqueness set.

4.7.9 Proof of Theorem 38

Proof. Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λk denote the eigenvalues of G that are smaller or

equal to λ. By Theorem 37, each of the eigenvalues λ2, . . . , λk is of the form µi + n or

νi +m for some eigenvalue µi of LG1 , or some eigenvalue νi of LG2 . Let {λ2, . . . , λk} =

Λ1 ∪ Λ2, with Λ1 = {µ2 + n, . . . , µk1 + n}, and Λ2 = {ν2 + m, . . . , νk2 + m}. Let

u2 ⊕ 0n, . . . , uk1 ⊕ 0n and 0m ⊕ v2, . . . ,0m ⊕ vk2 denote the eigenvectors of LG that

correspond to the eigenvalues in Λ1 and Λ2 respectively. We consider each of the four

case separately.

a) If m > λ, then dim PWλ(G) = 1 and only contains constant signals. Thus S is a

minimal uniqueness set if and only if |S| = 1.

b) If m ≤ λ < n, then

PWλ(G) = span(1m+n,0m ⊕ v2, . . . ,0m ⊕ vk2).

Consider the matrix W with columns 1m+n,0m ⊕ v2, . . . ,0m ⊕ vk2 . If S1 = ∅, then it

follows easily by Corollary 17 that S2 is a minimal uniqueness set for PWλ(G) if and

only if it is a minimal uniqueness set for PWλ−m(G2). If |S1| ≥ 2, then two rows of

WS1,{1,...,k2} are equal and Corollary 17 implies that S is not a uniqueness set. If |S1| = 1,
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then it is not hard to see that the columns of WS,{1,...,k2} are linearly independent if

and only if the columns of WS2,{2,...,k2} are linearly independent. It follows that S is a

minimal uniqueness set for PWλ(G) if and only if S2 is a minimal uniqueness set for

PW0
λ−m(G2), as claimed.

c) Now, suppose that n ≤ λ < m+n. Let S be a minimal uniqueness set for PWλ(G).

Note that dim PWλ(G) = k = k1 + k2 − 1. Hence, |S| = k1 + k2 − 1 by Corollary 17.

We first claim that |S1| ≥ k1−1 and |S2| ≥ k2−1. Indeed, suppose |S1| < k1−1. Then

the vectors (u2)S1 , . . . (uk1)S1 are linearly dependent, say
∑k1

i=2 ti(ui)S1 = 0 with not all

ti equal to zero. Consider the signal f =
∑k1

i=2 tiui ⊕ 0n ∈ PWλ(G). Clearly, f ≡ 0 on

S. Hence f ≡ 0 on V1 ∪ V2 since S is a uniqueness set for PWλ(G). This contradicts

the linear independence of u2, . . . , uk1 . We therefore must have |S1| ≥ k1−1. A similar

argument shows that |S2| ≥ k2 − 1. Hence, either |S1| = k1 and |S2| = k2 − 1, or

|S1| = k1 − 1 and |S2| = k2. Assume |S1| = k1 and |S2| = k2 − 1. Consider the matrix

W with columns 1m+n, u2 ⊕ 0n, . . . , uk1 ⊕ 0n,0m ⊕ v2, . . . ,0m ⊕ vk2 . Observe that W

can be written in block form:

W =

U1 0m×(k2−1)

X U2

 (4.36)

where U1 ∈ Rm×k1 , U2 ∈ Rn×(k2−1), and X ∈ Rn×k1 . By Lemma 42, the matrix

WS,{1,...,k} is invertible if and only if (U1)S1,{1,...,k1} and (U2)S2,{1,...,k2−1} are invertible.

It follows by Corollary 17 that S1 is a minimal uniqueness set for PWλ−n(G1) and

S2 a uniqueness set for PW0
λ−m(G2). If instead |S1| = k1 − 1 and |S2| = k2 then a

similar argument shows that S1 is a minimal uniqueness set for PW0
λ−n(G1) and S2 a

uniqueness set for PWλ−m(G2) . Conversely, suppose without loss of generality that

S1 is a uniqueness set for PWλ−n(G1) and S2 a uniqueness set for PW0
λ−m(G2). Then

the matrices (U1)S1,{1,...,k1} and (U2)S2,{1,...,k2−1} in Equation (4.36) are invertible. Thus

WS,{1,...,k} is invertible and S is a uniqueness set by Corollary 17.

d) Finally, if λ ≥ m + n = |V (G)|, then Theorem 37 shows that PWλ(G) = Rm+n.

Thus dim PWλ(G) = m+ n and it follows easily from Corollary 17 that S = V1 ∪ V2 is

the only uniqueness set for PWλ(G).
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4.7.10 Proof of Theorem 39

Proof. The proof follows the proof of Theorem 38, with some minor adjustments. With

the same notation as in that proof, we consider each of the three case separately.

a) If m ≤ λ < n, then

PW0
λ(G) = span(0m ⊕ v2, . . . ,0m ⊕ vk2).

Consider the matrix W with columns 0m ⊕ v2, . . . ,0m ⊕ vk2 . If S1 = ∅, then it follows

easily by Corollary 18 that S2 is a minimal uniqueness set for PW0
λ(G) if and only if

it is a minimal uniqueness set for PW0
λ−m(G2). If |S1| ≥ 1, then WS,{1,...,k2−1} contains

a row of zeros and S is not a uniqueness set.

b) Suppose n ≤ λ < m + n. Let S be a minimal uniqueness set for PW0
λ(G). Note

that dim PWλ(G) = k1 + k2 − 2. Hence, |S| = k1 + k2 − 2 by Corollary 18. We first

claim that |S1| ≥ k1 − 1 and |S2| ≥ k2 − 1. Indeed, suppose |S1| < k1 − 1. Then the

vectors (u2)S1 , . . . (uk1)S1 are linearly dependent, say
∑k1

i=2 ti(ui)S1 = 0 with not all ti

equal to zero. Consider the signal f =
∑k1

i=1 tiui⊕ 0n ∈ PW0
λ(G). Clearly, f ≡ 0 on S.

Hence f ≡ 0 on V1 ∪ V2 since S is a uniqueness set for PW0
λ(G). This contradicts the

linear independence of u2, . . . , uk1 . We therefore must have |S1| ≥ k1 − 1. A similar

argument shows that |S2| ≥ k2− 1. We therefore have |S1| = k1− 1 and |S2| = k2− 1.

Now, consider the matrix W with columns u2⊕0n, . . . , uk1 ⊕0n,0m⊕ v2, . . . ,0m⊕ vk2 .

Observe that W can be written in block form:

V =

 U1 0m×(k2−1)

0n×(k1−1) U2

 (4.37)

where U1 ∈ Rm×(k1−1), and U2 ∈ Rn×(k2−1). Clearly, the matrix WS,{1,...,k1+k2−2} is in-

vertible if and only if (U1)S1,{1,...,k1−1} and (U2)S2,{1,...,k2−1} are invertible. It follows by

Corollary 18 that S1 is a minimal uniqueness set for PW0
λ−n(G1) and S2 a uniqueness

set for PW0
λ−m(G2). Conversely, suppose that S1 is a uniqueness set for PW0

λ−n(G1)

and S2 a uniqueness set for PW0
λ−m(G2). Then the matrices (U1)S1,{1,...,k1−1} and

(U2)S2,{1,...,k2−1} in Equation (4.37) are invertible. Thus WS,{1,...,k1+k2−2} is invertible

and S is a uniqueness set by Corollary 18.
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c)Finally, assume λ ≥ m + n. Then PW0
λ(G) = 1⊥m+n. Let 1m+n, u2 ⊕ 0n, . . . , um−1 ⊕

0n,0m ⊕ v2, . . . ,0m ⊕ vn−1,−n1m ⊕m1n be an orthogonal basis of eigenvectors of LG.

Denote these vectors by 1m+n = w1, w2, . . . , wm+n = −n1m ⊕m1n and let W be the

matrix with columns w1, . . . , wm+n. By Corollary 18, any minimal uniqueness set for

PW0
λ(G) had size m + n − 1. Let S be any subset of [m + n] of size m + n − 1, say

S = [m + n] \ {p} for some p ∈ [m + n]. By Corollary 18, it suffices to show that

the determinant of the matrix obtained from W by deleting its p-th row and its first

column is nonzero. Let X = W−1. Using properties of the adjunct matrix, this is

equivalent to showing that X1,p 6= 0. Let x1 = (x1,i)1≤i≤m+n denote the first row of X.

Then x1 is characterized by:

m+n∑
i=1

x1,i = 1 (4.38)

(x1)V1 ⊥ ui 2 ≤ i ≤ m (4.39)

(x1)V2 ⊥ vi 2 ≤ i ≤ n− 1 (4.40)

−n
m∑
i=1

x1,i +m
m+n∑
i=m+1

x1,i = 0, (4.41)

where (x1)V1 and (x1)V2 denote the restriction of x1 to its first m and its last n entries

respectively. Now, since u2, . . . , um−1 form a basis of the orthogonal complement of

1m in Rm, we conclude by Equation (4.39) that (x1)V1 = α1m for some α ∈ R. Simi-

larly,using Equation (4.40), we obtain (x1)V2 = β1n for some β ∈ R. Now, by Equation

(4.38) and (4.41), we have

mα + nβ = 1

−nmα +mnβ = 0.

Solving for α, β, we obtain

α = β =
1

m+ n
6= 0.

Therefore, S is a minimal uniqueness set, as claimed.
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Chapter 5

COLORED CODED APERTURE DESIGN IN COMPRESSIVE
SPECTRAL IMAGING VIA MINIMUM COHERENCE

5.1 Introduction

Spectral imaging is extensively used in remote sensing applications and thus the

development of more efficient sensing architectures is of interest, including compressed

sensing approaches such as coded aperture spectral imaging (CASSI). Multispectral

imaging based on CASSI has received considerable interest in recent years. In partic-

ular, the design of coded apertures has been shown to be a key to increase the quality

of the reconstructions [69]. Whereas initial designs of the CASSI considered the use

of random binary coded apertures [70] [71], it has been proven that the use of colored

coded apertures can significantly improve the quality of the reconstructions [72] [2].

Colored coded apertures are two dimensional arrays of pixels that have selective spec-

tral response, i.e. each pixel allows or blocks specific parts of the light spectrum. It

is fabricated as a patterned multilayer optical coating, that allows to have a compact

two dimensional array of pixels, each one with an specific spectral response [73].

This paper addresses the design and optimization of compressive spectral im-

agers with this new coded aperture technology. The solution proposed is based on the

analysis of the coherence of the sensing matrix. It is found that exploiting the highly

structured transfer function matrix of the system, leads to a solution that can be ob-

tained as the set of designs of smaller submatrices. It is shown that diverse families

of codes exists that can be considered optimal in the sense that an upper bound of

the coherence is minimized. The obtained codes are tested by simulation against tra-

ditional random binary codes and the codes obtained with other methods [2], showing

that the results obtained with the approach proposed in the present work exhibit a
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Figure 5.1: Components of the CASSI with the use of a general coded aperture
T (x, y, λ). The multispectral scene f(x, y, λ) is modulated by T (x, y, λ), and the re-
sultant modulated field is dispersed by an Amici prism with dispersion curve S(λ) to
be finally integrated in the Focal Plane Array (FPA). When the classical binary coded
aperture is used T (x, y, λ) ∈ {0, 1} ∀λ.

clear improvement in the quality of the reconstructions. Additionally, the methods in-

troduced present a simple and fast way to generate optimized codes with high diversity

in the kind of spectral responses in the colored coded aperture, reducing the large scale

optimization problem to a subset of smaller problems, which is also an advantage with

respect to previous designs that are obtained using the analysis of the RIP constant [2]

using genetic type optimization algorithms, leading to limited specific constraints in

the spectral responses of the colored coded apertures. The designed codes based on

the coherence are tested against random codes in the presence of noise, showing that

despite the fact that the coherence is considered less suited than the RIP constant to

deal with the noise, the resultant codes lead to reconstructions of higher quality than

the obtained with random binary codes.

5.2 CASSI Modeling

The components of CASSI are shown in Figure 7.1. The multispectral scene

f(x, y, λ) is coded by a coded aperture T (x, y, λ), where (x, y) indicates the spatial

coordinates and λ is the wavelength component. If traditional binary coded aper-

tures are used, then T (x, y, λ) ∈ {0, 1} ∀λ ∈ Λ, where Λ is the spectral range of

f(x, y, λ) [69] [71]. When T (x, y, λ) is a non constant and non negative function with
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respect to λ, T (x, y, λ) represents colored coded apertures which modulates the incom-

ing light field both in space and wavelength [74]. Once f(x, y, λ) has been modulated

by T (x, y, λ), the resultant field is dispersed by a prism and q(x, y, λ) is obtained as

q(x, y, λ) = f (x− S(λ), y, λ)T (x− S(λ), y, λ) , where S(λ) is the dispersion curve of

the prism. The continuous representation of the compressed measurements g(x, y) in

the Focal Plane Array (FPA) are obtained by the integration of q(x, y, λ) across the

spectral axes as g(x, y) =
∫

Λ
q(x, y, λ)dλ [69] [74].

5.2.1 Discretization of the Model

The focal plane array (FPA) measures a sampled set of points. In order to adapt

the continuous model to a discrete sampled formulation, all operators are approximated

[74]. Let Ω ∈ R2 be the spatial domain of the FPA, represented as Ω = ∪m,n∈[N ]Ωm,n,

where Ωm,n is given by

Ωm,n = {(x, y)|∆(n− 1/2) ≤ x ≤ ∆(n+ 1/2) ,

∆(m− 1/2) ≤ y ≤ ∆(m+ 1/2)} ,

and [N ] = {0, 1, . . . N − 1}. The FPA measurement is then represented as an N×(N+

L − 1) array conformed by the union of N(N + L − 1) domains of size ∆ × ∆. The

pixel (m,n) with pitch size ∆ is associated with Ωm,n, and its measurement sample is

gm,n =

∫∫
Ωm,n

g(x, y)rect
( x

∆
− n, y

∆
−m

)
dydx, (5.1)

which represents the contribution of g(x, y) to each Ωm,n. The multispectral scene

f(x, y, λ) is modulated by T (x, y, λ) such that

f(x, y, λ)T (x, y, λ) ≈
M−1∑
m=0

N−1∑
n=0

(TF )m,n(λ)rect
( x

∆
− n, y

∆
−m

)
, (5.2)
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(a)

(b)

1 2

1 2

Figure 5.2: The graphic representation of the transfer function matrix H is depicted,
when the capture of one multispectral scene of L = 3 bands and N = 3 is considered
using K = 2 shots. On the indicated diagonals the spectral response of the pixels of
the coded aperture are shown for each band respectively, i.e. on the diagonal of the
band i, the lexicographic ordering of the elements of T·,·,i is considered.
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where (TF )m,n(λ) = Tm,n(λ)Fm,n(λ) and Tm,n(λ) is the spectral response of the coded

aperture at pixel (m,n), and where Fm,n(λ) is given by Fm,n(λ) =
∫∫

Ωm,n

f(x, y, λ)dxdy.

Taking into account these facts and using (1), gm,n can be written as

gm,n =

min{n,L−1}∑
k=0

(T ◦ F)m,n−k,k, (5.3)

Appendix 5.7 provides a detailed derivation of (7.4). (T◦F)m,n,k = Tm,n,kFm,n,k where

Tm,n,k and Fm,n,k are the (m,n, k) elements of the arrays T and F, respectively, where

the first two dimensions represent the spatial location and the third one indicates the

spectral component. The term Tm,n,k is the spectral response of the coded aperture at

pixel (m,n) at wavelength k. Equation (7.4) can be rewritten in matrix notation as ~g =

H~F, where ~g is the vectorized representation of g. H is of dimension KN (N + L− 1)×

N2L with K being the number of shots and ~F is the vectorized form of F (see Fig.

5.2). Figure 5.2 shows the structure of H for CASSI with colored coded apertures.

The vectorization of 2-dimensional arrays is performed by columns. For 3-dimensional

arrays like F ∈ RN×N×L, the vectorization is performed concatenating vertically the

vectorizations of each F(:, :, i) with i = 1, . . . , L.

When the sparsity properties of the signal ~F in a basis ψ are used, the problem

can be written as

~g = Hψf , (5.4)

where ~F = ψf and f is a column vector whose entries are the coefficients rep-

resentation in the basis. The recovery of f is obtained as the solution of the nonlinear

optimization problem [75] [71]

f̂ = argmin
z

1

2
‖Az− ~g‖2

2 + τ ‖z‖1 , (5.5)

where A = Hψ is the sensing matrix of the problem and τ a regularization

parameter.
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5.3 Coherence of the Sensing Matrix

Two measures for the quality are often used to describe the effectiveness of

compressed sensing projections, the coherence of the sensing matrix and the Restricted

Isometry Property (RIP) [75] [76] [4]. The RIP is traditionally used in theoretical

analysis of compressed sensing because of its elegance. However, even with simple

representations of the sensing matrix, it is in general difficult to calculate [75] [4]. On

the other hand, the coherence offers a measure of quality that is often more tractable.

In particular it allows one to exploit the structure of the sensing matrix, and it also

gives the degree of ill-posedness of the system. The coherence of the sensing matrix

A = Hψ is defined as the maximum absolute value of the inner product between any

two columns of A, with each column normalized by its `2−norm. A good sensing

matrix will have the coherence as small as possible to guarantee uniqueness of the

solution [77] [76].

In the following, a detailed calculation of the coherence is presented showing

how the structure of H can be exploited, in turn, leading to the proposed optimization

framework.

5.3.1 Matrix Formulation and Analysis of the Coherence

The structure of H is depicted in Fig. 5.2. The nonzero elements lie on the

indicated diagonals representing the spectral response of the coded aperture in each

band.

Let H = [h1 h2 . . .hN2L], where each column hi is of dimensionKN (N + L− 1)×

1. The basis matrix Ψ can be written as Ψ =
[
ψT

1 , ψT
2 , · · · ,ψT

N2L

]T
, where each

ψi is of dimension 1 × N2L. Then, the sensing matrix can be represented as A =

HΨ =
∑N2L

i=1 hiψi, and the element of A in the (m,n) position can be written as

A(m,n) =
∑N2L

i=1 hi(m)ψi(n). The inner product between the m and n columns of A

is given by
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〈A(·,m),A(·, n)〉 =
N2L∑
i,j=1

〈hi,hj〉ψi(m)ψ∗j(n).

The coherence of the sensing matrix A can be written as

µ (A) = max
m,n
m6=n

∣∣∣∣〈 A(·,m)

‖A(·,m)‖
,

A(·, n)

‖A(·, n)‖

〉∣∣∣∣ (5.6)

= max
m,n
m 6=n

µm,n (A) , (5.7)

where

µm,n (A) =

∣∣∣∣∣N2L∑
i,j=1

ϕi,jR
(m,n)
i,j

∣∣∣∣∣(
N2L∑
i,j=1

ϕi,jR
(m,m)
i,j

) 1
2
(
N2L∑
i,j=1

ϕi,jR
(n,n)
i,j

) 1
2

, (5.8)

and R
(m,n)
i,j = ψi(m)ψ∗j(n), ϕi,j = 〈hi,hj〉.

From the structure of H (see Figure 5.2), it is possible to identify a set I of

pairs of columns of H, that can be written as I = {(i, j)| i 6= j, ϕi,j 6= 0} , that is the

set of all possible pairs of columns of H whose inner products are different from zero.

Taking into account I, equation (7.10) can be written as

µm,n (A) =
|% (m,n)|

% (m,m)
1
2 % (n, n)

1
2

, (5.9)

where

% (m,n) =
N2L∑
i=1

ϕi,iR
(m,n)
i,i +

∑
(i,j)∈I

ϕi,jR
(m,n)
i,j . (5.10)

The coherence µ(A) in (5.7) is therefore determined by the functions ϕi,j and

ϕi,i. In the next sections, it is established how the values of ϕi,j and ϕi,i can be used

in order to get an upper bound on the values of µm,n(A) and consequently µ(A).
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5.4 Optimization of the H matrix

The intended values of µ(A) should be as small as possible in order to improve

the quality of the reconstructions [78] [79]. The problem of designing H such that the

minimum value of µ(A) is attained, can be formulated as

minimize
H

µ(A)

subject to H ∈ CN,L,K
(5.11)

where CN,L,K is the set of matrices for a CASSI system reconstructing multispectral

images with image size N , L bands, using K shots and, the entries of H are binary

nonnegative. The expression for µ(A) is nonconvex [78] [80], therefore a direct solution

of the problem (5.11) is not workable. However, it is possible to take into account the

relationship between µm,n(A) and %(m,n) to get an alternative formulation. This

relation is presented in the following theorem.

Theorem 48. Let A = Hψ be the sensing matrix for the CASSI system considering

the reconstruction of multispectral scenes of size N×N×L using K shots. Then, there

is ξ ∈ R+ such that

µm,n(A) ≤ ξ

(N2L∑
i=1

ϕi,i

)
max
i

∣∣∣R(m,n)
i,i

∣∣∣+

 ∑
(i,j)∈I

ϕi,j

 max
(i,j)∈I

∣∣∣R(m,n)
i,j

∣∣∣
 (5.12)

Proof: See Appendix 5.8.

The quantities from (7.12) ϕi,i and ϕi,j play a key role in bounding the value of

µm,n(A). In particular, note that minimizing ϕi,i and ϕi,j implies a minimization of the

right side of equation (5.12). This reduces the range of values of µ(A), and therefore it

represents an indirect minimization of µ(A) that allows the finding of local minimums.

The maximum values of ϕi,j can be determined by the use of the Cauchy-

Schwarz inequality as ϕi,j = |〈hi,hj〉| ≤ ‖hi‖2 ‖hj‖2 and for ϕi,i it follows that ϕi,i =

‖hi‖2
2. Then, the values of the functions ϕi,i and ϕi,j are bounded by the `2−norm of

the columns hi. Because all the vectors hi have binary nonnegative components the

minimum value of ‖hi‖2 6= 0 for an arbitrary i is attained when ‖hi‖2 = 1.
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Figure 5.3: The structure of H is depicted showing how the different sets Ir are defined
and how its structure is related with the submatrices Ĥr. The support of some subset
of columns of H for which ϕi,j 6= 0 is indicated in different colors, and it is shown how

is its relation with Ĥr.

Taking into account this, the term ϕi,i in (5.12) must be such that ϕi,i = 1.

With this value of ϕi,i it is possible to write an alternative formulation of (5.11) as

minimize
H

∑
(i,j)∈I

ϕi,j

subject to ϕi,j = 〈hi,hj〉

H ∈ CN,L,K

‖hi‖1 = 1.

(5.13)
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5.4.1 About the structure of H

The set I indicates the set of inner products between columns of H that can be

different from zero, with |I| � N2L(N2L− 1). The structure of I can be additionally

described as a union of simpler and smaller sets as

I =
R⋃
r=1

Ir (5.14)

where each Ir represents a subset of pairs of I that indicate the subset of columns of

H that have the same support (see Figure 5.3), and R is the total number of subsets.

As shown in Fig. 5.3, these sets have the property that

Ir
⋂

I` = ∅ ∀r 6= `. (5.15)

Hence the possible values of the inner products between columns of H are described by

the set of inner products of the submatrices Ĥr. Because the structure of H is explicitly

known as indicated in Fig. (5.2) and Fig. (5.3), it is possible to determine the sets Ir

and the indexes Lr of columns that define Ir in a systematic way. In Appendix 5.12

an auxiliary algorithm used to obtain the indexes of the columns Lr is indicated.

The design of H can then be formulated as the design of the submatrices Ĥr.

This idea is summarized in Algorithm 1. It is pointed out here that the structure of H

indicates where the elements of T are located in H, this has been stated in previous

paragraphs and Figures (5.2) and (5.3).

Algorithm 7 Design of H based on the design of submatrices Ĥr

Input: structure of H
Output: H

1: Identify the sets Lr and the dimensions of the matrices Ĥr (see Figure 5.3 and
Appendix 5.12);

2: Design the submatrices Ĥr for each r;
3: Assemble values of Ĥr in H (see Figure 5.3 and Appendix 5.12);
4: return H

The assembling of the values of Ĥr in H can be obtained given the knowledge of

the structure of H (see Fig. (5.2) and Fig. (5.3) ). Additionally an auxiliary algorithm

is presented in Appendix 5.12 showing how this task is done.
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Different criteria can be applied in the design of the submatrices Ĥr in order to

get direct or relaxed solutions of (5.13). In the following subsections a direct solution

of (5.13) is presented and a relaxed solution of this problem based on the coherence of

H is also presented.

5.4.2 Minimum Coherence design of Ĥr

Before a direct minimization of
∑

(i,j)∈I ϕi,j is obtained, a relaxed formulation

of the problem is presented based on the minimization of the coherence of H.

Despite the fact that the relationship between µ(H) and µm,n(A) is nonlinear, a

minimized value of µ(H) is related to the minimization of
∑

(i,j)∈I ϕi,j as
∑

(i,j)∈I ϕi,j ≤

|I|Kµ(H). Then as the value of µ(H) is reduced, the upper bound on
∑

(i,j)∈I ϕi,j is

also reduced, which represents an indirect way of minimization of
∑

(i,j)∈I ϕi,j. This fact

makes any formulation in which µ(H) is minimized, a relaxed formulation of (5.13).

Taking into account that µ(H) = maxr µ(Ĥr) because the sets Ir are disjoint, the

formulation using the minimum coherence criteria is presented as

minimize
Ĥr

µ(Ĥr) ∀Ir

subject to ĥ
(r)
i ∈ {0, 1}K

(5.16)

where the Ir are specified according to (5.14) and ĥ
(r)
i is the ith column of Ĥr. This

formulation, which constitutes a set of disjoint formulations for each Ĥr, allows one to

get H with the minimum coherence µ(H).

The algorithm proposed to solve this minimization problems in an efficient way,

without extensively evaluating all possibilities in the feasible set, is presented below.

It is shown how we can exploit the structure that the vectors on the unit hypercube

have.

5.4.2.1 Minimum coherence matrix construction with nonnegative binary

entries

The general procedure to build nonnegative binary matrices is presented here

in order to be used for the design of the submatrices Ĥr. Let ∆θ be defined as ∆θ =
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{x ∈ QK |‖x‖`1 = θ} where QK represents the hypercube in the K−dimensional space

described as QK =
{
x = [x1, . . . , xK ]T ∈ RK |xi ∈ {0, 1} ∀i

}
. Then ∆θ represents the

set of binary vectors that have exactly θ of its components equal to 1 and the remaining

components equal to 0. In particular it is important to take into account that

QK \ {0} =
K⋃
θ=1

∆θ. (5.17)

This means that the set of possible vectors that can be used as column vectors in

the construction of a matrix can be represented as a union of the sets ∆θ. Then,

the representation of QK in (5.17) is exploited in order to calculate the coherence

of any matrix whose columns are in QK . The following theorem exploits this last

representation.

Theorem 49. Consider x1, . . . ,xn ∈
⋃m
i=1 ∆θi with xi 6= xj ∀i 6= j and θ1 < . . . <

θm. Then

µ ([x1, . . . ,xn]) ≤ max

{
max
`

√
θ`
θ`+1

, 1− 1

θm

}
(5.18)

with ` = 1, . . . ,m− 1. The bound is satisfied with equality when

n =
m∑
i=1

|∆θi| (5.19)

Proof: See Appendix 5.9

Theorem (49) establishes an upper bound for the values of the coherence of a set

of vectors given the knowledge of the sets ∆θ from which these vectors are taken. It can

be interpreted as a worst case value of the coherence for those vectors. Additionally, this

upper bound is in the set of possible values of the coherence. From the computational

point of view, it is important to note that this worst case value can be calculated

basically considering the largest value of θ and the value of max`

√
θ`
θ`+1

.

On the other hand it is possible to see that given any value of the term

max
{

max`

√
θ`
θ`+1

, 1− 1
θm

}
, it is always possible to choose a set of vectors from a col-

lection of sets ∆θi , i = 1 . . .m that have exactly this value of the coherence. This fact
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can be used in order to determine the minimum coherence as the minimum between

those worst case values. This idea can be described by the following theorem.

Theorem 50. The minimum coherence that can be achieved for a matrix of u columns,

whose column vectors are distinct elements of the set QK \ {0} with 2 ≤ u ≤ 2K − 1,

is given by

µmin(u) = min
µ̃
{fµ̃,s(u)} (5.20)

where the function fµ̃,s(t) is defined as

fµ̃,s(t) =

 µ̃ for t = 2, . . . , s

∞ otherwise
(5.21)

where µ̃ is in the set of values given by the terms max
{

max`

√
θ`
θ`+1

, 1− 1
θm

}
, i.e. µ̃ is

the highest possible value of the coherence estimated by the upper bound in theorem 49.

The value of s is given by

s =
m∑
i=1

|∆θi | (5.22)

considering the collection of sets {∆θi}
m
i=1 with θ1 < . . . < θm.

Proof: In Appendix 5.10

The function fµ̃,s(t) establishes all the possible number of vectors that can have

the value of the coherence µ̃. Given a number of vectors it is possible to achieve

different values of the coherence, and then between those possible values the minimum

is chosen in order to determine the minimum coherence value.

These ideas are considered in Algorithm 2, used in order to calculate the min-

imum coherence given a number of vectors u and the dimension of the embedding

space K. Additionally, it is also possible to obtain the classes ∆θ from which the

vectors should be selected in order to achieve the minimum coherence1. The set

1 The number of possible combinations of vectors that achieve this minimum value is
not of interest.
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Algorithm 8 Minimum Coherence Calculation for Binary Matrices

Input: K
Output: µmin(u) and Cmin(u)

1: for j = 2 to K do
2: V = comb{K, j}.
3: for i = 1 to |V | do

4: µ̃ = max
{

max`
√

θ`
θ`+1

, 1− 1
θj

}
with ` = 1, . . . , j − 1.

5: s =
∑|V (i)|

r=1 |∆θr |
6: C(µ̃,s) = {θ1, . . . , θj}
7: end for
8: end for
9: for u = 2 to 2K − 1 do

10: µmin(u) = minµ̃ {fµ̃,s(u)}
11: Cmin(u) = C(µmin(u),u≤s)

12: end for
13: return µmin(u) and Cmin(u)

V = comb{K, j} is the set of combinations of j numbers taken from the set {1, . . . K}

and indicate the sets ∆θ that are considered. The ith combination in the set V is given

by V (i) = {θ1, . . . , θj}. Once the combination of sets ∆θ is selected, they are ordered

as θ1 < . . . < θj. The function µmin(u) represents the minimum coherence that can be

achieved with a matrix whose number of columns is u, and the term Cmin(u) indicates

a collection of sets ∆θ from which the set of vectors achieving µmin(u) can be selected.

Then any submatrix Ĥr with K rows and u columns can be designed taking a set of u

vectors from the classes ∆θ indicated by Cmin(u). The construction of the submatrices

Ĥr based on the results of Algorithm 8 are presented in Algorithm 9.

Algorithm 9 Building the matrices Ĥr considering the results of Algorithm 8

Input: K,Lr (the Lr can be obtained using Algorithm 12)
Output: All submatrices Ĥr

1: Considering K use Algorithm 8 to get Cmin(u);
2: for r = 1 to R do
3: Choose ur = |Lr| different columns from the classes indicated in Cmin(ur);
4: Put those columns in a matrix Ĥr;
5: end for
6: return All submatrices Ĥr
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In the minimum coherence designs of Ĥr, it is important to remark that the

maximum number of columns that these submatrices can have is L (See Figure 5.3).

Then, taking into account that in K shots the total number of vertices of the hypercube

QK without the zero vector is 2K − 1, it is necessary to have L ≤ 2K − 1. If that is not

the case, then it will be necessary to use again one of the vectors already used in the

construction of the Ĥr, which implies µ(Ĥr) = 1 for some of the Ĥr. Therefore, this

condition could be represented as

K ≥ blog2(L+ 1)c+ 1. (5.23)

5.4.3 Minimizing
∑

(i,j)∈I ϕi,j

Taking into account that∑
(i,j)∈I

ϕi,j =
∑

(i,j)∈I1

ϕi,j + . . .+
∑

(i,j)∈IR

ϕi,j (5.24)

with
∑

(i,j)∈Ir ϕi,j ≥ 0 ∀r and the sets Ir are disjoint. A direct minimization of the

term
∑

(i,j)∈I ϕi,j in (5.13) can be formulated as

minimize
Ĥr

∑
(i,j)∈Ir

ϕi,j ∀Ir

subject to ϕi,j =
〈
ĥ

(r)
i , ĥ

(r)
j

〉
,
∥∥∥ĥ(r)

i

∥∥∥
1

= 1.

(5.25)

Then, the problem is again decomposed in a set of smaller problems in which the sum

of all possible inner products are minimized but considering the submatrices Ĥr, which

would lead to a direct minimization of
∑

(i,j)∈I ϕi,j. For (5.25) it is possible to establish

closed form solutions as it is shown next.

Theorem 51. The solution submatrices Ĥr to the problem (5.25) are given by

Ĥr = π {[u1, . . . ,unr ]} , (5.26)

where nr is the number of columns required in the submatrix Ĥr and the operator π

represents the random permutation operator on columns. The vectors ui are obtained

as the first nr columns of U, which is given by

U = 11×L ⊗ IK×K . (5.27)
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Proof: See Appendix 5.11

Algorithm 10 Building the matrices Ĥr based on the minimization of
∑

(i,j)∈I ϕi,j

Input: K and Lr
Output: All submatrices Ĥr

1: for r = 1 to R do
2: U = 11×L ⊗ IK×K .
3: Ĥr = π {U(:, 1 : |Lr|)}
4: end for
5: return All submatrices Ĥr

The construction of Ĥr based on the minimization of
∑

(i,j)∈I ϕi,j and the closed

form solution of (5.25) is presented in Algorithm 10.

5.4.4 About additional restrictions on H

Since H models a physical device, it is important to consider some physical

constraints related with colored coded apertures. Coded apertures with large number

of color filters lead to costly implementation since its cost increases directly with the

number of colors [73]. Thus, a constrained optimization procedure restricting the

number of colors is of interest.

In this work this restriction is added in a post-optimization stage considering

the relation that different pixels exhibit in the structure of the H matrix. In Figure 5.4

it is possible to see, how the spectral responses of some pixels are related. In particular,

it is possible to appreciate that following the lexicographic order on the pixels of the

colored coded aperture, the pixels i, i+N, i+ 2N, . . . , i+ (L− 1)N are related, in the

sense that their spectral responses are involved in at least one of the Ĥr matrices. As

it is indicated in Fig. 5.4, this related pixels are identified looking at the support in the

rows of H. The idea is to keep those spectral responses in the designed H, such that the

values of the inner products between columns of H are preserved as much as possible.

For this reason the value of i should be chosen such that the spectral responses selected
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Figure 5.4: Illustration of H for 1 shot considering a multispectral scene of 3 bands
and N = 3. As it is indicated in yellow color, three entries in the support of one of the
rows of H are involved in one of the submatrices Ĥr. The lexicographic order in each
diagonal indicates which pixels have their spectral responses related by Ĥr.
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are related with the submatrices Ĥr with the largest number of columns, in particular

i = 1 satisfies this requirement.

The proposed strategy then consists on using the optimal designs of H obtained

without restrictions on the number of spectral responses and after that, the maximum

number of spectral responses per shot ζ is taken into account such that the new colored

coded aperture uses some of the spectral responses of the pixels i, i+N, i+ 2N, . . . , i+

(L− 1)N (using lexicographic order). This procedure is summarized in Algorithm 11.

Algorithm 11 H design with restrictions on the number of colors

Input: ζ (maximum number of spectral responses per shot)
Output: H

1: Design H using Algorithm 1, with criteria 1 (see Algorithm 9) or criteria 2 (see
Algorithm 10).

2: for k = 1 to K do
3: Get T(k) from H (see Fig. (5.2) and Appendix 5.12)
4: for n = 1 to N do
5: V = T(k)(1, 1 : ζ, :)
6: Q = [];
7: for q = 1 to dN/ζe do
8: Q = [Q,πc(V, 2)];
9: end for

10: Q = Q(1, 1 : N, :);

11: T
(k)
res(n, :, :) = Q;

12: end for
13: end for
14: Put the values of T

(k)
res in H (see Fig. (5.2) and Appendix 5.12)

15: return H

The variable T(k) is the three-dimensional array representation of the colored

coded aperture in the shot k, and T
(k)
res the resultant colored coded aperture after

applying the restrictions on the number of colors. The values of T
(k)
res can be located

in the final designed H matrix considering the structure of H showed in Fig. 5.2

and Fig. 5.3. In Appendix 5.12 an auxiliary algorithm designed to do this task is

presented. The operator πc(·, 2) is the random circular shifting operator acting through

the second dimension. In Fig. 5.5 it is shown how the restriction on the maximum

number of spectral responses in the coded aperture is applied. The statement V =
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  Colored Coded Aperture 

as a result of the designed 

using Algorithm 1

Circular shift 

of the original

 sequence

Circular shift 

of the original

 sequence

   Colored Coded Aperture 

after applying the restriction 

The new Colored Coded Aperture

 is built concatenating randomly 

these sequences

Figure 5.5: Illustration of how the designed coded aperture with restrictions on the
number of colors is obtained. In the original coded aperture there is a large number of
spectral responses whereas the coded aperture obtained with the restriction ζ = 3 can
have at most 3 different spectral responses.

T(k)(1, 1 : ζ, :) indicates that in the variable V are stored the spectral responses of the

coded aperture in the row 1 from the column 1 up to the column ζ (see Fig. 5.5), which

considering the lexicographic ordering of the pixels of T(k) makes reference to the pixels

1 +N, 1 + 2N, . . . , 1 + ζN . The maximum possible number of these spectral responses

is given by Kζ. In line 8 of Algorithm 5, the arrays Q and πc(V, 2) are concatenated

along the second dimension, i.e. if dim(Q) = a× b× c and dim(πc(V, 2)) = a× d× c,

then dim([Q,πc(V, 2)]) = a× (b+ d)× c.
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5.5 Simulations

In order to evaluate the performance in CASSI of the designed matrices H using

the strategies and algorithms proposed, a set of simulations is realized considering also

the effects of the noise in the measurements.

5.5.1 Parameters of the Simulations

5.5.1.1 Multispectral scene

A datacube of dimension 64× 64× 12 is considered. The representation of this

datacube decomposed by bands can be appreciated in Figure 5.7.

5.5.1.2 Reconstruction Algorithm and Basis Representation

The multispectral scene is represented in the basis Ψ = ΨDCT ⊗ ΨW where

ΨDCT is the Discrete Cosine Transform (DCT) basis for the spectral domain and ΨW

is the wavelet basis for the spatial domain. The GPSR algorithm is used in order

to perform the reconstructions, the regularization parameter is tunned empirically

following the guidelines in [81].

5.5.1.3 Measure of the quality of the reconstructions

The Peak Signal to Noise Ratio (PSNR) is used as a measure of the quality of

the reconstructions.

5.5.2 Optimal H designs

The results of the simulations are presented in Figures 5.6, 5.7 and 5.8 using

the two different optimization criteria discussed before

• Criteria 1: Minimizing the Coherence of the submatrices Ĥr. Here the designed

H is obtained as the result of the methods and algorithms presented in section

IV(B).

• Criteria 2: Minimizing
∑

(i,j) ϕi,j using the solution presented for (5.25). Here the

designed H is obtained as the result of the methods presented in section IV(C).
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Figure 5.6: Simulations results comparing the performance of the different designs of
H using two different optimization criteria. Several values for the number of shots K
are considered. In blue color, the results using optimization criteria 1, based on the
minimum coherence of H, are presented. In red color, the results using optimization
criteria 2, based on minimizing

∑
(i,j)∈I ϕi,j, are presented. It is possible to see that

the results obtained with the designed H are consistently superior than the results
obtained with random binary coded apertures.
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As can be appreciated in Figure 5.6, the highest performance is obtained when

criteria 2 is used, i.e. when
∑

(i,j) ϕi,j is minimized. This superiority with respect

the use of random black and white coded apertures is consistent through the different

number of shots used. Additionally, despite the fact that the reconstructions using

criteria 1 are not as good as the ones for criteria 2, the result is still superior to the

results that can be obtained with the classical random black and white coded apertures.

In Figures 5.7 and 5.8 the reconstructed multispectral scene is shown using

the designs of H based on the criteria 2 and with the configuration of H using a

black and white coded aperture. The results show clearly how the bands recon-

structed with the designed codes are superior. The differences are evident in the bands

519[nm], 539[nm], 559[nm], 619[nm] for instance. In Figure 5.8 a zoomed version of the

band 559[nm] can be observed, in particular it is possible to appreciate the substantial

improvement in the reconstructed bands when the designed codes are used.

Figures 5.9 and 5.10 show the details of the resultant coded aperture from the

designed H using the criteria 2. In Figure 5.9 the two dimensional representation of

the coded aperture is depicted, and the spectral responses of selected pixels are shown

in Figure 5.10 as a function of the wavelength. In Figure 5.11 it is possible to see the

results obtained using criteria 2 versus the results obtained with the codes designed

in [2]. The results obtained with the approach present in this paper allow to obtain

higher values of PSNR than the values obtained with the RIP based designs. The result

that the RIP methods allow, do not have arbitrary spectral responses [2], whereas the

proposed solution here allow the use of a more diverse variety of spectral responses,

which gives a more flexible design.

5.5.3 Optimal H designs with restrictions

In Figure 5.12, the results of the reconstructions using optimal designs with

restrictions on the number of spectral responses in the coded aperture are presented.

Different cases are considered, going from a maximum number of spectral responses per

shot ζ = 3 up to ζ = 8. As the value of ζ is increased, the PSNR of the reconstructions
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Figure 5.7: Simulation results showing the reconstructed bands of the multispectral
scene are considered. In the first row of each group of images, the original bands of the
multispectral scene are shown. In the second row the reconstructed bands obtained
with the designed H are presented, and in the third row the reconstructed bands using
the traditional black and white coded aperture are depicted.
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559 nm 559 nm 559 nm

Random BinaryDesignedOriginal

Original Designed Random Binary

Figure 5.8: A zoomed version of the band at 559[nm]. On the left, the original band
of the multispectral scene is shown. In the center, the reconstructed band using the
designed H with the criteria 2 is presented. On the right, the reconstructed band using
the random black and white coded aperture.
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Shot 1 Shot 2

Shot 3 Shot 4

Figure 5.9: A representation of the spectral response of the resultant coded aperture
from the designed H used in the reconstructions of Figures 5.6, 5.7, 5.8 is presented.
For each shot, each spectral pattern in the coded aperture is shown. The representation
of the spectral response of some pixels as functions of the wavelength is depicted in
Figure 5.10.
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Figure 5.10: Spectral responses of selected pixels in the resultant coded aperture used
in the reconstructions of Figures 5.6, 5.7, 5.8 (See also Figure 5.9) as functions of the

wavelength. The units of horizontal axes are in nanometers [nm]. The term T
(`)
m,n(λk)

indicates the spectral response of the coded aperture at position (m,n) in the shot `.
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Figure 5.11: Simulation results comparing the designed codes proposed in this work
using criteria 2 versus the results obtained in [2].

with restrictions gets closer to the curve that is obtained with the designed H with

criteria 2. It is also possible to see, how the final number of spectral responses in the

resultant coded aperture is smaller than its maximum limit which is Kζ.

5.5.4 Considering the effects of the noise

The designed codes are tested against the classical random binary codes when

the measurements gm,n are contaminated with white Gaussian noise. Different values

of SNR on gm,n are considered.

In Figure 5.13 it is possible to appreciate the performance of the designed codes

with criteria 2 versus the random binary codes for several levels of noise. Clearly

the designed codes allow to get higher PSNR than the obtained with random black

and white codes, and these results are consistent for different values of SNR in the

measurements.
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Figure 5.12: Results of the reconstructions using the designed H with restrictions on
the number of spectral responses in the coded aperture. The resultant PSNR is shown
for different values of ζ ranging from ζ = 3 up to ζ = 8. The number of spectral
responses in the resultant coded aperture is indicated on each marker of the curve.
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Figure 5.13: Simulation results showing the quality of the reconstructions in the pres-
ence of noise. The designed codes allow to obtain higher quality reconstructions than
the random binary codes in the presence of noise, considering different values of the
SNR in the measurements.
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5.6 Conclusions and Future work

The coherence analysis of the sensing matrix of the CASSI system proposed in

this work, allows the design of families of matrices H which lead to reconstructions

with higher PSNR than the obtained using random black and white coded apertures

and coded apertures designs obtained with the RIP approaches. It is also shown that

the proposed method allows to obtain the designs of H in a fast and simple way.

The approach used in this work, showed that there are numerous designs of H

that are obtained as a result of the minimization of an upper bound of the coherence. It

was also shown that given those designs, it is possible to restrict the number of spectral

responses exploiting again the structure of H. This allows more flexible designs with

higher diversity of spectral responses than the proposed in [2].

The results obtained with the designed H are more robust than the configura-

tions obtained when the random black and whited coded apertures are used, if noise

in the measurements is considered. This behavior is consistent for different values of

SNR.

In future works the approach presented in this paper can be improved consid-

ering more specific knowledge on the basis Ψ.

5.7 Discretization of CASSI Model

The rect function used in equation (5.1), can be represented as

rect(x, y) =

 1 if −1/2 ≤ x ≤ 1/2, −1/2 ≤ y ≤ 1/2

0 otherwise

This function is separable and can be equivalently written as

rect(x, y) = rect(x)rect(y)

with

rect(x) =

 1 if −1/2 ≤ x ≤ 1/2

0 otherwise
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Considering this facts, it is possible to see that there are concrete cases in which the

product between rect functions is different from zero. With this, it is possible to define

the limits of the integral operators in (5.1); in particular it is considered that2

rect
( y

∆
−m′

)
rect

( y
∆
−m

)
6= 0⇐⇒ m

′
= m,

whereas rect
(
x
∆
− n

)
rect

(
x−S(λ)

∆
− n′

)
is different from zero if ∆

(
n
′
+ 1

2

)
+ S(λ) >

∆
(
n− 1

2

)
and ∆

(
n
′
+ 1

2

)
+S(λ) < ∆

(
n+ 1

2

)
. Therefore, it follows that n

′
= −

⌈
S(λ)

∆

⌉
+

n.

Then, in the x variable the integration limits are{
∆

(
n− 1

2

)
, ∆

(
n+

1

2

)
−∆

⌈
S(λ)

∆

⌉
+ S(λ)

}
.

Additionally, if ∆
(
n
′ − 1

2

)
+ S(λ) > ∆

(
n− 1

2

)
and ∆

(
n
′ − 1

2

)
+ S(λ) < ∆

(
n+ 1

2

)
, it

follows that n
′
= −

⌈
S(λ)

∆

⌉
+n+ 1. In this case for the x axes the integration limits are{

∆

(
n+

1

2

)
−∆

⌈
S(λ)

∆

⌉
+ S(λ), ∆

(
n+

1

2

)}
.

Using these facts, the measurements at pixel (m,n) can be written as

gm,n =

∫
Λ

∫ ∆(n+ 1
2)−∆dS(λ)

∆ e+S(λ)

∆(n− 1
2)

∫ ∆(m+ 1
2)

∆(m− 1
2)

(TF )
m,n−dS(λ)

∆ e(λ)dydxdλ

+

∫
Λ

∫ ∆(n+ 1
2)

−∆dS(λ)
∆ e+∆(n+ 1

2)+S(λ)

∫ ∆(m+ 1
2)

∆(m− 1
2)

(TF )
m,n−dS(λ)

∆ e+1
(λ)dydxdλ,

2 In the analysis considered in this section the variables m,m
′
, n, n

′
represent integer

numbers.
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by the mid point rule approximation3 for the spatial operators, the measurements are

given by

gm,n ≈
∫

Λ

∆2

(
−
⌈
S(λ)

∆

⌉
+
S(λ)

∆
+ 1

)
(TF )

m,n−dS(λ)
∆ e(λ)dλ

−
∫

Λ

∆2

(
−
⌈
S(λ)

∆

⌉
+
S(λ)

∆

)
(TF )

m,n−dS(λ)
∆ e+1

(λ)dλ. (5.28)

When discretization in λ axes is considered, the bands in the super resolution model

define the limit points of the intervals of integration. Using again the mid-point rule

for the approximation of the operator in λ axes, it follows that

gm,n =
L−1∑
k=0

∆λ(k)∆
2

(
−

⌈
S(λ̂k)

∆

⌉
+
S(λ̂k)

∆
+ 1

)
× (TF )

m,n−
⌈
S(λ̂k)

∆

⌉(λ̂k)

+
L−1∑
k=0

∆λ(k)∆
2

(
−

⌈
S(λ̂k)

∆

⌉
+
S(λ̂k)

∆

)
× (TF )

m,n−
⌈
S(λ̂k)

∆

⌉
+1

(λ̂k),

where λ̂k = (λk+1 + λk)/2, ∆λ(k) = λk+1 − λk. Considering the properties of
⌊
−S(λ)

∆

⌋
presented with all detail in [74] (also discussed at the end of this appendix) and the

fact that b−uc = −due, the representation of gm,n takes the form

gm,n =
L−1∑
k=0

c−1∑
u′=0[

∆λ(k)∆
2

(
−

⌈
S(λ̂k)

∆

⌉
+
S(λ̂k)

∆
+ 1

)
(TF )m,n−k+u′ (λ̂k)

+ ∆λ(k)∆
2

(
−

⌈
S(λ̂k)

∆

⌉
+
S(λ̂k)

∆

)
(TF )m,n−k+u′+1(λ̂k)

]
,

3 For any integrable function f(x) in the interval [a, b], the midpoint rule approximation

can be represented as
∫ b
a
f(x)dx ≈ (b− a)f((a+ b)/2).
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with c ∈ N. The value of c represents the number of pixels of the detector affected by

one voxel of the datacube model [82] [74]. If

αm,n,k = ∆λ(k)∆
2

(
−

⌈
S(λ̂k)

∆

⌉
+
S(λ̂k)

∆
+ 1

)
,

and

βm,n,k = −∆λ(k)∆
2

(
−

⌈
S(λ̂k)

∆

⌉
+
S(λ̂k)

∆

)
,

it follows that

gm,n =
L−1∑
k=0

c∑
u=0

(wm,n,k,u(T ◦ F)m,n−k+u,k) ,

where

wm,n,k,u =


αm,n,k If u = 0

αm,n,k + βm,n,k If 0 < u < c

βm,n,k If u = c

for c ≥ 2. When c = 1 the traditional model of the CASSI4 can be obtained, with an

abuse of notation, redefining Fm,n−k,k = αm,n,kFm,n−k,k + βm,n,kFm,n−k+1,k such that

gm,n =

min{n,L−1}∑
k=0

(T ◦ F)m,n−k,k,

For simplicity c = 1 is used for the presented analysis.

5.7.1 About the meaning of
⌊
S(λ)

∆

⌋
Taking into account the Weierstrass approximation theorem it is possible to

obtain a good representation of S(λ) as a polynomial [74]. In particular this represen-

tation can be stated as

S(λ) ≈
Q∑
r=0

αrλ
r Q ∈ N, αr ∈ R.

4 This model was used and proposed in [70] [71].
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With this representation it is possible to separate the linear and nonlinear components

of S(λ). Renaming q(λ) =
∑Q

r=2 αrλ
r and using the properties of the floor function [74],

it follows that⌊
α0

∆
+
q(λ)

∆

⌋
+

⌊
α1
λ

∆

⌋
≤

⌊
S(λ)

∆

⌋
≤

⌊
α0

∆
+
q(λ)

∆

⌋
+

⌊
α1
λ

∆

⌋
+ 1.

The term α0 is associated with the mismatching in the dispersion axes of the multi-

spectral image on the focal plane array [74], and it is considered that the nonlinearities

in S(λ) are contained in q(λ), whereas the term
⌊
α1

λ
∆

⌋
is directly related with the

changes in the dispersion axes with respect to λ. It is possible then to associate a

variable index to the term
⌊
α1

λ
∆

⌋
indicating the changes through the spectral axes and

another variable index can be associated to the term
⌊
α0

∆
+ q(λ)

∆

⌋
. This leads to the

indexes involved in the representation of gm,n.

5.8 Proof of the Theorem 48

Taking into account equations (7.11) and (7.12) it follows that

µm,n(A) ≤ |%(m,n)| ξ

with

ξ =
1

min
H,‖hi‖>0∀i

%(m,m)
1
2%(n, n)

1
2

.

Using the triangle inequality on |%(m,n)| it is possible to get

|%(m,n)| ≤
N2L∑
i=1

ϕi,i

∣∣∣R(m,n)
i,i

∣∣∣+
∑

(i,j)∈I

ϕi,j

∣∣∣R(m,n)
i,j

∣∣∣ .
Now, applying Holder’s inequality to the right-hand side of the previous equation, it

follows that

|%(m,n)| ≤

[(
N2L∑
i=1

ϕi,i

)
max
i

∣∣∣R(m,n)
i,i

∣∣∣ +

 ∑
(i,j)∈I

ϕi,j

 max
(i,j)∈I

∣∣∣R(m,n)
i,j

∣∣∣
 .

Therefore it finally follows that

µm,n(A) ≤ ξ

[(
N2L∑
i=1

ϕi,i

)
max
i

∣∣∣R(m,n)
i,i

∣∣∣ +

 ∑
(i,j)∈I

ϕi,j

 max
(i,j)∈I

∣∣∣R(m,n)
i,j

∣∣∣
 .
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5.9 Proof of the Theorem 49

The inner product between any two different vectors in the set QK \ {0} can be

written as

〈xi,xj〉
‖xi‖2 ‖xj‖2

≤

 1− 1
θ

If xi,xj ∈ ∆θ ∀θ√
θ′

θ
′′ If xi ∈ ∆θ′ ,xj ∈ ∆θ′′ , θ

′
< θ

′′
(5.29)

Because the function 1− 1/θ is monotonic increasing in θ, it follows that

〈xi,xj〉
‖xi‖2 ‖xj‖2

≤

 1− 1
θm

If xi,xj ∈ ∆θ, θ ∈ {θ1, . . . , θm}√
θ′

θ′′
If xi ∈ ∆θ′ ,xj ∈ ∆θ′′ , θ

′
< θ

′′
(5.30)

where the sequence of values {θ1, . . . , θm} satisfies θ1 < . . . < θm. Consider the term√
θi/θj with i < j. It is possible to see that√

1− 1

θj
>

√
1− r

θj
∀r = 2, . . . , θj (5.31)

then the maximum value of the term
√
θi/θj is given when θi and θj are successive

elements in the sequence {θ1, . . . , θm}. Therefore, it follows that

〈xi,xj〉
‖xi‖2 ‖xj‖2

≤


1− 1

θm
If xi,xj ∈ ∆θ, θ ∈ {θ1, . . . , θm}

max
r<`

√
θr
θ`

(5.32)

with θr, θ` successive elements in the sequence θ1, . . . , θm, and therefore from this it is

obtained that

µ ([x1, . . . ,xn]) ≤ max

{
max
r<`

√
θr
θ`
, 1− 1

θm

}

5.10 Proof of theorem 50

Let us consider u ∈ N such that 2 ≤ u ≤ 2K − 1, then the minimum coherence

for this number of vectors in QK \ {0} is calculated as

µmin(u) = min
µ̃
{fµ̃,s(u)}
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as indicated in theorem (50). Let us assume by contradiction that there exists a set

of u vectors in QK \ {0}, with coherence equal to γ < µmin(u), i.e. there exists u ∈ N

vectors x1,x2, . . . ,xu in QK \ {0} such that

µ([x1,x2, . . . ,xu]) = γ

The value of γ is in the finite set of the possible values of the coherence for any set of

vectors taken from QK \ {0}. Therefore, γ can be written as

γ = max

{
max
`

√
θ`
θ`+1

, 1− 1

θm

}

for a collection of classes {∆θi}i=1,...,m. In particular, taking into account Theorem 49,

we have that for any set of different vectors y1, . . . ,yv ∈ {∆θi}i=1,...,m

µ ([y1, . . . ,yv]) ≤ max

{
max
`

√
θ`
θ`+1

, 1− 1

θm

}
.

When v =
∑m

i=1 |∆θi |, equality is achieved and the maximum number of vectors that

can have this coherence value of γ is v. Therefore u ≤ v, which implies that ∃fγ,v(u) <

∞. This is a contradiction because µmin(u) = minµ̃ {fµ̃,s(u)}.

5.11 Proof of theorem 51

In this proof, two cases are considered separately. In the first case, the number

of columns nr of the submatrices Ĥr is such that nr ≤ K. In the second case, nr > K.

It is important to take into account that the constraint ‖ĥi‖1 = 1 in (5.25) and

the fact that the entries of H belong to the set {0, 1}, indicate that the vectors ĥi

must be taken from the set E = {e1, . . . , eK}, where ei is the vector with 1 in the ith

component and 0 in the remaining components.

1. When nr ≤ K: In this case the columns of Ĥr can be selected as any subset of

the set E, and as a consequence of this ϕi,j = 0 for any choice of these subsets.

Therefore

Ĥr = π {U}
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where U is the matrix whose columns are selected as any subset of the set E.

This is a particular case of (5.26).

2. When nr > K: Let u be the number of columns of the matrix Ĥr. This number u

is going to be represented as u = j+mK where m ∈ N and 1 ≤ j ≤ K. If `i > 1

is the number of times that the element i of the set E appears in the choosing

of the columns of the matrix Ĥr, then the number of ones in the term ϕi,j (with

j > i) in (5.25) as a consequence of this choice, is given by
(
`i
2

)
= `i(`i−1)

2
. This

expression can be also used to describe the number of ones in ϕi,j for the case

`i = 1.

Taking into account this, the objective function in (5.25) can be rewritten as

G(`1, . . . , `K) =
∑K

i=1 φ(`i) where φ(x) = x(x − 1)/2 and then, the original

problem can be rewritten as

minimize
(`1,...,`K)

K∑
i=1

φ(`i)

subject to
K∑
i=1

`i = u, `i ∈ N

(5.33)

The solution of the problem (5.25) presented in the equation (5.26) corresponds

in the rewritten version of the problem (5.33) to the point

`O = (`1, . . . , `K) = π (m,m, . . . ,m, ,m+ 1,m+ 1 . . . ,m+ 1)

where there are j components with value m and K − j components with value

m+ 1.

It is going to be shown that the solution to (5.25), which is the same solution of

(5.33) is given by `O.

In order to get a better knowledge of the objective function we are dealing with

in the specific domain (constraint), it is possible to use Lagrange multipliers
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optimization, relaxing the domain of the `i to be `i ∈ R+. Then, the Lagrangian

can be written as

L =
1

2

K∑
i=1

`i(`i − 1) + λ

[
K∑
i=1

`i − u

]
.

Calculating the gradient and equating to zero all the components, it is obtained

that

`i −
1

2
+ λ = 0 ∀i = 1, . . . , K;

K∑
i=1

`i = u,

which gives the optimal point ˜̀ = (u/K, u/K, . . . , u/K). This solution would

be acceptable for (5.33) always that u = rK, where r ∈ N, however that is not

always the case.

Now, the function G restricted on the set of points S = {(`1, . . . , `K)|
∑K

i=1 `i =

u} is given by

G|S =
1

2

[
K∑
i=1

`2
i − u

]
(5.34)

which is a convex function on S. Then, the solution to (5.33) can be found solving

the problem

minimize
v

∥∥∥( u
K
,
u

K
, . . . ,

u

K

)
− v

∥∥∥2

2

subject to
K∑
i=1

vi = u, vi ∈ N
(5.35)

Because vi ∈ N, the solution vector of (5.35) must be obtained such that its

components are obtained either as vi = bu/Kc or vi = du/Ke. It is clear that

in general5 not all the components can be obtained using just one type of op-

erator because the condition
∑K

i=1 vi = u could be violated. Therefore, some of

this terms are approximated using the floor function and the others the ceiling

function, case in which some components of v are given by
⌊
j+mK
K

⌋
= m while

the others by
⌈
j+mK
K

⌉
= m + 1. Now, let q the number of components obtained

5 The only situation in which both operators can be used for all the components is
when u/K is an integer.
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using the floor function operator for the rounding process and p the number of

components obtained using the ceiling function operator, then it must happen

that

qm+ p(m+ 1) = u = j +mK, p, q ∈ N.

Because, p+ q = K then j = p, therefore when u = j +mK with 1 ≤ j ≤ K the

optimal solution for (5.35) which is the same solution for (5.33), is given by

π(m, . . . ,m,m+ 1, . . . ,m+ 1) = `O (5.36)

where there are j components with value m+1 and K−j components with value

m.

5.12 Auxiliary Algorithms

5.12.1 Obtaining the Lr and the dimension of the matrices Ĥr (Algorithm

12)

With the purpose of determining the sets Lr in a systematic way, it is convenient

to consider a matrix H obtained when all the entries of the coded aperture have a value

of 1. This matrix is denoted by H. The set Lr = supp(H(i, :)) indicates the indexes

of the columns of the matrix H in the support of the row i. Jr represents the row

indexes of the support of the columns of H indicated by the set Lr in the first shot.

The information contained in Jr is used to assemble the values of Ĥr in H.
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Algorithm 12 Obtaining the sets Lr

Input: H

Output: Lr, Jr

Initialisation : r = 0

1: for i = 1 to N(N + L− 1) do

2: r = r + 1;

3: Lr = supp(H(i, :));

4: Jr = i;

5: end for

6: return Lr, Jr

5.12.2 Assembling the values of Ĥr into H (Algorithm 13)

The designed values of Ĥr can be assembled in H using Algorithm 13.

Algorithm 13 Assembling the values of Ĥr into H

Input: Ir, Jr and Ĥr

Output: H
1: for r = 1 to R do
2: for k = 1 to K do
3: H(Jr + (k − 1)N(N + L− 1);Lr) = Ĥr(k, :);
4: end for
5: end for
6: return H
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5.12.3 Obtaining the values of the coded aperture from H (Algorithm 14)

Algorithm 14 Obtaining the values of the coded aperture from H

Input: H

Output: T(k) for k = 1, . . . , K

1: for k = 1 to K do

2: for ` = 1 to N2 do

3: T
(k)
lex(`, :) = [H(`+(k−1)N(N +L−1), `),H(`+N +(k−1)N(N +L−1), `+

N2), . . . ,H(`+ (L− 1)N + (k − 1)N(N + L− 1), `+ (L− 1)N2)];

4: end for

5: end for

6: for ` = 1 to N do

7: T(k)(:, `, :) = T
(k)
lex((`− 1)N + 1 : `N, :);

8: end for

9: return T(k) for k = 1, . . . , K

The term

T
(k)
lex(`, :) = [H(`+ (k − 1)N(N + L− 1), `),

H(`+N + (k − 1)N(N + L− 1), `+N2), . . .

,H(`+ (L− 1)N + (k − 1)N(N + L− 1), `+ (L− 1)N2)]

indicates that the spectral response of the pixel ` (using lexicographic ordering) in

the colored coded aperture is saved in the `−row of T
(k)
lex. The assignment T(k)(:, `, :

) = T
(k)
lex((` − 1)N + 1 : `N, :) indicates that the spectral responses in the rows from

(`− 1)N + 1 up to `N of T
(k)
lex are located along the second dimension in the position

` on the 3D-dimensional array T(k). Then, the spectral values are contained through

the third dimension of T(k).

5.12.4 Locating the values of T(k) in H (Algorithm 15)

The term diag(T(k)(:, :, `)) in line 3 of Algorithm 9, represents a diagonal matrix

where the diagonal is the vectorized version of T(k)(:, :, `).
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Algorithm 15 Locating the values of T(k) in H

Input: T(k) for k = 1, . . . , K
Output: H

Initialisation : H = [];
1: for k = 1 to K do
2: for ` = 1 to L do
3: H(k)(1 + (`− 1)N : N2 + (`− 1)N, 1 + (`− 1)N2 : `N2) = diag(T(k)(:, :, `));
4: end for
5:

H =

[
H

H(k)

]
6: end for
7: return H
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Chapter 6

CODED APERTURE DESIGN FOR COMPRESSIVE X-RAY
TOMOSYNTHESIS VIA COHERENCE ANALYSIS

6.1 Introduction

X-ray tomosynthesis imaging plays an important role in biomedical imaging ap-

plications like mammography and angiography [83]. As in most X-ray computational

tomography imaging systems, radiation exposure can significantly increase the risk of

adverse radiation effects, producing damages in body cells [84]. To reduce the dam-

age that radiation can cause, different approaches have been proposed by lowering the

number of angles at which projections are taken [85]. However, the consequent reduc-

tion of measurements leads to an ill-posed problem, highly sensitive to modeling and

measurement errors. Moreover, the reconstructions based on filtered backprojection

(FBP) with ill-posed systems of equations produces artifacts and noise which makes

the reconstructions useless for medical diagnosis [86] [87].

In order to acquire measurements in parallel, coded aperture X-ray tomosyn-

thesis was introduced in [88]. The substantial differentiation in this approach is the

use of a coded aperture between the sources of radiation and the objects. This coded

aperture codes the radiation signal that impinges on the object allowing a differentia-

tion between the projections on the detector. As a consequence, multiple projections

can be captured at the same time instead of capturing sequential measurements as

it is done in conventional systems [88]. The projections used in [88], however, used

totally random coded apertures. No coded aperture optimization was considered. The

optimized design of coded apertures for the compressive X-ray tomosynthesis system

was considered first in [3], the results obtained in [3] were superior to the ones obtained

with totally random patterns. However, the computational complexity required for the
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Figure 6.1: (a)The matrix P determines the mapping of the X-ray sources to the
detector. (b) Coded aperture compressive X-ray tomosynthesis. The radiation of each
source is modulated by the coded aperture.

computation of the optimized codes in [3] is high and the objective function used for

that purpose is only indirectly linked with the parameters that are commonly used in

compressed sensing. In this work, the coded aperture design is addressed considering

the analysis of the coherence of the sensing matrix. It exploits the highly structured

sensing matrix that represents the X-ray tomosynthesis architecture. The idea is to

minimize the inner products between columns of the sensing matrix considering a gen-

eral basis representation of the signal of interest. It is shown that, families of codes can

be obtained which provide better results than the ones obtained by the use of totally

random patterns, and the results can be also comparable to the ones obtained in [3].

The reduction in the computation of the solution is dramatic, because the solution is

obtained in seconds whereas in [3] the time is in the order of hours.

6.2 Forward Projection Model

Let us consider an X-ray source that is located at position ~s and radiates an

object in direction θ̂, the continuous X-ray model is given by: y(~s, θ̂) =
∫∞

0
f(~s+xθ̂)dx,

where the function f corresponds to the three-dimensional object of interest. This

imaging model is known as the X-ray transform [3] [85].
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Because only a discrete number of radon measurements can be acquired, the

continuous model is discretized. Let F ∈ RQ1×Q2×Q3 be the three dimensional array

that represents the object. The value of Q1 indicates the number of slices of dimensions

Q2 × Q3. The detector considered is of dimension N1 × N2 and is placed under the

considered object as indicated in Fig 6.1(a).

The projection measurements are represented by the vector y. Then, the tra-

ditional forward model in tomosynthesis can be written as y = P~F where ~F is a

vectorized version of F, and the matrix P is the system matrix obtained by specifying

the hardware settings. The entries of P correspond to the mapping of the cone-beam

energy radiating from the X-ray source onto the detector [3]. As it is shown in Fig.

6.1(a), each entry of P represents the portion of the volume of a given voxel that is

irradiated by the X-ray associated with one detector element. In particular, each row

of P indicates the information gathered by one detector and each column corresponds

to the information gathered from a single voxel [3].

In compressive X-ray tomosynthesis the measurements are multiplexed from

multiple sources onto the detector. Coded apertures are located between the sources

and the object to modulate the radiation of each source producing a coded projection

onto the detector plane [88]. The size of the elements of the coded apertures is fixed

to obtain a one to one correspondence with the detector elements [3]. Let T
(k)
i be the

coded aperture related with the source i in the shot k, then the measurements y can

be represented as

y = CP~F (6.1)

where the matrix C is given by

C =


C

(1)
1 C

(1)
2 . . .C

(1)
S

C
(2)
1 C

(2)
2 . . .C

(2)
S

...

C
(K)
1 C

(K)
2 . . .C

(K)
S

 (6.2)
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[X,Y]: [3095 3297]
Index: 0.5823
[R,G,B]: [0.5922 0.5922 0.5922]

Figure 6.2: A graphical representation of the sensing matrix is depicted when K = 1
shots and S sources are considered. The matrix C is composed by the diagonalized
version of the coded apertures related to each source.

where C
(k)
i = diag

(
T

(k)
i

)
. The problem (6.1) is ill conditioned and cannot be solved

using traditional approaches. Compressed sensing allows the solution of this problem

considering an sparse representation of ~F in one basis Ψ. The quality of the recon-

structed solution is directly related with the coherence of the matrix CPΨ [75] [77].

Let us consider the representation of ~F in the basis Ψ as ~F = Ψf , where f is the

sparse coefficients vector representation. Then, the problem (6.1) can be equivalently

written as y = Af where A = CPΨ is the sensing matrix. The solution of this problem

via compressed sensing can be obtained as the solution of

f̂ = min
f

1

2
‖y −Af‖2

2 + τ‖f‖1 (6.3)

where τ is a regularization parameter.

6.3 Analysis of the sensing matrix and Coded aperture optimization

A measure of the quality of the solutions of (6.3) in compressed sensing is given

by the coherence of the sensing matrix, which is the maximum absolute value for the

normalized inner products between any two columns of the sensing matrix [75] [77].

The value of this parameter is desired to be as small as possible, to guaranty unique
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Figure 6.3: A graphical representation of the matrix C is depicted, showing the effects
of the condition

∑K
k=1 C

(k)
i (u) = 1 when the number of shots is K = 3 and the number

of sources is S = 2.

recovery and low error in the numerical solution of the problem as the quality of the

solution is directly related to the coherence [4].

In [89] an approach based on the analysis of the coherence was developed to

exploit the structure of the sensing matrix in compressive spectral imaging, in order

to increase the quality of the reconstructions. The approach proposed in [89] shows

how an upper bound of the coherence can be minimized, analyzing the structure of the

inner products of the transfer function matrix of the system. It is shown, that when

the set of measurements is given by y = HΨf , it is possible to achieve a minimum

for an upper bound of the coherence when the inner products for the columns of the

matrix H are minimized. In this work, this approach is used to consider the computed

tomography problem such that a designed sensing matrix is obtained minimizing the

inner products in the matrix H = CP, considering arbitrary values on the entries of

P.
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The inner product of the columns m and n of the matrix CP is given by

ϕm,n =
N2∑
u=1

K∑
k=1

S∑
i=1

S∑
j=1

C
(k)
i (u)C

(k)
j (u)Q(i,j)

u,u (m,n) (6.4)

where Q
(i,j)
u,u (m,n) = P

(i)
u (m)P

(j)
u (n) with P

(i)
u (m) representing the mth−component of

the row u of the projection submatrix i related with the source i. Additionally the

convention C
(k)
i (u) ≡ C

(k)
i (u, u) is used to simplify the notation.

Equation (6.4) can be equivalently written as

ϕm,n =
N2∑
u=1

S∑
i=1

(
K∑
k=1

C
(k)
i (u)

)
Q(i,i)
u,u (m,n) + · · ·

+
N2∑
u=1

∑
i 6=j

(
K∑
k=1

C
(k)
i (u)C

(k)
j (u)

)
Q(i,j)
u,u (m,n) (6.5)

Taking into account that Q
(i,j)
u,u (m,n) ≥ 0, it follows that the minimum of ϕm,n is

achieved when the terms
∑K

k=1 C
(k)
i (u) and

∑K
k=1 C

(k)
i (u)C

(k)
j (u) are minimized. Ad-

ditionally, using the Cauchy-Schwartz inequality the following relation is obtained

K∑
k=1

C
(k)
i (u)C

(k)
j (u) ≤

√√√√ K∑
k=1

C
(k)
i (u)

√√√√ K∑
k=1

C
(k)
j (u). (6.6)

From this relation it is possible to see that the minimization of
∑K

k=1 C
(k)
i (u) and∑K

k=1 C
(k)
i (u)C

(k)
j (u) is achieved by the minimization of

∑K
k=1 C

(k)
i (u). Because the

entries of the coded apertures are represented by binary nonnegative entries, this min-

imization is achieved when1

K∑
k=1

C
(k)
i (u) = 1. (6.7)

Then, the family of solutions for the coded apertures that satisfy this equality can

be written as
[
C

(1)
i (u),C

(2)
i (u), . . . ,C

(K)
i (u)

]T
= π{diag(1K×1)}1 ∀u, where π repre-

sents the random permutation operator of the columns, and the subindex 1 the first

column of the matrix after applying π.

1 The zero solution is not considered because using it would imply that there would
be a voxel that is not sensed in any of the shots used in the measurement process
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Figure 6.4: (a) Configuration for X-ray tomosynthesis simulation. The 9 sources are
placed uniformly over a 128× 128 phantom with 16 slices. For the simulation scenario
that was studied here a = 128, b = 128, c = 675, d = 60, e = 150

6.4 Simulations

In order to have a precise comparison with the approach presented in [3], the

same simulation scenario is considered. Then, to simulate the compressive X-ray to-

mosynthesis the configuration of a flat 2D detector plane composed by N1 × N2 =

150 × 150 elements, S = 9 cone-beam X-ray sources placed uniformly in a 3 × 3 ge-

ometry and an object of interest F of dimensions Q2 ×Q3 ×Q1 = 128× 128× 16 are

used. Each pixel in the coded aperture corresponds to a particular detector element as

detailed in Fig. 6.4(a). Therefore, the coded apertures placed in front of each of the

sources are also composed by 150× 150 elements.
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Figure 6.5: Left: PSNR of the 13th slice in the reconstructed datacube. Right: The
mean PSNR of the reconstructed datacube. K = 3 shots are considered. The results
obtained in [3] are depicted in blue color whereas the new designs in red color.

The ASTRA Tomography Toolbox (All Scale Tomographic Reconstruction Antwerp)

[90] is used to obtain the system matrix P as well as the projection measurements for

each of the X-ray cone beam sources. The codes developed according to the ideas

presented in Section III are generated and compared with the totally random codes

and the codes generated in [3]. In the last case the algorithm developed in [3] is used

to obtain a set of codes for K = 1, 2, 3, 4, 5 shots. The GPSR algorithm [81] is used for

the reconstructions, doing an experimental tunning of the regularization parameter.

6.4.1 Results

Figure 6.5 plots the PSNR of all the reconstructions obtained. It is possible

to appreciate that for a number of shots from K = 2 up to K = 5 the PSNR of the

reconstructions with the designed codes is superior. Also appealing is that the time

necessary to generate those codes is in the order of seconds. Figure 6.5 also shows

that the time necessary to obtain the designed codes according to [3] for K = 3 shots

is 34 hours, whereas the designs obtained with the presented approach is 4 seconds.

Additionally in Figure 6.6 the slices 4th and 13th are showed when random codes are

used against the results obtained with the new designs. In the zoomed regions it is clear

that with the new designs more details in the reconstructed object can be obtained.
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Original 13th slice
Reconstructed  with 
                   random

Reconstructed  with 
            new designs

Reconstructed  with 
            new designs

Reconstructed  with 
                   randomOriginal 4th slice

Figure 6.6: The slices 4 and 13 of the reconstructed datacube are depicted, comparing
the results of using random codes versus the new design approach.
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PSNR on 13th-slice
K New approach Approach of [3] Random
1 26 27.34 24.83
2 27.70 27.6 25.92
3 27.82 27.76 26.14
4 27.94 27.70 26.48
5 27.98 27.76 27.57

Mean PSNR
1 25.24 26.86 26.21
2 27.85 27.40 27.14
3 28.16 27.98 27.49
4 28.50 27.68 27.71
5 28.62 27.87 27.85

Table 6.1: The PSNR on the 13th slice is indicated for the different codes used and
also the mean PSNR is indicated.

K 1 2 3 4 5
Random 0.21ms 0.3ms 0.22ms 0.23ms 0.39ms

New Design 18.65ms 22.66ms 27.39ms 34.50ms 38.41ms
Designed 1 87.54s 1395s 1411s 3725s 4601s

Table 6.2: Time spent in the generation of the coded apertures for each approach and
different values of K when the scene considered is of size 32x32x4.

In Table 6.1 the values of the PSNR obtained in the simulations and used in Fig. 6.5

are showed. In Figure 6.7 a sample of the coded apertures obtained by the use of the

new approach can be appreciated. Additionally the time spent in the generation of the

coded apertures in each approach for different number of shots is presented in Table

6.2 for an object of size 32x32x4.

6.5 Conclusions

A new strategy for the design of coded apertures in compressed X-ray tomosyn-

thesis has been presented. The proposed approach relies on the analysis of the coher-

ence of the sensing matrix and allows to obtain a family of designs that has a closed
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Figure 6.7: A 64 × 64 window of the designed coded aperture with the new design
approach is depicted for the source number 5 when K = 3 shots are considered.

form solution. The results of the simulations, show that the designs obtained with the

presented approach are better than the results obtained with totally random patterns

and with the designs generated in [3]. Additionally, the time necessary to generate the

designed codes in the presented approach is in the order of seconds while in [3] is in

the order of hours.
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Chapter 7

SPECTRAL SUPER-RESOLUTION IN COLORED CODED
APERTURE SPECTRAL IMAGING

7.1 Introduction

Significant interest has emerged in compressed spectral imaging [69] and optical

architectures like the coded aperture snapshot spectral imaging (CASSI) [70] [71]. The

CASSI system, illustrated in Fig. 7.1, encodes the spectral-spatial information of a

hyperspectral scene into 2D compressed projections. The projections are attained by

spatially coding the optical field using a coded aperture. The coded optical signal is

then dispersed by a prism and integrated by a focal plane array (FPA) with wide spec-

tral response. The spectral scene is then reconstructed by solving a `1−minimization

problem [69] [71]. The spectral resolution in CASSI is limited mainly by the pitch size

of the detector and the spectral dispersion of the prism (Fig. 7.2(a)).

In the traditional CASSI, the coded aperture is a binary valued mask which

blocks or allows the light in a pixel to pass. A modified version of CASSI known as

colored CASSI (Fig. 7.1) has been introduced recently. In the colored CASSI, the

coded aperture is replaced by a colored mask in which each pixel has a band pass

spectral response [72] [2]. The use of this colored mask has been shown to improve the

quality of the reconstructions [69] [72].

The colored coded aperture is a patterned multilayer optical coating, which

physically allows the pass of specific bandwidths in different spatial locations [73] [72].

The basic idea is to have a compact two dimensional array of pixels, each one with a

different spectral response. In the fabrication process of these devices many technical

challenges need to be addressed such as preserving the spatial resolution that could be

affected in the coating process [73].
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Figure 7.1: Basic Components of the colored CASSI system. The spatial-spectral scene
f(x, y, λ) is modulated by a coded aperture T (x, y, λ), after that the modulated field is
dispersed by a prism with dispersion curve S(λ) and finally the whole field is integrated
in a detector array. Notice that in the traditional CASSI T (x, y, λ) ∈ {0, 1} ∀λ.

This work shows that colored coded apertures in CASSI not only improve the

quality of image reconstruction but, in addition, they allow the reconstruction of a

larger number of bands, which represents an improvement in the spectral resolution.

Figure 7.2(b) illustrates how colored coded apertures allow the sensing of smaller re-

gions of the spectrum that cannot be sensed with the traditional CASSI architecture.

This property is proved in two steps. First, a model of the colored CASSI is used to

write the reconstruction problem as an inverse problem. In the second step, a matrix

formulation of the system is used to calculate the coherence of the sensing matrix, which

is used to estimate the value of the super resolution factor. This relation provides an

estimate of the number of additional resolvable bands based on the wavelengths pro-

vided by the colored coded aperture. The estimate is valid even when non ideal filters

are used in the colored mask. Numerical simulations confirm these facts and recon-

structions with real data shows the accuracy of this approach in a real implementation

of the colored CASSI.

7.2 CASSI Modeling

The basic components in CASSI are shown in Fig.7.1. The coding of the

scene f(x, y, λ) is realized by a coded aperture T (x, y, λ) at the image plane, where
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Figure 7.2: (a): The spectral resolution in the traditional CASSI is determined by
the dispersion of the prism, its spectral range and the detector pixel pitch. (b): The
spectral resolution in the colored CASSI is determined by the spectral response of the
optical filters in the colored coded aperture, by the dispersion of the prism, its spectral
range, and the detector pixel pitch.
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(x, y) are the spatial coordinates and λ represents the wavelength components. When

block-unblock coded apertures are used in the CASSI system, T (x, y, λ) is such that

T (x, y, λ) ∈ {0, 1} ∀λ ∈ Λ, where Λ is the spectral range of f(x, y, λ) [69] [71]. If

T (x, y, λ) is non constant with respect to λ, there is a representation of the CASSI

with a color coded aperture. Once the spectral signal f(x, y, λ) has been modu-

lated by T (x, y, λ), the optical field is dispersed by the prism and q(x, y, λ) is ob-

tained as q(x, y, λ) = f (x+ S(λ), y, λ)T (x+ S(λ), y, λ) , where S(λ) is the disper-

sion curve of the prism. The compressed measurements g(x, y) in the Focal Plane

Array (FPA) are realized by the integration of q(x, y, λ) across the spectral axes as

g(x, y) =
∫

Λ
q(x, y, λ)dλ.

7.2.1 Discretization of the Model

Consider the following terminology that is used hereafter.

Definition 8. Let L
′

be the number of bands that can be reconstructed by the tradi-

tional CASSI (block-unblock coded aperture). These are referred as the basic bands. Its

number is given by the number of discrete detector pixels subtended by a pixel of the

scene that is dispersed throughout all its spectral components.

Definition 9. Let L be the number of bands that can be reconstructed using the colored

CASSI, the super-resolution factor d is defined as d = L/L
′
.

Since the FPA is a finite array of pixel sensors, there is just a finite number of

spatial points that can be sensed. To obtain a discretization, the integral operators

and the coded aperture are approximated [71].

Let Ω ∈ R2 be the spatial domain of the FPA, which can be written as Ω =

∪m,n∈[N ]Ωm,n, where Ωm,n is defined as

Ωm,n = {(x, y)|∆(n− 1/2) ≤ x ≤ ∆(n+ 1/2) ,

∆(m− 1/2) ≤ y ≤ ∆(m+ 1/2)} ,
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and [N ] = {1, 2, . . . N}. The representation of the FPA is then an array of size N ×N

conformed by the disjoint union of N2 smaller domains of size ∆ × ∆, and the pixel

(m,n) is associated with the corresponding domain Ωm,n. The value ∆ represents the

size of each pixel in the FPA. Let gm,n be the value of the measurements at the (m,n)

pixel, then

gm,n =

∫∫
Ωm,n

g(x, y)rect
( x

∆
− n, y

∆
−m

)
dydx, (7.1)

represents the contribution of g(x, y) to each of the disjoint domains, g(x, y) is the opti-

cal field at the image plane summed over the spectral dimension. Now, the continuous

data cube f(x, y, λ) is modulated by T (x, y, λ) such that

f(x, y, λ)T (x, y, λ) ≈

M−1∑
m=0

N−1∑
n=0

(TF )m,n(λ)rect
( x

∆
− n, y

∆
−m

)
, (7.2)

where (TF )m,n(λ) = Tm,n(λ)Fm,n(λ) and Tm,n(λ) is the spectral response of the colored

mask at pixel (m,n), and where Fm,n(λ) is defined by Fm,n(λ) =
∫∫

Ωm,n

f(x, y, λ)dxdy. A

calculation of the limits involved in the spatial integral operators and its approximation

using mid point rules is realized in the Appendix 7.8, which shows that the value of

the measurements at pixel (m,n) can be written as

gm,n =∫
Λ

∆2

(⌊
S(λ)

∆

⌋
− S(λ)

∆
+ 1

)
(TF )

m,n+bS(λ)
∆ c(λ)dλ

−
∫

Λ

∆2

(⌊
S(λ)

∆

⌋
− S(λ)

∆

)
(TF )

m,n+bS(λ)
∆ c+1

(λ)dλ, (7.3)

where b·c is the floor function operator. Appendix 7.8 also shows the discretization

in λ, where the limits of the new bands in the super resolution model are used as the

limit points of the intervals and the mid-point rule is used again for the approximation
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of the integral operator in Λ, such that the value of the measurements at pixel (m,n)

can be written as

gm,n =
L−1∑
k=0

(
wm,n,k(TF)m,n+b kdc,k

)
, (7.4)

where wm,n,k,u = αm,n,k+βm,n,k for u = 1, . . . , c−2, wm,n,k,0 = αm,n,k and wm,n,k,c−1 =

βm,n,k. The terms αm,n,k,βm,n,k are weights whose values are

αm,n,k = ∆λ(k)∆
2

(⌊
S(λ̂k)

∆

⌋
− S(λ̂k)

∆
+ 1

)
,

βm,n,k = −∆λ(k)∆
2

(⌊
S(λ̂k)

∆

⌋
− S(λ̂k)

∆

)
,

Appendix 7.8 provides the definition and calculation of this expressions. The Tm,n,k

and Fm,n,k terms are the (m,n, k) elements of the 3-dimensional arrays T and F,

respectively, whose first two dimensions indicate the spatial location and the third

one indicates the spectral position. The vector Tm,n,· is the discretized version of the

spectral response of the color coded aperture at pixel (m,n). Equation (7.4) can be

represented as the matrix equation ~g = H~F, where ~g is the vectorized representation

of g. The matrix H is of dimension KN
(
N +

⌊
L
d

⌉
− 1
)
× N2L (see Fig. 7.4) with

K being the number of shots and ~F is the vectorized form of F. Figure 7.4 show the

structure of H for the colored CASSI with a super resolution factor d = 2.

In order to use the sparsity properties of the signal ~F in a basis ψ, it is possible

to write the problem as

~g = Hψf , (7.5)

where ~F = ψf and f is a column vector whose entries are the coefficients representation

in the basis. The signal recovery of f can be obtained as the solution of the nonlinear

optimization problem [75] [71]

f̂ = argmin
z

1

2
‖Az− ~g‖2

2 + τ ‖z‖1 , (7.6)

where A = Hψ is the sensing matrix of the problem and τ a regularization parameter.
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Figure 7.3: (a) A pixel of the scene is filtered by one band pass filter for which the cutoff
frequencies coincide exactly with the boundaries of the basic bands. (b) A pixel of the
scene is filtered by one band pass filter for which the cutoff frequencies do not coincide
with the boundaries of the basic bands. In this case super resolution is achieved.
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7.3 Super-Resolution Analysis

In this section, an estimation of the value of the super resolution factor d is

presented. Two cases are separately analyzed. In the first case, the optical filters in

the colored coded aperture have short transition bands and they are also selected as

complimentary on the spectral range of interest, i.e. the supports in their spectral re-

sponses are disjoint from one filter to another. In the second case, the filters have broad

transition bands and are not necessarily complementary in their spectral response. For

the first case, a simple analysis is used to obtain the number of attainable new bands,

whereas in the second case it is necessary to define a criteria to evaluate the quality

of the reconstructions [91]. The second case will be presented in the next section after

showing the expression of the coherence of the sensing matrix.

7.3.1 Optical filters with ideal transition bands

The prism in CASSI is used to separate the spectral information into bands

[69] [71]. If optical filters are added to separate the spectrum into smaller sections,

there is a spectral resolution increase. There are, however, different cases that depend

on the number of bands and the number of filters in the colored mask. For instance,

consider Fig. 7.3, in which two cases of optical filtering are considered. In the first

case (Fig. 7.3 (a)) the cutoff frequencies of the band pass filter coincide exactly with

the boundaries of the basic bands and therefore there is no additional separation of

the spectral information. In the second case (Fig. 7.3 (b)), the cutoff frequencies of

the filter do not match the boundaries of the basic bands and thus there is separation

of the spectral information as a combined effect of the prism and the filter.

7.3.1.1 When the cutoff frequencies of the filters do not match the bound-

aries of the basic bands

Let B =
{
B0, B1, . . . , BL′−1

}
represent the set of basic bands that can be re-

covered with the classical CASSI system, and σ the number of optical filters used in

163



the colored coded aperture. Then, the new number of bands that can be reconstructed

|B̂| is given by

|B̂| = |B|+ σ − 1, (7.7)

where B̂ = {b0, b1, . . . , bL−1} is the set of new bands.

7.3.1.2 When the cutoff frequencies of the filters match the boundaries of

the basic bands

In the case all the boundaries of the basic bands meet with the boundaries of

the bandpass of some of the filters, the new number of attainable bands is directly

related to the number of filter as

|B̂| =

 |B| If σ ≤ |B|

σ If σ > |B|.
(7.8)

7.4 Coherence of the Sensing Matrix

In compressed sensing, two effective measures to predict the quality of signal

reconstruction are the restricted isometry property (RIP), and the coherence [75] [76].

The former is in general difficult to calculate for large size matrices [75]. On the other

hand, the coherence offers a measure of the ill-posedness of the system, and it must

be as small as possible to guarantee uniqueness of the solution [77]. Additionally, the

coherence can be related with the RIP [76] [77] [92] and, therefore, it is possible to get

an analysis of the problem based on the coherence which implies an specific behavior of

the RIP constant [75] [92]. The use of the coherence also allows to exploit the structure

of the CASSI and colored CASSI, and to quantify the effects of super-resolution factor

d as function of the spectral response of the pixels in the coded aperture.

7.4.1 Matrix Formulation

The structure of the sensing matrix H for the super-resolution model can be

seen in Fig. 7.4. The elements that lie on the indicated diagonals represent the spectral

response of the coded aperture in each band. In Fig. 7.4 the structure of H indicates

164



that there is no shifting in the transitions Band 1-Band 2 and Band 3-Band 4. The

reason for this, is that in those transitions the separation of the spectral information

is due to the filters in the coded aperture and not the prism. The qualitative behavior

that can be appreciated in Fig. 7.4 can be represented in precise mathematical terms.

The m-th position in the j-th column of the H matrix can be written as

hj(m) =



(
~T

(s)

` ~w`

)
m−N(N+L−1)s−Nb `dc

If j = m+ `N2 −N
⌊
`
d

⌋
. . .

. . .−N(N + L− 1)s

0 otherwise,

(7.9)

with s =
⌊

m
N(N+L−1)

⌋
, ` =

⌊
j
N2

⌋
, and ~T

(s)

` represents the vectorized version of T (·, ·, `)

in the shot s, which is the coded aperture in band ` whereas ~w` is the vectorized version

of w(·, ·, `).

7.4.2 Analysis of the Coherence

Let H = [h1 h2 . . .hN2L], where each hi is the ith column vector of H, of

dimension KN
(
N +

⌊
L
d

⌉
− 1
)
× 1. The basis matrix Ψ can be written as Ψ =[

ψT
1 , ψT

2 , · · · ,ψT
N2L

]T
, where each ψi is of dimension 1 × N2L. Then, the sens-

ing matrix can be represented as A = HΨ =
∑N2L

i=1 hiψi, and the element of A in the

(m,n) position can be written as A(m,n) =
∑N2L

i=1 hi(m)ψi(n).

The inner product between the columns m and n of A is

〈A(·,m),A(·, n)〉 =
N2L∑
i,j

〈hi,hj〉ψi(m)ψj(n).

Then, the coherence of the sensing matrix A can be written as

µ (A) = max
m,n
m6=n

∣∣∣∣〈 A(·,m)

‖A(·,m)‖
,

A(·, n)

‖A(·, n)‖

〉∣∣∣∣
= max

m,n
m6=n

µmn (A) ,

165



S
h
o
t 

1
S
h
o
t 

2
Band 1 Band 3Band 2 Band 4

Band 1 Band 2 Band 3 Band 4

(a)

(b)

Figure 7.4: a) The structure of the H matrix of the colored CASSI when a super
resolution factor of d = 2 is considered. b) The spectral response one pixel in the
coded aperture is detailed and how its values are distributed in the H matrix.
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where

µmn (A) =

∣∣∣∣∣N2L∑
i,j

ϕi,jR
(m,n)
i,j

∣∣∣∣∣(
N2L∑
i,j

ϕi,jR
(m,m)
i,j

) 1
2
(
N2L∑
i,j

ϕi,jR
(n,n)
i,j

) 1
2

, (7.10)

and R
(m,n)
i,j = ψi(m)ψ∗j(n), ϕi,j = 〈hi,hj〉.

Taking into account the structure of the matrix H presented previously, it is

possible to see that there is a set I contained in the set of all possible inner products

of the columns of the H matrix, that can be written as I = {(i, j)| i 6= j, ϕi,j 6= 0} ,

which is the set of all possible inner products that are different from zero. Considering

I, equation (7.10) can be written as

µmn (A) =
|% (m,n)|

% (m,m)
1
2 % (n, n)

1
2

, (7.11)

where

% (m,n) =
N2L∑
i=1

ϕi,iR
(m,n)
i,i +

∑
(i,j)∈I

ϕi,jR
(m,n)
i,j . (7.12)

The coherence is then completely determined by the random quantities ϕi,j and ϕi,i.

In the following subsections a detailed description and analysis of these two quantities

is presented. The entries of the coded aperture of the traditional CASSI are modeled

using Bernoulli random variables whereas the entries of the color coded aperture are

represented by a uniform random distribution over the number of filters σ in the colored

coded aperture.

7.4.2.1 Block-Unblock Coded Aperture with d = 1

Consider the coded aperture modeled as an array of i.i.d random variables.

Then, let ϕi,j =
∑K

r=1 XrYr (i, j) ∈ I, where Xr, Yr are the i.i.d random variables

that represents the value of the pixels involved in the inner product of the columns i and

j. Notice that Xr, Yr ∈ {0, 1} are Bernoulli random variables with parameter p. There-

fore, the probability mass function of XrYr is given by fXrYr(n) = p2n (1− p2)
1−n

n =
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0, 1 r = 1, . . . , K since the sequence of products XrYr are i.i.d Bernoulli random vari-

ables with parameter p2. Using Chebyshev’s inequality, it follows that

P (|ϕi,j − E {ϕi,j}| ≥ ε) ≤ 1

ε2

K∑
i=1

Var (XrYr) (i, j) ∈ I,

which implies

P (|ϕi,j − (Kp) p| ≥ ε) ≤ Kp

ε2
p(1− p2) (i, j) ∈ I. (7.13)

In the particular case of p = 1/2, the following expression is obtained

P
(∣∣∣∣ϕi,j − (K2

)
1

2

∣∣∣∣ ≥ ε

)
≤
(
K

2

)
3

8ε2
(i, j) ∈ I.

This inequality describes the behavior of ϕi,j in terms of its mean in K shots, and

indicates the degree of concentration of the inner product of two columns of the matrix

H. For the norm of the columns of H, the expression is

P (|ϕi,i − (Kp)| ≥ ε) ≤ Kp

ε2
(1− p) ∀i. (7.14)

In the particular case p = 1/2, the expression is

P
(∣∣∣∣ϕi,i − (K2

)∣∣∣∣ ≥ ε

)
≤
(
K

2

)
1

2ε2
. (7.15)

7.4.2.2 Color Coded Aperture with d = 1

Considering first short transition bands (ideal filters). In this case, the value

of ϕi,j is given by a Binomial distribution with parameters (K, 1/σ2), if a uniform

distribution1 is used to choose the filters. Using again the Chebyshev’s inequality

P
(∣∣∣∣ϕi,j − (Kσ

)
1

σ

∣∣∣∣ ≥ ε

)
≤
(
K

σ

)
1

σε2

(
1− 1

σ2

)
, (7.16)

1 The purpose of choosing a uniform distribution for the selection of the filters is to
make a fair comparison with the traditional CASSI in which the entries of the coded
aperture are modeled as two point uniform distribution (i.e. Bernoulli with parameter
p = 1/2)
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and for the norm

P
(∣∣∣∣ϕi,i − (Kσ

)∣∣∣∣ ≥ ε

)
≤
(
K

σ

)
1

ε2

(
1− 1

σ

)
. (7.17)

When wide transition band filters are used, the spectral response of one filter

Tr(λ) can take L
′

different values in the interval [0, 1]. These values are given for a

particular filter Tr(λ) as indicated in Fig. 7.4, in which one pixel has the sequence of

values Tr(λ1), Tr(λ2), . . . , Tr(λL′ ) in each band, respectively. Then, there is a random

variable that represents the entries of the hi column of H and take its values on the

set {T1(λk), T2(λk), . . . Tσ(λk)} , k = 1, . . . , L
′
, where k represents the band that is

associated with the hi column. Therefore, the distribution function for XrYr is given

by

fXrYr(n) =
σ∑

u,v=1

1

σ2
δ
(
n− Tu

(
λb i

N2 c
)
Tv

(
λb j

N2 c
))

,

where Xr and Yr represent the random variables involved in the inner product of the

vectors hi and hj, and δ(n) is the delta Kronecker function. Then, again using the

Chebyshev’s inequality it is possible to get

P
(∣∣∣∣ϕi,j − (Kσ

)
q11

σ

∣∣∣∣ ≥ ε

)
≤
(
K

σ

)
1

σε2

(
q22 −

q2
11

σ2

)
, (7.18)

where

q11 =
σ∑

u,v=1

Tu

(
λb i

N2 c
)
Tv

(
λb j

N2 c
)
, (7.19)

q22 =
σ∑

u,v=1

Tu

(
λb i

N2 c
)2

Tv

(
λb j

N2 c
)2

. (7.20)

For the norm of each column the expression is

P
(∣∣∣∣ϕi,i − (Kσ

)
q2

∣∣∣∣ ≥ ε

)
≤
(
K

σ

)
1

ε2

(
q4 −

q2
2

σ

)
, (7.21)

where

q2 =
σ∑
u=1

Tu

(
λb i

N2 c
)2

, (7.22)

q4 =
σ∑
u=1

Tu

(
λb i

N2 c
)4

. (7.23)

169



7.4.2.3 Color Coded Aperture with d > 1

In this case, two situations in which ϕi,j could be different from zero are consid-

ered. In the first situation, the inner products between columns are related to different

basic bands, therefore, they can be represented with the equations (7.18), (7.19) and

(7.20). In the second situation, the inner products for columns inside the basic bands

are considered.

If σ ideal filters with σ > L
′
are used, and their cutoff frequencies match exactly

with the boundaries of the basic bands, it is possible to use equations defined for the

analysis with d = 1 and ideal filters. If real filters are used, the inner product between

two columns in the same basic band is described by the probability mass function2

σ∑
u=1

1

σ
δ

(
n− Tu

(
λb i

N2 c
)
Tu

(
λb i

N2 c ± `
Λb i

N2 c
d

))
,

where Λb i
N2 c represents the support of the

⌊
i
N2

⌋
basic band and ` = 1, . . . , d − 1.

Therefore, taking into account the Chebyshev’s inequality it is possible to get

P
(∣∣∣∣ϕi,j − (Kσ

)
q̂1

∣∣∣∣ ≥ ε

)
≤
(
K

σ

)
1

ε2

(
q̂2 −

q̂2
1

σ

)
, (7.24)

where

q̂1 =
σ∑
u=1

Tu

(
λb i

N2 c
)
Tu

(
λb i

N2 c ± `
Λb i

dN2 c
d

)
, (7.25)

and

q̂2 =
σ∑
u=1

Tu

(
λb i

N2 c
)2

Tu

(
λb i

N2 c ± `
Λb i

dN2 c
d

)2

. (7.26)

The concentration equations for the norm of the columns are still the same as

when d = 1.

2 This inner product for columns inside the basic bands is the most relevant because
it the represents the worst case scenario in terms of the possible values of the inner
product between any two columns of the H matrix
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7.4.3 Quality of reconstructions

Given that the coherence µ(A) is a random variable when the elements of the

coded aperture are chosen in a random way, it is possible to use concentration inequal-

ities in equations (7.11) and (7.12) to compare the coherence of CASSI and colored

CASSI. Since the probability space of µ(A) is contained in R+, it follows that [93]

P (µ(A) > ε) ≤ E(µ(A))

ε
. (7.27)

Then, given a fixed value of ε, it is possible to compare two configurations of the CASSI

using the equation (7.27), in order to get a measure of the performance of the system

[80] [78]. In this work, it is taken into account the fact that µ(A) = maxm,n
m 6=n

µmn(A),

where µmn(A) is specified as before. Thus, is possible to establish a comparison be-

tween two configurations of the CASSI represented by matrices A and As through a

comparison between µmn(A) and µmn(As). This comparison is done considering the

variables µmn(A)2 and µmn(As)
2, and thus, it implies a direct comparison between the

values of the coherence for the sensing matrix of both architectures. In this way, it is

possible to know which value of the coherence parameter is concentrated around an

small value with higher probability.

To this end, the relationship between the coherence for the traditional CASSI

and the colored CASSI is determined first.

Theorem 52. Let A be the sensing matrix in the traditional CASSI system and Aσ

be the sensing matrix in the colored CASSI, considering reconstructions of scenes of

dimensions N ×N × L′. There exists a constant ξ ∈ R+ such that

P
{
µmn(A)2 ≥ ε

}
≤ E {%(m,n)2}

ε
ξ (7.28)

P
{
µmn(Aσ)2 ≥ ε

}
≤ E {%σ(m,n)2}

ε
ξ (7.29)

∀m 6= n.

Proof: See Appendix 7.10.
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This result establishes a method to compare the quality of the reconstructions

considering the concentration of the coherence as a consequence of the concentration of

µmn(A)2. In order to make this comparison, it is necessary to introduce the following

definitions

Definition 10. Let K be the number of shots in a configuration of the CASSI system

for the reconstruction of scenes of dimensions N×N×L′, and let t be the transmittance

per shot. The V factor is defined as V = Kt, where the t is calculated as

t =

 N2∑
i=1

∫
Λ

Ti(λ)dλ

/ΛN2, (7.30)

and Ti(λ) is the spectral response of the ithpixel.

Definition 11. Let K be the number of shots used in a CASSI system for the recon-

struction of scenes of dimensions N × N × L′. The compression factor is defined as

C = K/L
′
.

Considering these definitions it is possible to establish the following result.

Theorem 53. Let ϕi,j be as specified in equation (7.18) for the sensing matrix in the

CASSI system and consider the reconstruction of a scene of dimensions N × N × L′

and factor V. Let ϕ
(σ)
i,j be as specified in equation (7.18) for the sensing matrix of the

colored CASSI and consider the reconstruction of scenes of dimensions N×N×L′ and

factor V. If E
(
ϕ

(σ)
i,j

)
≤ E (ϕi,j) and Var

(
ϕ

(σ)
i,j

)
≤ Var (ϕi,j) , then

E
{
%σ(m,n)2

}
≤ E

{
%(m,n)2

}
∀m 6= n. (7.31)

Proof: See Appendix 7.11.

It is important to remark that if the factor V is equal for both systems, this

indicates that the same number of voxels are sensed in both architectures.

Taking into account this result, it is possible to establish the relation of the

colored CASSI and the CASSI in the following corollary.
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Corollary 54. Let A be the sensing matrix for the CASSI system, and consider the

reconstruction of a scene of dimensions N ×N × L′. Let Aσ be the sensing matrix of

the colored CASSI and take the same V factor for both systems. If σ > 2 then

E
{
%σ(m,n)2

}
≤ E

{
%(m,n)2

}
. (7.32)

Proof: See Appendix 7.11.

This corollary and Theorem 52 imply that the quality of the reconstruction in

the colored CASSI is better than in the traditional CASSI, when the same V factor is

considered for both systems.

7.4.4 On the super-resolution factor d

As shown in the previous theorems, the functions ϕi,j and ϕi,i, allow to establish

a way to compare the performance of two configurations of the CASSI in terms of the

coherence of the sensing matrix. This fact is used to compare the performance of the

colored CASSI when super resolution is required, with the traditional CASSI with no

super resolution comparing the functions ϕi,j and ϕi,i of these two configurations. In

this manner, the estimate of the maximum value of d is obtained, according to the

number and characteristics of the spectral responses of the filters involved in the coded

aperture.

In [94], it was proved how the resolution of filter array based spectrometers,

could be recalculated when DSP techniques are used to process the collected data.

The approach used in [94], show that even in the case of non ideal spectral filter

responses, it is possible to get more resolution. The way the authors of that work

estimate a super-resolution factor, is by brute force search and do not exploit the

properties of the transfer function matrix of the system. In this Section, an estimate

of the super resolution factor d is proposed analyzing the behavior of the functions

ϕi,j and ϕi,i, always making a comparison with the traditional CASSI architecture

considering t = 1/2, which represents a transmittance of 50% in the black and white

coded aperture.
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Before doing this comparison, it is necessary to establish a relationship between

the parameters C and V for CASSI and colored CASSI with super resolution factor d.

The parameter V gives the proportion of the set of voxels sensed with the total number

of shots used in the measurement process. Therefore, it is natural to consider the same

value of this factor for both architectures, which implies Kσtσ = Kt, where K,Kσ

represents the number of shots and t, tσ the transmittance per shot in each architecture,

respectively. On the other hand, the compression factor is also considered as the same

for both architectures, which implies Kσ/dL = K/L and therefore Kσ = dK.

The value of d is estimated as follows.

Definition 12. If d represents the super resolution factor described in equations (7.4)

and (7.6), the value of d when real optical filters are used in the color coded aperture

is estimated as follows: d ∈ N in the model (7.4) is the highest value such that

d ≤ min
{
d̂1, d̂2

}
(7.33)

with

d̂1 =
σ

4q̂1

, d̂2 =
3σ

16
(
q̂2 − q̂2

1

σ

) (7.34)

where the values of q̂1(d, σ), q̂2(d, σ) are specified by equations (7.25) and (7.26).

The definition of d in equation (7.33) indicates that it is possible to get a new

number of bands L = dL
′
, always that the concentration of the random quantities

ϕi,j and ϕi,i that determine the condition of the sensing matrix is tighter than in the

traditional CASSI with no super resolution. The idea is to make a comparison of the

expected value of this quantities taking into account the variance.

Equation (7.33) indicates how large d could be in model (7.4), with a solution of

equation (7.6) with better quality results than in the traditional CASSI with no super

resolution.
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7.4.5 Impact of measurement noise on d

Previous analysis did not consider the effect of the noise on the attained super-

resolution. Ideally, increasing σ with the appropriate set of filters, and the appropriate

C and V would imply an increased spectral resolution. However, in real implementations

with noise, distortions and other non ideal characteristics of the hardware are always

present. In this situation, increasing σ could imply a reduction on the bandwidth of the

filters used, which reduces the light throughput and the Signal to Noise Ratio (SNR)

in the captured measurements.

The effect of the noise in super-resolution can introduce a natural limitation on

the super-resolution factor as discussed next.

Let e be the noise added to the model in (7.5) which is considered as independent

of the sensing matrix A. The measurements are given by

~g = Af + e. (7.35)

For any reconstruction algorithm, represented by the operator ∆, it follows that [4] [75]

‖∆ (Af + e)− f‖2 ≤ CA‖e‖2, (7.36)

for all f ∈ Σ2k, where Σ2k is the set of all 2k−sparse signals and CA ∈ R+. The

constant CA can be related with the RIP constant as CA = 1/
√

1− δ2k(A) [4] [75].

Let A be the sensing matrix of the black and white CASSI, and Aσ be the sensing

matrix of the colored CASSI. A limit of the performance with Aσ in the presence of e is

given by the comparison of the upper bounds CA‖e‖2 and CAσ‖e‖2. Super-resolution

is then achieved whenever CAσ ≤ CA, which can be equivalently formulated as√
1− δ2k(A)√
1− δ2k(Aσ)

≤ 1. (7.37)

When the matrix Aσ has columns with equal norm, (7.37) can be written as3√
1− δ2k(A)√

α (1− (2k − 1)µ(Aσ))
≤ 1, (7.38)

3 The fact that in a unit norm column matrix, the coherence and the RIP are related
is used [4], [75]
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where α is the value of the norm of the columns of Aσ. Notice that Aσ = αÃσ where

Ãσ is a normalized column version of Aσ.

In (7.38), it is possible to see that two sensing matrices Ãσ and Aσ with equal

coherence µ(Ãσ) = µ(Aσ), lead to different results in the presence of noise, as (7.38)

is satisfied in different ways for each case. Additionally, when α < 1 there is one point

α0 at which inequality (7.38) is not satisfied for all α < α0.

7.4.5.1 About the light throughput

The total energy related with an specific filter in the coded aperture can be

estimated approximately as | supp(T (λ))|tσ, where | supp(T (λ))| is the support of the

filter and tσ the gain (maximum amplitude) of the filter. Therefore, an scaling of a

sensing matrix Aσ can be considered as an scaling on the product | supp(T (λ))|tσ.

In this way it is possible to see that a reduction in the support of the filters can be

interpreted as an scaling of the sensing matrix with a factor α < 1. This means that

when the number of filters is increased such that the support of each filter is reduced,

the presence of noise establishes one point α0 at which equation (7.38) is not satisfied

for all α < α0. This also indicates that if a given σ is required, the filters selected

should have a support large enough to deal with the presence of noise.

In Figure 7.5 it is possible to see two possible choices for the set of filters in a

colored coded aperture where σ = 4. In Figure 7.5(a) the filters used allow the pass

of 50% of the energy in the spectral range of interest Λ, whereas in Figure 7.5(b) the

filters selected are complementary on Λ and allow the pass of just 25% of the energy

in Λ.

It is also important to remark that an scaling of the sensing matrix Aσ, as an

scaling on the product | supp(T (λ))|tσ can be also considered as an scaling on tσ which

means a change in the gain of the filters. This implies that two different configurations

of the CASSI with filters with identical support but with different gains could lead

to the same values of µ(A) but the quality of their reconstructions in the presence of

noise is different.
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Figure 7.5: Two different choices of the set of filters σ in the case that σ = 4. (a) The
set of filters cover the spectral range of interest Λ, each filter allows the transmission
of the same amount of energy which corresponds to 50% of the energy contained in
Λ. (b) The set of filters cover the spectral range of interest Λ, each filter allows the
transmission of the same amount of energy which corresponds to 25% of the energy
contained in Λ.

In the next section, simulation results showing the effect on the quality of the

reconstructions when complementary filters are used in presence of noise, with respect

to non complementary filters are presented.

7.5 Simulations

7.5.1 Parameters of the simulations

7.5.1.1 Multispectral scene

A datacube of dimensions 128× 128× 10d is generated for d = 2, 3. The RGB

representation of this target can be appreciated in the Figure 7.6 (a). This target is

artificially crated in order to have spectral responses with peaks and fast transitions,

this is done with the purpose to appreciate the performance of the colored CASSI with

respect to the classical CASSI in the super-resolution problem.

7.5.1.2 Spectral responses of the filters

In order to represent the spectral responses of the filters, combinations of But-

terworth transfer functions with order 3 are used. This is done with the purpose of

modeling realistic optical filters. The set of filters selected in each simulation covers
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the spectral range of interest [450nm−689nm]. The number of these filters is changed

in order to appreciate its effect on the simulations.

7.5.1.3 Prism Curve

The prism curve used for simulations is a realistic prism curve adapted from [82],

in order to emulate as close as possible the real nonlinear behavior of the prism.

7.5.1.4 Reconstruction algorithm and basis used in simulations

In order to represent the multispectral scene in terms of a basis, a DCT basis

ΨDCT is selected for the spectral domain, whereas a wavelet ΨW for the spatial domain,

such that the whole basis is represented as ΨDCT ⊗ΨW . The GPSR algorithm [81] is

used for the reconstructions. The regularization parameter τ is chosen in an empirical

way, so reconstructions are performed for different values of τ and the final result is

selected as the one in which higher PSNR is obtained.

7.5.1.5 The measure of the quality

In order to measure the quality of the reconstructions, the Peak Signal to Noise

Ratio (PSNR) is used. The comparison is made between the reconstructed hyperspec-

tral scene and the ground truth, which is given by the original datacube generated for

the simulations. Additionally, sample points of the image are selected in order to check

the quality of the reconstructions in spectral.

7.5.2 Reconstructions

In order to illustrate the performance of the super-resolution, the case in which

d = 2 is considered. In Figures 7.6 and 7.7 the results of simulations are presented.

In Figure 7.6(a) an RGB representation of the target used in simulations is de-

picted, indicating four points p1, p2, p3, p4 for which the spectral response is considered.

Figure 7.6(b) shows the reconstructed spectrum at points p1, p2, p3, p4, considering the

ground truth (blue line), the colored CASSI (red line), and the classical CASSI (black

line). Because the CASSI can reconstruct just 10 bands, interpolation is used in order
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Figure 7.6: Results of the simulations considering a super resolution factor d = 2. (a)
First row: the original target as an RGB representation of the hyperspectral scene.
Second row: The RGB representation of the hyperspectral scene reconstructed by
the colored CASSI. Third row: The RGB representation of the hyperspectral scene
reconstructed by the traditional CASSI. (b) Comparison of the reconstructed spectral
responses at points p1, p2, p3, p4 indicated in the target, using the colored CASSI and
the traditional CASSI.
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Figure 7.7: Results of the simulations considering a super resolution factor d = 2.
The number of shots used for the traditional CASSI is 5 whereas the number of shots
used for the colored CASSI is 10, such that both architectures have the same C = 0.5.
The first row of each group depict the original bands (ground truth) of the target.
The second row of each group depict the reconstructed bands using the colored CASSI
(CCASSI) considering d = 2. The third row of each group depict the bands obtained
with the traditional CASSI reconstructing 10 bands and interpolating in order to get
a new set of bands. 180



K\σ 2 4 6 8
4 1 0.8571 0.7599 0.6470
6 1 0.8517 0.7517 0.6460
8 1 0.8529 0.7073 0.6044
10 1 0.8366 0.6664 0.5779

d = 2
4 1 0.9997 0.7902 0.7109
6 1 0.9996 0.7532 0.6580
8 1 0.9996 0.7089 0.6060
10 1 0.9995 0.6810 0.6079

d = 3

Table 7.1: The values of µ(A) related with the Figure 7.8. K and σ indicate the
number of shots and the number filters used respectively.

to display 20 bands for the comparison with the colored CASSI with super-resolution.

It is clear from the pictures that the results obtained with the colored CASSI are closer

to the ground truth than the results obtained by the use of the basic CASSI.

In Figure 7.7 it is possible to see all the reconstructed bands using the colored

CASSI and the basic CASSI in comparison with the ground truth. The performance of

the colored CASSI with super resolution is consistently better with respect the basic

CASSI. At the 503[nm] band for instance the colored CASSI reconstructs the band

accurately. In the reconstructed band of the basic CASSI, false information is present,

which is not present in the ground truth. This same behavior occurs in the results in

bands such as 551[nm], 563[nm], 575[nm], 587[nm], 611[nm], 635[nm].

7.5.3 Simulations: Mean PSNR vs σ

In Figure 7.8(a) it is possible to see how the PSNR of the reconstructions changes

according to the values of σ. In this simulations no noise is added to the measurements.

It is clear that under this context, the quality of reconstructions improve with higher

values of σ with the appropriate factors V and C. Figure 7.8(b) shows the spectral

response at p1 on the target of the reconstructions, as d changes from d = 2 to d = 3

when σ = 6. Here it is possible to see how as d is increased with a fixed value of σ the
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Figure 7.8: Simulation results showing the performance of the colored CASSI with
super-resolution for different values of σ and d. (a) The PSNR of the reconstructions
as a function of σ for d = 2, 3 and different number of shots. (b) The spectral response
at point p1 on the target is reconstructed (blue line) and compared with the original
(black line) for different values of d, while the number of filters is σ = 6. (c) A
comparison of the reconstructions obtained with the colored CASSI (red line), the
traditional CASSI (black line) using the single shot modality and the real spectral
response (blue line) at p1.
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quality of the reconstructions is decreased. This is consistent with the nature of the

problem, because increasing d rises the ill posedness of the problem as the number of

bands required is higher, given a fixed value of σ. The values of the coherence of the

sensing matrix µ(A) are presented in Table 7.1. It can be seen how for a given number

of shots K, the values of the coherence decrease as σ is increased.

In Figure 7.9 the effect of additive Gaussian noise in the measurements is con-

sidered using the model defined by equations (7.5) and (7.35). In Figure 7.9 (a) the

filters used in the coded aperture are chosen as complementary filters (see Figure 7.5)

that cover the entire spectral range of interest, and the noise measurements are such

that the SNR takes the values SNR = 10[db], 20[db]. It is clear from the simulations,

that in the presence of noise and with the use of complementary filters, as σ is increased

the light throughput is reduced and consequently the results are affected. On the other

hand in Figure 7.9(b) noisy measurements are considered but the filters used in the

colored coded aperture are not complementary, and they cover the spectral range of

interest as well. It is possible to see that in this second case, the reconstruction results

are more robust in the presence of noise when σ is increased than in the case when

complementary filters are used.

7.5.4 Estimates of the super-resolution factor d

The data presented in the Table 7.2, shows the numerical values involved in the terms

d̂1, d̂2. In order to check the estimate of the super-resolution factor d in equation (7.33),

these values were calculated for different number of filters and three different cases of

partition of the basic bands. When the basic bands are broken in two parts, the super-

resolution factor is achieved when 7 or more filters are used, and higher values of d are

not possible with less than 8 filters.
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Figure 7.9: PSNR of the reconstruction results for different values of σ when the
measurements are polluted with additive Gaussian noise. (a) The filters used in the
colored coded aperture are selected in a complementary way (see Figure 7.5). (b) The
filters used in the coded aperture are not complementary but cover the whole spectral
range of interest.

(·)\σ 2 3 4 5 6 7 8

d̂1 0.54 0.83 1.27 1.40 1.73 2.03 2.65

d̂2 1.86 1.67 6.05 2.10 2.89 4.40 8.96
Partitions in 2 parts

d\σ 2 3 4 5 6 7 8

d̂1 0.55 0.74 1.05 1.33 1.60 2.06 2.31

d̂2 0.96 1.18 1.23 1.61 1.85 2.27 2.7
Partitions in 3 parts

d\σ 2 3 4 5 6 7 8

d̂1 0.50 0.73 1.06 1.22 1.69 1.74 1.96

d̂2 1.02 1.06 1.34 1.40 1.96 1.98 2.14
Partition in 4 parts

Table 7.2: The value of d̂1, d̂2
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Figure 7.10: Picture of the testbed used in the implementation of the colored CASSI.
In the picture it is also indicated how the colored coded aperture are implemented for
one example of a color coded aperture of 2 filters (See also Fig. 7.11)

7.6 Experimental Results

Experimental results were obtained considering the super resolution model pro-

posed. The testbed, shown in Fig. 7.10, is used to implement the colored CASSI

system and to verify the simulation results. It is composed of a light source, the tar-

get, the objective lens, the Digital micro-mirror device (DMD) which plays the role of

the coded aperture, imaging lenses, a bandpass filter in which the filters of the colored

coded aperture are contained, the dispersive element and the CCD camera.

The target is illuminated with the source light and the reflected light on the tar-

get is filtered by the bandpass filter (25mm, VIS 400-694nm CWL Mounted Diameter

Filter Kit of Edmund optics), and then redirected trough the objective lenses on the

DMD. Then, the light reflected on the DMD (Texas instruments DMD) is focused into

the prism (Amici prism) imaging plane that disperses the light onto the CCD camera

(Stingray F-033C CCD camera), which integrates all information in a 2-dimensional

array of data.

The system is characterized in order to reduce non uniform conditions and exter-

nal noise. For that purpose, the light source intensity distribution and the CCD spectral
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= +

Figure 7.11: Details on the implementation of the colored coded aperture. (a) The
capture of one shot with a colored coded aperture is the sum of the captures using
coded apertures with one single spectral response. (b) In order to get the capture with
each of the patterns with one single spectral response a filter is located as indicated in
the picture
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Figure 7.12: Results considering a super-resolution factor of d = 2 and using σ = 6 filters. (a):
The spectral responses of two different points are reconstructed. The original spectrum (blue line)
measured with an spectrometer is compared with the reconstructed spectrum using the colored CASSI
(red line), and the reconstructed spectrum using the traditional CASSI (black line). The number of
shots used with the traditional CASSI is 5 whereas for the colored CASSI is 10, such that the same
value of C = 0.5 is considered in both cases. It can be appreciated that the curve obtained with
the Colored CASSI with super resolution is closer to the real spectrum than the curve obtained with
the basic CASSI. (b) The reconstructed bands using the traditional CASSI and the colored CASSI
are presented. The first row of each group depict the reconstructed bands using the colored CASSI
(CCASSI). The second row of each group depict the reconstructed bands using the traditional CASSI.
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sensitivity are characterized analyzing their spectral responses using a USB2000+VIS-

NIR Ocean Optics spectrometer with a known spectral response. These non-uniform

spectral response curves are taken into account to quantify the whole spectral responses

in the coded aperture. The non flat spectral nature of the light and the spectral re-

sponse of the camera, causes a final effect in the spectral response of each color TT (λ).

It is represented as TT (λ) = Tlight(λ)Tcamera(λ)T (λ), where Tlight(λ) is the spectral re-

sponse of the light, Tcamera(λ) is the spectral response of the camera and T (λ) the

spectral response of the filter. The CCD exposure time is 100 microseconds. The

prism is characterized in order to take into account its non-linear response curve, and

the resultant bandwidth of each spectral basic band. In order to get an estimate of the

values for the weights wi,j,k, the procedure presented in [82] is followed, in which some

measurement shots are captured using monochromatic light, allowing the estimation

of the effect of a single voxel impinging onto the CCD.

7.6.1 Implementation of the colored coded aperture

Figure 7.11 shows the physical implementation of one colored coded aperture. It

is based on the decomposition of a measurement shot in the sum of different captures,

each of them involving just one of the spectral responses of the colored coded aperture,

and complementary patterns on the DMD. In Figure 7.10 it is indicated that, there

is a fixed position in the testbed in which the color filters involved in the colored

coded aperture are located. Additionally, a set of complementary binary patterns are

associated (one pattern per filter) with the captures according to the desired filter.

The mathematical description of this situation, taking into account that if T(k) is

the colored coded aperture in shot k, can be represented as T(k) =
∑σ

i=1 Ti(λ)Ti,

where Ti(λ) represents the spectral response of the optical filter i in the colored coded

aperture, and the Ti are binary patterns such that
∑σ

i Ti = 1n×n. Therefore, for each

shot, σ captures are done putting the DMD with the binary pattern defined by each

Ti and locating the Ti(λ) in the bandpass position respectively.
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7.6.2 Experimental results for d = 2

In order to show the experimental results of super-resolution, a factor d = 2 is

considered. According to the characteristics of the filters, the number of filters required

considering equation (7.33) is 6. For the reconstructions the GPSR algorithm [81] was

used. The value of the scalar parameter for regularization was chosen in an empiric

way. The wavelet transform was used as a basis for the spatial domain, and the

discrete cosine transform (DCT) was used for the spectral domain. In Figure 7.12, it is

possible to appreciate the reconstruction of the spectrum for some specific points in the

target, considering 20 bands. This reconstruction is compared with the interpolation

of a 10 bands CASSI. The expected coherence calculated for the sensing matrix using

the basic CASSI is µ(A) = 0.8366 whereas the coherence for the colored CASSI is

µ(Aσ) = 0.6564.

In Figure 7.12(a) the real target used in the experiments is presented with the

spectral responses of some specific points on the target, and an RGB representation

of the reconstructions as well. It is possible to appreciate how the reconstructions

obtained with the colored CASSI with super-resolution (red line) match better with

the real spectral response (blue line), than the reconstructions obtained by interpola-

tion with the traditional CASSI (black line). The RGB mapping of the reconstructed

multispectral images shows also that the results with the colored CASSI with super-

resolution are closer to the real target, than the reconstructed scene using basic CASSI

with interpolation.

Figure 7.12(b) shows the reconstructed bands in both configurations of the

CASSI. As can be seen, the bands reconstructed with the colored CASSI show much

more clear details than the reconstructed bands using basic CASSI with interpolation.

Consider for instance the band at 508[nm], where the details on the letters on the

target are much more clear when the colored CASSI is used that when basic CASSI is

used.
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7.7 Conclusions and Future work

This chapter demonstrates that color coded apertures in CASSI systems can be

used to obtain higher spectral resolution than that achieved by CASSI systems using

binary coded apertures. The increased resolution is related to the number of different

colored filters used in the coded apertures, and on their spectral responses. An estimate

of the super-resolution factor d is obtained using the coherence of the sensing matrix.

This, in turn, provide concentration inequalities on the projection matrices that involve

the characteristics of the set of filters used.

The presence of noise in the measurements is analyzed. It is shown that filters

with complementary spectral responses, in multi-shot measurements, are more affected

by noise than colored coded apertures whose filters’ spectral responses are not comple-

mentary in the spectral range of interest. It is shown that two sensing matrices having

the same set of filters, but with different gains, do not guarantee the same performance.

Thus, the spectral shape, the central wavelengths, and their gain are all important in

the design of the sensing matrix.

The distribution of the filters on the colored coded aperture was defined as

uniformly distributed, in order to have a fair comparison with the traditional CASSI

which uses Bernoulli random variables on the entries of the black and white coded

aperture. A significant improvements can be achieved, however, when the filters are

selected according to some optimal pattern design. This strategy is left for future work.

7.8 Calculation of the integration limits

Taking into account that the rect function is separable, it is possible to determine

when the product between the rect functions involved is different from zero, in order

to define the limits of the integral operators. Because

rect
( y

∆
−m′

)
rect

( y
∆
−m

)
6= 0⇐⇒ m

′
= m,

and the product rect
(
x
∆
− n

)
rect

(
x+S(λ)

∆
− n′

)
is different from zero when ∆

(
n
′
+ 1

2

)
−

S(λ) > ∆
(
n− 1

2

)
and ∆

(
n
′
+ 1

2

)
−S(λ) < ∆

(
n+ 1

2

)
, it follows that n

′
=
⌊
S(λ)

∆

⌋
+n.
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Then, the integration limits in the x variable are{
∆

(
n− 1

2

)
, ∆

(
n+

1

2

)
+ ∆

⌊
S(λ)

∆

⌋
− S(λ)

}
.

On the other hand, if ∆
(
n
′ − 1

2

)
− S(λ) > ∆

(
n− 1

2

)
and ∆

(
n
′ − 1

2

)
− S(λ) <

∆
(
n+ 1

2

)
, it follows that n

′
=
⌊
S(λ)

∆

⌋
+ n + 1. Then, the integration limits in the

x variable are {
∆

(
n+

1

2

)
+ ∆

⌊
S(λ)

∆

⌋
− S(λ), ∆

(
n+

1

2

)}
.

Putting all this together, it follows that the value of the measurements at pixel

(m,n) is

gm,n =∫
Λ

∫ ∆(n+ 1
2)+∆

⌊
S(λ)

∆

⌋
−S(λ)

∆(n− 1
2)

∫ ∆(m+ 1
2)

∆(m− 1
2)

(TF )
m,n+

⌊
S(λ)

∆

⌋(λ)dydxdλ

+

∫
Λ

∫ ∆(n+ 1
2)

∆
⌊
S(λ)

∆

⌋
+∆(n+ 1

2)−S(λ)

∫ ∆(m+ 1
2)

∆(m− 1
2)

(TF )
m,n+

⌊
S(λ)

∆

⌋
+1

(λ)dydxdλ,

and using the mid point rule approximation for the spatial integral operators, the

measurements can be written as

gm,n =∫
Λ

∆2

(⌊
S(λ)

∆

⌋
− S(λ)

∆
+ 1

)
(TF )

m,n+bS(λ)
∆ c(λ)dλ

−
∫

Λ

∆2

(⌊
S(λ)

∆

⌋
− S(λ)

∆

)
(TF )

m,n+bS(λ)
∆ c+1

(λ)dλ. (7.39)

For the discretization in λ, the limits of the new bands in the super resolution model

are used as the limit points of the intervals, and the mid-point rule is used again for

the approximation of the integral operator in the λ variable as

gm,n =

L−1∑
k=0

∆λ(k)∆
2

(⌊
S(λ̂k)

∆

⌋
− S(λ̂k)

∆
+ 1

)
(TF )

m,n+

⌊
S(λ̂k)

∆

⌋(λ̂k)

−
L−1∑
k=0

∆λ(k)∆
2

(⌊
S(λ̂k)

∆

⌋
− S(λ̂k)

∆

)
(TF )

m,n+

⌊
S(λ̂k)

∆

⌋
+1

(λ̂k),
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where λ̂k = (λk+1 + λk)/2, ∆λ(k) = λk+1 − λk. Taking into account the properties of

the term
⌊
S(λ)

∆

⌋
, which are explained in Appendix 7.9, it is possible to write equation

(7.3) as

gm,n =
L−1∑
k=0

c−1∑
u′=0[

∆λ(k)∆
2

(⌊
S(λ̂k)

∆

⌋
− S(λ̂k)

∆
+ 1

)
(TF )m,n+b kdc+u′ (λ̂k)

− ∆λ(k)∆
2

(⌊
S(λ̂k)

∆

⌋
− S(λ̂k)

∆

)
(TF )m,n+b kdc+u′+1(λ̂k)

]
,

where c ∈ N. Here c represents the number of pixels of the detector affected by one

voxel of the datacube model [82]. Letting

αm,n,k = ∆λ(k)∆
2

(⌊
S(λ̂k)

∆

⌋
− S(λ̂k)

∆
+ 1

)
,

and

βm,n,k = −∆λ(k)∆
2

(⌊
S(λ̂k)

∆

⌋
− S(λ̂k)

∆

)
,

it follows that

gm,n =
L−1∑
k=0

c−1∑
u=0

(
wm,n,k,u(TF)m,n+b kdc+u,k

)
,

where

wm,n,k,u =


αm,n,k If u = 0

αm,n,k + βm,n,k If u = 1, . . . , c− 2

βm,n,k If u = c− 1

For the sake of simplicity c = 1 is used for other analysis, therefore the index u would

not be longer necessary.

7.9 The meaning of
⌊
S(λ)

∆

⌋
According to the Weierstrass approximation theorem [95], if S(λ) is continuous

in Λ, then ∀ε > 0 exists a polynomial p(λ) such that |p(λ)− S(λ)| < ε ∀λ ∈ Λ.

Letting ε > 0 be an infinitesimal fixed value, it is possible to write S(λ) in an ap-

proximate way as S(λ) ≈
∑Q

r=0 αrλ
r Q ∈ N, αr ∈ R. This representation allows the
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separation of the linear and nonlinear components in the dispersion phenomena. Now,

with q(λ) =
∑Q

r=2 αrλ
r, it follows that⌊

S(λ)

∆

⌋
=

⌊
α0

∆
+ α1

λ

∆
+
q(λ)

∆

⌋
.

Using the basic properties of the floor function it is possible to get⌊
α0

∆
+
q(λ)

∆

⌋
+

⌊
α1

λ

∆

⌋
≤
⌊
S(λ)

∆

⌋
≤
⌊
α0

∆
+
q(λ)

∆

⌋
+

⌊
α1

λ

∆

⌋
+ 1.

Each term in this last equation has a different meaning. In the term
⌊
α0

∆
+ q(λ)

∆

⌋
, the

coefficient α0 includes the effect of the mismatching in the x axes of the dispersed and

modulated hyperspectral image on the FPA, whereas q(λ) represents the nonlinearities

in the prism curve. The values of this term are represented by u
′
.

In the classical CASSI system the boundaries of the support of each basic band

Λk are defined by the changes of
⌊
S(λ)

∆

⌋
from one integer to another [69] [71]. Now, this

concept of bands is generalized taking into account that the basic bands can be broken

such that a new set of bands is obtained. Because the basic bands are conformed by d

successive new bands, the number of bands L to reconstruct can be written as L = dL
′
,

where d is the super-resolution factor, which indicates the number of parts in which

the basic bands are separated, and L
′

represents the number of basic bands, defined

by the relation
⌊
S(λ)

∆

⌋
, varying λ from inf {Λ} to sup {Λ} [69] [71].

In the term
⌊
α1

λ
∆

⌋
, once the value of α1 is fixed, it changes from one integer to

another for the values of lambda that are multiples integers of ∆/α1, therefore, this

term defines a delay that it is directly related with the changes from one basic band to

another, but remains invariant when λ changes inside the support of the basic bands.

This value is represented by
⌊
k
d

⌋
, where k is the index that represent the number of

the band and d the super resolution factor.

7.10 Proof of Theorem 52

Let us consider

µmn(A)2 =
%(m,n)2

%(m,m)%(n, n)
,
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then

P
{
µmn(A)2 > ε

}
= P

{
%(m,n)2

%(m,m)%(n, n)
> ε

}
= P

{
%(m,n)2 > ε%(m,m)%(n, n)

}
=
∑
`

P
{
%(m,n)2 > x`ε

}
P {%(m,m)%(n, n) = x`} .

Taking into account that P {%(m,n)2 > x`ε} ≤
E{%(m,n)2}

x`ε
, it follows that∑

`

P
{
%(m,n)2 > x`ε

}
P {%(m,m)%(n, n) = x`}

≤
∑
`

E {%(m,n)2}
x`ε

P {%(m,m)%(n, n) = x`}

=
E {%(m,n)2}

ε

∑
`

P {%(m,m)%(n, n) = x`}
x`

≤ E {%(m,n)2}
ε

∑
`

1

min
`

(x`)
P {%(m,m)%(n, n) = x`}

=
E {%(m,n)2}

ε

1

min
`

(x`)
.

Therefore

P
{
µmn(A)2 > ε

}
≤ E {%(m,n)2}

ε

1

min
`

(x`)
.

Following the same steps with Aσ it is possible to get

P
{
µmn(Aσ)2 > ε

}
≤ E {%σ(m,n)2}

ε

1

min
`

(y`)
,

where y` represents the values of the random variable %σ(m,m)%σ(n, n). Then, taking

ξ = max

 1

min
`

(x`)
,

1

min
`

(y`)


the desired result is obtained.
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7.11 Proof of Theorem 53

In order to simplify the notation for the proof, consider the following convention

ϕi ≡ ϕi,i, R
(m,n)
i ≡ R

(m,n)
i,i and ϕ̂` ≡ ϕi,j, R̂

(m,n)
` ≡ R

(m,n)
i,j (i, j) ∈ I ; where the

index ` indicates a numeration of the set I. The quantities ϕi, ϕ̂` are related with the

traditional CASSI and ϕ
(σ)
i , ϕ̂

(σ)
` with the colored CASSI. The symbols ∼ and � are to

be used to represent dependency and non-dependency between two random variables,

respectively. For instance, in one expression in which the variables ϕi and ϕj are

involved, i ∼ j represents that ϕi and ϕj are dependent random variables.

Then, let us consider

E
{
%σ(m,n)2

}
− E

{
%(m,n)2

}
=

N2L∑
i=1

(
Var(ϕ

(σ)
i )− Var(ϕi) + E

{
ϕ

(σ)
i

}2

− E{ϕi}2

)[
R

(m,n)
i

]2

︸ ︷︷ ︸
1©

+
N2L∑
i 6=j

(
E
{
ϕ

(σ)
i ϕ

(σ)
j

}
− E {ϕiϕj}

)
R

(m,n)
i R

(m,n)
j︸ ︷︷ ︸

2©

+ 2
(
E{ϕ(σ)

i }E{ϕ̂
(σ)
` } − E{ϕi}E{ϕ̂`}

)N2L∑
i=1

∑
`

R
(m,n)
i R̂

(m,n)
`︸ ︷︷ ︸

3©

+
∑
`

(
Var(ϕ̂

(σ)
` )− Var(ϕ̂`) + E

{
ϕ̂

(σ)
`

}2

− E{ϕ̂`}2

)[
R̂

(m,n)
`

]2

︸ ︷︷ ︸
4©

+
∑
6̀=`′

(
E
{
ϕ̂

(σ)
` ϕ̂

(σ)

`′

}
− E {ϕ̂`ϕ̂`′}

)
R̂

(m,n)
` R̂

(m,n)

`′︸ ︷︷ ︸
5©

.

In the following, the analysis of each term of the previous equation es presented sepa-

rately.
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7.11.1 About the term 1©

Taking into account that E
{
ϕ

(σ)
i

}
= E {ϕi} = V , Var

(
ϕ

(σ)
i

)
= V

(
1− 1

σ

)
and

Var (ϕi) = V
2

the original expression 1© can be represented as

= V
(

1

2
− 1

σ

)N2L∑
i=1

[
R

(m,n)
i

]2

.

7.11.2 About the term 2©

For the non independent terms i 6= j, i ∼ j it follows that

E {ϕiϕj} = E

{(
K∑
i=1

TXi(λk)
2

)(
K∑
i=1

TXi(λk′ )
2

)}

=

K∑
i=1

E
{
TXi(λk)

2TXi(λk′ )
2
}

+

K∑
i 6=j
E
{
TXi(λk)

2
}
E
{
TXj (λk′ )

2
}
,

where k 6= k
′ ∈ {1, . . . L′}, and TXi(λk) represents the spectral response of the filter Xi

in the band λk. The values of this last expression according to the characteristics of the

coded aperture are: K
2

+
∑K

i 6=j
1
4

= V
(
V + 1

2

)
when the block unblock coded aperture

with transmittance t = 1/2 is used, and
∑K

i 6=j
1
σ2 = V

(
V − 1

σ

)
when the colored coded

aperture is used. Now, calculating the difference between the colored case and the

binary case, and taking into account that E
{
ϕ

(σ)
i

}
= E {ϕi} = V , it follows that

N2L∑
i 6=j

(
E
{
ϕ

(σ)
i ϕ

(σ)
j

}
− E {ϕiϕj}

)
R

(m,n)
i R

(m,n)
j

= −V
(

1

σ
+

1

2

)∑
i 6=j
i∼j

R
(m,n)
i R

(m,n)
j .

7.11.3 About the term 3©

Notice that

2
N2L∑
i=1

∑
`

E {ϕiϕ̂`}R(m,n)
i R̂

(m,n)
` = 2

∑
i,`
i∼`

E {ϕiϕ̂`}R(m,n)
i R̂

(m,n)
`
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+2
∑
i,`
i�`

E {ϕi}E {ϕ̂`}R(m,n)
i R̂

(m,n)
` .

Now, analyzing the term E {ϕiϕ̂`} when i ∼ ` and taking into account the fact

that ϕi ≡ ϕi,i = 〈hi,hi〉 =
∑K

u=1 TXu(λk)
2, and ϕ̂` ≡ ϕi,j = 〈hi,hj〉 =

∑K
u=1 TXu(λk)TYu(λk′ ).

It follows that the product ϕiϕ̂` can be written as

ϕiϕ̂` =
K∑
u=1

TXu(λk)
3TYu(λk′ ) +

K∑
u6=v

TXu(λk)
2TXv(λk)TYv(λk′ ).

Using the expectation operator on this expression, it is possible to get

E {ϕiϕ̂`} =
K∑
u=1

E
{
TXu(λk)

3
}
E {TYu(λk′ )}

+
K∑
u6=v

E
{
TXu(λk)

2
}
E {TXv(λk)}E {TYu(λk′ )} .

For the binary case E {ϕiϕ̂`} = 1
2
V2 + 1

4
V and for the colored case E {ϕiϕ̂`} =

1
σ
V2 +

(
1
σ
− 1

σ2

)
V .

Making the difference between binary and colored case, the expression 3© is

finally represented as

= 2V
(

1

σ
− 1

σ2
− 1

4

)∑
i,`
i∼`

R
(m,n)
i R̂

(m,n)
` .

7.11.4 About the term 4©

Taking into account that∑
`

E
{

[ϕ̂`]
2} [R̂(m,n)

`

]2

=
∑
`

(
Var(ϕ̂`) + E {ϕ̂`}2) [R̂(m,n)

`

]2

,

it is possible to make the difference between the colored case and the binary case,

getting a representation of expression 4© as

=

(
V
(

1

σ
− 1

σ3
− 3

8

)
+ V2

(
1

σ2
− 1

4

))∑
`

[
R̂

(m,n)
`

]2

.
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7.11.5 About the term 5©

Notice that

E {ϕ̂`ϕ̂`′} =

 E {ϕ̂`}E {ϕ̂`′} ` 6= `
′
, ` � `

′

E {ϕ̂`ϕ̂`′} ` 6= `
′
, ` ∼ `

′
.

Because of the symmetry of the problem, for ` 6= `
′
, ` ∼ `

′
it follows that

E {ϕ̂`ϕ̂`′} =

E

{(
K∑
i=1

TXi(λk)TYi(λk′ )

)(
K∑
i=1

TXi(λk)TZi(λk′′ )

)}

=
K∑
i=1

E
{
TXi(λk)

2
}
E {TYi(λk′ )}E {TZi(λk′′ )}

+
K∑
i 6=j

E {TXi(λk)}E
{
TXj(λk)

}
E {TYi(λk′ )}E {TZi(λk′′ )} ,

which is equivalent to V
4

(
V + 1

2

)
for the binary case, and V

σ2

(
V + 1− 1

σ

)
for the

colored case. Therefore, it follows that∑
6̀=`′

(
E
{
ϕ̂

(σ)
` ϕ̂

(σ)

`′

}
− E {ϕ̂`ϕ̂`′}

)
R̂

(m,n)
` R̂

(m,n)

`′
=

2
∑
`>`
′

V2

(
1

σ2
− 1

4

)
R̂

(m,n)
` R̂

(m,n)

`′

+2
∑
`>`
′

`∼`′

V
(

1

σ2
− 1

σ3
− 1

8

)
R̂

(m,n)
` R̂

(m,n)

`′
.

Putting all this together, it follows that

E
{
%σ(m,n)2

}
− E

{
%(m,n)2

}
= a2V2 + a1V ,

where

a2 =

(
1

σ2
− 1

4

)∑
`

[
R̂

(m,n)
`

]2

+
∑
`6=`′

R̂
(m,n)
` R̂

(m,n)

`′

 ,
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a1 =

(
1

2
− 1

σ

)N2L∑
i=1

[
R

(m,n)
i

]2

−
(

1

2
+

1

σ

)∑
i 6=j
i∼j

R
(m,n)
i R

(m,n)
j

+2

(
1

σ
− 1

σ2
− 1

4

)∑
i,`
i�`

R
(m,n)
i R̂

(m,n)
`

+

(
1

σ
− 1

σ3
− 3

8

)∑
`

[
R̂

(m,n)
`

]2

+

(
1

σ2
− 1

σ3
− 1

8

)∑
`6=`′

`∼`′

R̂
(m,n)
` R̂

(m,n)

`′
.

Then, the behavior of the coefficients a2 and a1 completely determine if the

inequality (7.32) is satisfied or not. In Fig. 7.13 it is possible to appreciate the most

representative values of the whole set of values for the coefficients a2 and −a1/a2 con-

sidering a hyperspectral image of dimensions 64× 64× 4, and the same basis functions

used in the simulations and real reconstructions for different values for σ. It is clear

that the value of a2 is always non positive, which implies that the polynomial a2V2+a1V

is a parabola that opens downwards. One of the roots of this polynomial is on V = 0

and the other one is on −a1/a2 which means that a2V2 + a1V ≤ 0 ∀V ≥ 0 because

−a1/a2 is always non positive .
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Figure 7.13: Samples of the behavior of the coefficients a2 and a1. (a): The behavior
of the coefficient a2 and the quotient −a1/a2 for σ = 3. (b): The behavior of the
coefficient a2 and the quotient −a1/a2 for σ = 5
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Chapter 8

CONCLUSIONS AND FUTURE WORK

In this dissertation, the study of simple and universal principles for the gen-

eration of good sampling patterns was considered for signals on graphs and for the

analysis of projected measurements in compressed sensing applications. In particu-

lar, the concept of blue-noise sampling was extended to graphs and its connection

to previous theoretical results was explored. In graphs with a locally homogeneous

isoperimetric dimension, blue-noise sampling patterns are characterized by a low red-

ness that is associated to good values of the constants that measure the quality of

a sampling set. The analysis performed was validated by a set of numerical experi-

ments that showed the effectiveness of blue noise for the sampling and reconstruction

of bandlimited signals on graphs. Additionally, the basis for the development of low

complexity algorithms was given, exploiting simple principles that can be derived from

vertex-domain characteristics of a blue noise sampling pattern.

As suggested by professor Austin J. Brockmeier, a relationship between blue-

noise sampling on graphs and clustering techniques like K-means is worth exploring.

In particular, a possible connection between clusters and the open balls used in the

definition of ideal blue-noise sampling can be established, opening the door for new

applications and theoretical insights of graph sampling.

Performing an analysis of bandlimited signals on cographs, it was shown that

by taking advantage of the structure of the cotree, it is possible to calculate with a

low complexity the uniqueness sets for bandlimited signals. Additionally, a closed form

solution was obtained for a subclass of cographs called threshold graphs. These findings

open the door to promising applications where datasets can be modeled by cographs
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and threshold graphs, besides the applications in evolutionary biology and scheduling

problems already existing in the literature.

In the context of compressed sensing applications, optimal sampling patterns

on colored coded apertures are obtained for CASSI systems and compressed X-ray

tomosynthesis architectures. In particular, a family of optimal codes is determined

in closed form via a rigorous analysis of the coherence of the sensing matrix. This

contribution provided a substantial improvement with respect to all the approaches

existing in the literature, where iterative procedures were required for the generation

of optimal patterns. Additionally, analyzing the sampling patterns on a not necessarily

ideal colored coded aperture, a rigorous estimate of the spectral resolution achievable

in colored CASSI systems is provided. These conditions are derived from concentration

inequalities that are calculated by exploiting the structure of the sensing matrix.
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