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ABSTRACT

New data science tools are emerging to process signals on graph structures and
concepts of algebraic and spectral graph theory are being merged with methods used in
computational harmonic analysis to analyze these signals. A common problem in these
networks is to determine which nodes play the most important role, assuming there
is a quantity of interest defined on the network. Graph signal sampling thus becomes
essential. In the first part of this dissertation, we explore a novel departure from prior
work, inspired by sampling patterns in traditional dithering and halftoning. Specifi-
cally, we design graph signal sampling techniques that promote the maximization of
the distance between sampling nodes on the vertex domain and that are characterized
on some subclasses of graphs by a low frequency energy. Sampling patterns with these
characteristics are referred to in the spatial dithering literature as blue-noise. The con-
nection between existing theoretical results about sampling signals on graphs and blue
noise sampling patterns on graphs is established, showing also how the spectral charac-
teristics of these patterns are shaped by their vertex domain attributes. Additionally,
for the generation of blue noise patterns a void and cluster algorithm on graphs is
proposed exploiting the vertex-domain distribution of the sampling nodes. Numerical
experiments show that the reconstruction error obtained with these patterns is similar
to the one obtained by the state of the art approaches. Additionally, we explore the
uniqueness sets for signals on cographs. Using the structure of the tree representation
of a cograph, we proposed an algorithm that find its uniqueness sets from very sim-
ple small size graphs without any spectral decomposition or extensive searches on the
vertex domain. The analysis performed on threshold graphs allowed us to calculate a

closed form solution for the uniqueness sets.
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In the second part of this dissertation we consider the problem of sampling
on regular grids for compressed sensing applications. We design optimal sampling
patterns in coded apertures for CASSI systems and compressive X-ray tomosynthesis
architectures, providing closed form solutions that outperform the results achieved
using designs obtained with previous approaches, at a very low computational cost.
Additionally, a rigorous estimate of the spectral resolution in general colored CASSI
systems is provided exploiting the structure of the non-ideal sampling patterns obtained

when wide spectral filters are considered.
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Chapter 1

GENERAL INTRODUCTION: UNIVERSAL PROPERTIES OF GOOD
SAMPLING PATTERNS

The problem of representing complex, large scale or high-dimensional quantities
with low size or low dimension representations has played a central role in numerical
analysis, mathematics, physics, engineering and recently in data sciencel [4]. When
these quantities were represented in Euclidean spaces, Shannon presented what would
become one of the corner stone results in signal processing, the Shannon-Nyquist theo-
rem. This result stated some minimum requirements over a sampling grid to provide a
unique representation of a bandlimited signal [4]. The consequences and implications
of such remarkable result are well known, as well as its scenario of applicability which
assumes the sampling performed is on a regular grid. Naturally, there was the question
about whether it was possible or not to obtain a generalization of this result to more
general spaces, non-necessarily Euclidean, and to scenarios where the sampling grid
was not necessarily regular.

Keeping the assumption that the signal of interest is defined on a Euclidean
space, the works in irregular sampling were prolific [4] and different insights have been
established in the context of several real life applications [4]. On the other hand, the
problem of sampling on general spaces non necessarily Euclidean has been addressed
more slowly with outstanding results obtained for the sampling of functions on man-
ifolds and graphs [5]. In particular, the work of Pesenson in [5-7] stated formally
for functions on manifolds a principle that lies behind almost every sampling strategy
no matter the context, uniformity. Pesenson presented a criteria that allows one to

compare the quality of sampling patterns on a manifold for the reconstruction of a



bandlimited signal. It was shown that the sampling pattern that provides the low-
est error in the reconstruction is built as a uniformly spread pattern on the manifold,
where the points are spread as far apart as possible from each other. This result was
also connected with the results of irregular sampling if the manifold considered was
R™. Pesenson also developed formal results to provide a measure of the quality of a
sampling pattern for signals on graphs, however a connection between these results and
that uniformity observed in manifolds was not established.

In the first part of this dissertation thesis we provide a connection between
this uniformity principle and the quality of sampling sets in graphs introducing the
concept of blue-noise sampling on graphs. Blue noise sampling has its roots in digital
halftoning where the central interest lies on finding a binary representation of a gray
scale image. We show that in subclasses of graphs with the same local isoperimetric
dimension, a uniform spreading of the sampling nodes leads to high frequency patterns
on the graph Fourier domain, and this result can be connected with parameters that
are associated to the quality of the reconstructions. We develop algorithms for the
generation of ideal blue noise sampling patterns and low complexity algorithms based
on random walks and error diffusion to state the basis for the development of efficient
algorithms of graph blue noise.

Additionally, we study uniqueness sets in cographs and threshold graphs. Ex-
ploiting the structure of the cotree representation of a cograph we provide an efficient
algorithm for the calculation of the uniqueness sets without requiring the use of geodesic
distances and/or spectral decompositions. In the case of threshold graphs, which is a
subclass of cographs, a closed form solution for the uniqueness sets is derived.

In the second part of this dissertation the sampling problem is considered in the
context of compressed sensing applications. In particular, we find optimal sampling
patterns for signals that are projected on low dimensional spaces associated to colored
CASSI systems and X-ray tomosynthesis architectures. The optimality of these sam-
pling patterns is determined by the coherence of a sensing matrix and surprisingly an

attribute of these patterns is the uniformity exhibited along the dimension of shots



or captures. The solutions obtained in my research are represented with closed form
expressions that allow a fast design and computation that outperforms all the other
approaches in the literature. Additionally, analyzing the properties of non-ideal sam-
pling patterns in colored coded apertures, we provide a rigorous estimate of the spectral
resolution that can be achieved in CASSI systems when a given distribution of spectral

responses is used.

1.1 Dissertation Format

This dissertation contains eight chapters. In the first chapter a general intro-
duction is provided, showing a panoramic view of the contributions achieved. In the
second chapter the analysis of blue-noise sampling on graphs is considered, while in
chapter three low complexity algorithms for the generation of blue noise are consid-
ered stating the basis for future work in the short term. In chapter four uniqueness
sets for cographs are analyzed. Chapters five and six are devoted to the analysis of
optimal sampling patterns in coded apertures for compressed sensing applications. In
chapter seven a super-resolution analysis is performed on CASSI systems based on the
sampling patterns of colored coded apertures. Finally in chapter 8 general conclusions

and remarks about future work are presented.

1.2 My original contributions

Graph Signal Processing

1. Generalizing blue-noise sampling for signals on graphs.

2. Establishing a rigorous relationship between blue-noise sampling patterns on
graphs and the quality of sampling sets measured by theoretical parameters

stated in the literature.

3. Establishing a rigorous relationship between the vertex-domain and the spectral

characteristics of blue noise sampling patterns.



. Developing an algorithm for the generation of blue-noise sampling patterns on

graphs.

. Performing a complete numerical validation of blue-noise sampling patterns

against sampling patterns generated by the state of the art approaches.
. Establishing an estimate of the stability of blue-noise sampling patterns.

. Developing an efficient algorithm for the calculation of uniqueness sets for the
sampling of signals on cographs, without requiring spectral decompositions or

the calculation of geodesic distances.

. Performing a numerical validation of the effectiveness of the uniqueness sets of

cographs, on graphs that are approximately cographs.

. Obtaining a closed form solution for the uniqueness sets in Threshold graphs.

Compressed sensing applications

. The Calculation of a closed form solution for a family of optimal colored coded
apertures in CASSI systems. This solution provides up to the date the best

reconstruction results in terms of PSNR.

. A complete numerical validation of the optimal codes against codes obtained by

the state of the art approaches.

. The calculation of a closed form solution for a family of optimal coded apertures
in a compressive X-ray tomosynthesis architecture. With these designs the re-
sults obtained were far superior to the ones obtained by other approaches that

spent hundreds of hours for the computation of a solution.

. The theoretical calculation of the spectral resolution limits in colored CASSI

architectures.



1.3

5. Experimental validation of the spectral resolution limits in colored CASSI ar-

chitectures.
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Chapter 2

BLUE-NOISE SAMPLING ON GRAPHS

2.1 Introduction

Interesting phenomena in nature can often be captured by graphs since objects
and data are invariably inter-related in some sense. Social [8], financial [9], ecological
networks, and the human brain [10] are a few examples of such networks. Data in these
networks reside on irregular or otherwise unordered structures [11]. New data science
tools are thus emerging to process signals on graph structures where concepts of alge-
braic and spectral graph theory are being merged with methods used in computational
harmonic analysis [12-14]. A common problem in these networks is to determine which
nodes play the most important role, assuming there is a quantity of interest defined on
the network.

Graph signal sampling thus becomes essential. Naturally, the mathematics of
sampling theory and spectral graph theory have been combined leading to generalized
Nyquist sampling principles for graphs [12,15-19]. In general, these methods are based
on the underlying graph spectral decompositions [19-22].

This work explores a somewhat radical departure from prior work, inspired by
sampling patterns in traditional dithering and halftoning. Specifically, we intend to
design graph signal sampling techniques that promote the maximization of the distance
between sampling nodes on the vertex domain that are typically characterized by a low
frequency energy. Sampling patterns with these characteristics are referred to in the
spatial dithering literature as blue-noise [23,24].

In this chapter, the connection between the properties of blue-noise sampling

patterns and the results related with sampling sets in graphs is established, showing



that blue-noise like sampling patterns in graphs are connected with good sampling
sets in terms of preserving the uniqueness of the representation of the sampled signal
in a noise-free scenario. Additionally, it is shown how the inter-distance between the
sampling nodes affects the redness in a given sampling pattern. We provide a measure of
the bandwidth of the signals that can be uniquely represented from the vertex-domain
characteristics of blue-noise sampling patterns. A numerical algorithm is proposed in
order to compute these blue-noise patterns based on their vertex-domain distribution.
In particular, trying to exploit the distribution of the sampling points on the nodes
of the graph, a void and cluster algorithm on graphs is developed [25], allowing the
generation of patterns that lead to reconstruction errors of bandlimited signals, similar

to the ones obtained in the state-of-the-art literature.

2.2 Preliminaries

Sandryhaila [26] proposed a theoretical framework for the analysis and pro-
cessing of signals on graphs based on the properties of the adjacency matrix. This
approach is rooted in algebraic signal processing, whereas authors like Fuhr and Pe-
senson [15,16,27], Puy [28] and Shuman [12,13,29] based their analysis of signals on
graphs, relying on the properties of the Laplacian matriz. In both approaches the
Fourier transform of the signals on the graph is defined in terms of a spectral decom-
position of the adjacency matrix and the Laplacian matrix respectively, using the set
of eigenvectors as the Fourier basis for the representation of the signals.

The first approach offers a direct connection with the shift operator used in tra-
ditional signal processing, while the second resembles the main ideas of Fourier analysis
in linear spaces in which the eigenfunctions of the Laplacian operator are used as the
basis representation of the signal. The two approaches use a unitary operator, and
problems like sampling and filtering can be successfully considered in both scenarios.
In this work, the combinatorial Laplacian matrix is used as the building block, and

the graphs considered are undirected, weighted, connected and simple. Consequently,



part of the developments proposed rely on the theoretical results obtained by Furh and

Pesenson [15,16,27] in harmonic analysis on graphs.

2.2.1 Graph Signal Sampling

Let G = (V(G), E(G)) be an undirected, weighted, connected, simple graph
with a set of nodes, V(G), and a set of edges, F(G). W is the adjacency matrix
(symmetric), with W (u,v) > 0 the weight connecting the nodes v and v and u ~ v
indicates that W (u,v) > 0. The degree matrix, D, is a diagonal matrix whose entries

are given according to:

D(u,u) = Z W (u,v). (2.1)

veV(Q)
For any graph G, its volume is defined as vol(G) = >, cy (g D(u, u), and the volume
of a subset S C V(G) is defined as vol(S) = >, .¢D(u,u). On the graph G, the

combinatorial Laplacian operator is defined as the positive semi-definite operator:
L=D-W, (2.2)

whose eigenvalues are organized as 0 < p; < po < ... < pn, N = |V(G)] [30]. A real
signal, @, on the graph is then defined as the mapping « : V(G) — R denoted by
the vector € RY where x(v) is the value of the signal associated to v € V(G). The
support of  is denoted by supp(x), and the restriction of x, to any subset S C V(G),
is denoted by @(5). It is worth noticing that:

L)) = 3 (@) - () W(o,u), (2.3)

ueV(G)

If the spectral decomposition of the operator L is denoted by L = UAUT, then
the Graph Fourier Transform (GFT) of the signal & on G is given by & = UTx. There
is a direct analogy between the concept of frequency in traditional Fourier Analysis
and the behavior of the Graph Fourier Transform as is stated in [12]. Considering this
analogy, the bandwidth of a signal  can be defined using the nonzero components of

2. It is said that @ has bandwidth w € R, on the spectral axis if z € PW,(G) =
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span{Uy, : up < w}, where PW,(G) is the Paley-Wiener space of bandwidth w [15]
and Uj, indicates the first k& column vectors in U. In some cases the bandwidth is also
represented with the largest integer k such that pu; < w.

Given a notion of bandwidth, one invariably questions the notion of sampling
rate and whether the number of samples or nodes of a graph can be reduced without loss
of information to the signal. We, therefore, define sampling of a signal @ on the graph
G, by choosing the components of & on a subset of nodes, S = {s1,...,s,} C V(G).
The sampled signal is given by x(S) = Mz where M is a binary matrix whose entries
are given by M = [8,,,...,8,,]" and &, is the N— dimensional Kronecker column
vector centered at v. Given x(S), it is possible to obtain a reconstructed version of
x in different ways depending on whether the bandwidth of the signal is known. We
assume that the bandwidth is known and that the reconstruction is given by:

Tpee = argmin [Mz — a(9)|3 = Ux (MUy) 2(9) (2.4)
zespan(Uy)
where (MU})" is the Moore-Penrose pseudo-inverse of MU}, [31,32]. Alternatively,
in [1] it is shown that a consistent reconstruction of the signal can be obtained from
its samples using interpolation splines.

The problem of optimally sampling a signal on a graph can now be summarized
as choosing S such that we maximize the available bandwidth of x(.S). To this end,
Pesenson defines [15,16] a A-removable set for A > 0 as the subset of nodes, S C V(G),
for which:

lzls < (1/A)|[Lalls V@ e Ly(S), (2:5)

where Ly(S) is the set of all signals, x, with support in S C V(G) (i.e. elements of x
not included in S are equal to zero) and finite 5 norm. The largest value of A for which
eqn. (2.5) holds is denoted by Ag. Notice that for any subset of nodes there exists a
A-removable set with larger or smaller Ag. Therefore, Ag ultimately determines how
much importance a given set has in the sampling process of a signal with a specific
bandwidth. The relationship between properties of removable sets and the sampling

problem was established by Pesenson in the following theorem:
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Theorem 1 (Theorem 5.1 in [15]). If for a set S C V(G), its compliment S¢ =V (G)\S
is a Age—removable set, then all signals in PW,(G) are completely determined by its

values in S, whenever 0 < w < Age.

In [27], another result related with sampling sets is established using a constant that
can be calculated directly with the weights, W of the graph, G, stated in the following

theorem:

Theorem 2 ( [27]). Every S C V(G) is a uniqueness set for all functions in PW,,(G)
with any w < Kg, where

Kg = inf wg(v) (2.6)

veS®

and wg(v) =Y s W(s,v).

Theorems 1 and 2 play a central role in the description of properties for different classes
of sampling sets as it is possible to consider that a good sampling set, S, promotes
the maximization of constants, Agc and Kg. In particular, it will be shown in the
following sections that blue-noise sampling patterns indeed promote high values of
these constants.

Recently Pesenson [33] introduced results that characterize the representation
of a band limited signal in terms of induced subgraphs obtained from partitions of

V(@) that cover V(G). This statement can be summarized in the following theorem.

Theorem 3 (5.1,6.1,6.2 [33]). Let G be a connected finite or infinite and countable
graph. Suppose that P = {V(QJ)}jij' is a disjoint cover of V(G) by connected
and finite subgraphs €);. Let Lq, be the Laplace operator of the induced graph ();
whose first nonzero eigenvalue is py ;. If Ap = inf;py; > 0 and Ap > %w with
a > 0, then every signal € € PW,(G) is uniquely determined by the values mTﬁj,
where §; = Xj/\/m with x;(V(€;)) = 1 and x;(V(§)¢) = 0. Additionally, x

can be reconstructed from this set of values in a stable way.

It is important to remark the meaning and implications of Theorem 3. This result

shows that V(G) can be divided into disjoint subsets that cover V(G), and a given

12



band limited signal can be reconstructed from the average values of the signal in those
regions. Additionally, the constant Ap associated to the partition provides a measure
of the quality of the reconstruction obtained from the regions on V(G) defined by
P. It is also worthy to point out that the size of the elements in the partition has a
natural limit as Lq, is expected to have at least one nonzero eigenvalue, which would
not be the case when (2, consist of one single vertex. This result will allow us to
establish a connection between the spectral and vertex domain behavior of sampling
patterns in some classes of graphs. Additionally, we will show that from a blue-noise
sampling pattern s, it is possible to build a partition that can be used to estimate the
bandwidth of signals that are uniquely represented by their samples on the sampling

nodes indicated by s.

2.2.2 Optimal Graph Sampling

The problem of finding the best S is a combinatorial problem of calculating Age
for all sampling sets and choosing the set with the largest value of Age, a prohibitively
expensive process for large graphs. Allowing for some short cuts, a simple, greedy
procedure for finding a good sampling set starts with an empty set of nodes and
iteratively adds one node at a time, taking the best available node at each iteration
according the value of a cost function. Several authors have formulated the problem
of sampling and reconstruction in the presence of measurement noise, and in these
works objective functions have been proposed that minimize the reconstruction error
in terms of the worst case [21], where S = argmaxsj—m 07, the mean case [31],

. K
min{m }U 2

where S = argmaxgj—m > oy .-, and the maximum volume case [32], where

SOt = arg maxg|—m H;ihll{m’k} o2; and o; represents the i singular value of the matrix
MU, consisting of the first k£ eigenvectors of W or L respectively, sampled on the
rows indicated by S. In [34] the optimal sampling set is obtained considering the same
cost function for the mean case, but using the singular values of AUTdiag(S), where

diag(S) is the diagonal matrix whose entries are given by diag(S);; =1 < i€ S.

In order to reduce computational complexity, Anis et. al. [31] defines graph

13



spectral prozies of order ¢ as estimates of the cutoff frequency of a given signal which

can be used to define cutoff frequency estimates for a subset of nodes S according to:

o uwuz)é
(I(S) - ¢€r£121{lgc) ( H¢H2 ) (27)

with L? being the ¢/ power of L [20,31]. Anis et. al. further shows that, for any ¢ € N

Q

and S, it is possible to have perfect reconstruction when w < €,(S). The value of
2,(S) can be calculated as ,(S) = (Ul,q)i, where 0y , denotes the smallest eigenvalue
of the reduced matrix Lg‘i’ ge- The optimal sampling set can then be represented as the
solution of the problem:

Sy = arg max Q(S), (2.8)

which is still combinatorial; however, Anis et. al. proposes a heuristic rule to solve
eqn. (2.8) using the first eigenvector of L%C’ ge- Basically, anode is added to the sampling
set according to the index of the component with maximum absolute value for the first
eigenvector of L‘fgc’ ge- The quality of the sampling set is also related to the value of ¢,
which should be selected as large as possible at the expense of a higher computational
cost. In [35], some performance theoretical bounds for these greedy sampling techniques
are derived.

In some scenarios for sampling signals on graphs a spectral decomposition of
the operators is not available, and therefore, there is a strong need for vertex domain
sampling schemes that attempt to build good sampling patterns based entirely on the
local graph structure around a node. In particular, for those cases where the graphs are
too large for calculating the eigenvalues and eigenvectors of the GF'T, several authors
have looked at the problem of sampling using subsets of nodes that may not be optimal
but are still very good at preserving band-limited signals. In the case of Puy et. al [28],
the authors perform a random selection of nodes with a recovery algorithm that involves
a probability distribution on a diagonal matrix, P, in addition to the sampling matrix
operator M. The reconstructed signal ... can then be calculated as:

Xy = arg min (HP_I/Q(Mz — iL‘(S))”z + TzTg(L)z> : (2.9)

zeRN
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where x(.S) = M is the sampled version of the signal &, 7 is a regularization parameter
selected empirically and g(-) is a polynomial function selected also empirically.

Puy et. al [28] further show that an optimal P can be determined by the use of
the local graph coherence, v, on the nodes of the graph. The value of v (i) at the node
i can be calculated as v (i) = ||Upd;||2, where §; is the Kronecker vector centered at
node ¢, and it provides a measure about how important is the node ¢ for the sampling
of a signal with bandwidth k. If v4(7) is equal to 1 for a particular node 7, then there
exists k-bandlimited graph signals whose energy is solely concentrated in this i** node.
If v(4) is equal to 0, then no k-bandlimited graph signal has any energy in this 4
node. Therefore, node i can be deleted with no repercussions.

Because the calculation of vy (i) requires the knowledge of the spectral decom-
position, Puy et. al propose an approximate estimation of v (i) that can be obtained
without the calculation of any spectral decomposition, which allows the solution of
eqn. (2.9). When the optimal P is used, Puy et. al show that the matrix MP~1/2
satisfies a restricted isometry property when the number of samples is on the order
of O(klogk), which provides a strong guarantee for the exact recovery of the signal.
This represents an elegant result but with the drawback that O(klog k) is substantially
higher than k, which is the optimal number of samples required to reconstruct a signal
of bandwidth k.

Recently, Tremblay et. al. [32] proposed the use of determinantal point processes
(DPP) in order to obtain the matrix P used in [28]. It is shown in [32] that an optimal
P can be obtained using DPP when U, is known. Additionally, when the spectral
decomposition is not accessible, it is shown how a variant of the Wilson’s Algorithm
introduced in [36] can be used in order to obtain a sampling set that can be shown
is related with a DPP that leads to an approximate version of the optimal P. The
reconstruction of the signal is obtained by as solution of eqn. (2.9); however, these
results do not represent an improvement with respect to Anis et. al. [31] or Chen et.
al. [21] and may lead to larger reconstruction errors when the graph considered does

not have a strong community graph structure [32]. Wang et. al. [37] consider the
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sampling and reconstruction of signals adapting concepts and ideas from frame theory,
developing an iterative approach based on the concept of local sets.

Marques et. al. [38], proposed a different approach with respect to previous
works, considering the sampling and reconstruction of the signal using its samples on
a single node. The central idea is based on the information provided by the sequential
application of the shift operator. The technique itself represents a novel alternative
with potential applications in network analysis and its computational cost may be a

drawback when large size graphs are considered.

2.3 Blue-noise Sampling on Graphs

This work proposes a different approach to graph signal sampling: the appli-
cation of spatial dithering to the graph vertex domain where the spectral properties
of well formed sampling patterns will equally benefit the graph vertex domain as they
do the spatial. This approach is motivated by the well established research in digital
halftoning, which is the process of converting a continuous tone image or photograph
into a pattern of printed and not-printed dots for reproduction by inkjet or laser print-
ers [23,24,39]. Halftoning algorithms based on error-diffusion are of particular impor-
tance because they produce random patterns of homogeneously distributed dots where
minority pixels (black dots in highlights or white dots in shadows) are spaced as far
apart as possible. These patterns have power spectra dominated by high frequency

9

energy, earning the name, “blue-noise,” since blue is the high frequency component of
white light. Low frequency energy or red-noise contributes to halftone patterns looking
fuzzy or noisy to the human visual system and are, therefore, to be avoided [23,39].
In order to establish a blue-noise model for sampling signals on a graph, we
first propose the idea of a binary dither pattern on a graph, G = (V(G), E(G)), as the
binary graph signal, s € {0,1}". We refer to the fraction of samples that we intend
to preserve as the density d = m/N, where [|s|p = m. In the case of a white-noise

dither pattern as illustrated in Fig. 2.1 (top) on a Sensor Network graph for d = 0.1, s

is selected uniformly at random from the space of binary signals for which ||s||o = dN;
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therefore each component of s can be modeled as a Bernoulli random variable with

expected value E{s({)} = d.

2.3.1 Vertex-domain Characteristics

We define blue-noise sampling on graphs in terms of its desired vertex domain
characteristics which resemble the spatial characteristics of blue-noise sampling in tra-
ditional halftoning. As such, we need to define a measure of spacing between neighbor-
ing nodes on a graph by defining a path between the nodes v, and v, by the sequence
(Vay U1, Usg, . . ., Up, vp) Where each node in the sequence indicates the nodes visited when
going from v, to vy, visiting between nodes with edge weights that are different from
zero. Having a sequence of nodes defining a path, we define the length of this path

according to:

|(Va, ur, g, .. un,vp)] = W(vg,ur) + Wilug,ug) + -+ + W(uy,,v), (2.10)

where the shortest path between two nodes, v, and vy, is the path with minimum length
and is represented by 7, ,,. For any v € V(G), the open ball of radius p and centered
in v is defined as B(v, p) = {u € V(G) : |You| < p}. The symbol T' € RV*¥ represents
the matrix of geodesic distances in the graph, where I'(u, v) = |y,.,|. We will refer to a
collection of subsets of V(G) as a cover if the union of such subsets is equal to V(G),
and the cover will be called disjoint if the subsets are pairwise disjoint.

Having defined the notion of distance on the vertex domain of the graph, we
can introduce blue-noise sampling taking into account its characteristics in traditional
halftoning. Blue-noise halftoning is characterized on the spatial domain by a distribu-
tion of binary pixels where the minority pixels are spread as homogeneously as possible.
Distributing pixels in this manner creates a pattern that is aperiodic, isotropic (radially
symmetric), and does not contain any low-frequency spectral components. Halftoning
a continuous-tone, discrete-space, monochrome image with blue-noise produces a pat-
tern that, as Ulichney [23] describes, is visually “pleasant” and “does not clash with

the structure of an image by adding one of its own, or degrade it by being too ‘noisy’ or
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Figure 2.1: Illustration of the spatial and spectral properties of (top) a white-noise
dither pattern on a Sensor Network graph with density, d = 0.1, with (center) a flat
pair correlation approximately equal to 1.0 for all internode distances, p, and (bottom)
an approximately flat power spectra for all frequencies, .

uncorrelated.” Similarly on a graph, the minority nodes composing the binary signal
are expected to be equally spaced apart when measuring distance as the sum of the

weights forming the shortest path. With these ideas, we formally introduce blue-noise
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in the following definition.

Definition 1 (Blue-Noise on Graphs). Let S C V(G) be a subset of nodes in the
graph G with S = {s1, S2,...Sm}. Then, it is said that S represents an ideal blue-noise

sampling pattern, if the following conditions are satisfied:
e There is a collection of open balls B(s;, ) that forms a cover of V(G).

e The value of X\ is the minimum possible for all the subsets of nodes of size m.

Definition 1 implies that ideal blue-noise sampling patterns have their sampling nodes
located as far as possible from each other, or in other words, there is a typical vertex
domain spreading of the sampling nodes. Figure 2.5 (top) illustrates a typical blue-
noise pattern on a sensor network. We use this attribute as the defining characteristic
of a blue-noise sampling pattern; however, we will show in later sections that, in some
classes of graphs this vertex domain spreading implies or is correlated with a high

frequency behavior on the spectral domain.

2.3.1.1 Vertex-domain Metrics

For any v € V(G), the annulus of radius p, width 6, and center v is defined
as By(v,p) = {u € V(G) : p— 0 < |yl < p+ 0}, Figure 2.2 illustrates an example
of By(v, p). With a notion of concentric rings in By(v, p), we can now define the pair
correlation on a graph. Specifically, let S = supp(s) = {s1, s2, ..., Sm} be the support
of the sampling pattern s and let ||s(By(s;, p))||, be the number of 1s of s on By(s;, p),

then the sample pair correlation function, Rs(p), associated to s is defined by
1 m
m Z Is(Bo(si: p))llo

Rel0) = T 5T Boto )l (2-1)

Notice that the numerator in (2.11) indicates the average number of 1s in s on a ring
of width € that is centered on a 1 of s, while the denominator indicates the average

number of 1s on the ring of the same width when it is centered at any arbitrary node.
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Figure 2.2: Hlustration of By(v, p) in a graph. Left: representation of By(v, p) for small
values of p and 6. Right: Illustration of By(v, p) for large values of p and 6. The nodes
in blue color are located in the annulus of radius p and width 6 centered at the node
v indicated in red color.

Now, the pair correlation for ¢ realizations s, ..., s, of a random sampling pattern is
defined as
1 q
Rip) = > R, (p), (2.12)
r=1

as the influence of a sampling point at node v on all other nodes in the geodesic annular
region By(v, p). Notice that for the computation of eqn. (2.11) several values of 6 can
be considered, in this work the value of # is the average of nonzero edge weights.

Note that a maxima of R(p) can be considered as an indication of the frequent
occurrence of the inter-node distance, p, between nodes set to 1 whereas minima in-
dicate a reduced occurrence. Since for random patterns the expected number of 1s in
any annular ring is proportional to the number of nodes within the ring, we expect a
pair correlation equal to 1 for all p > 0 as illustrated in Fig. 2.1 (center).

Blue-noise, when applied to an image of constant gray-level g, spreads the mi-
nority pixels of the resulting binary image as homogeneously as possible such that the
pixels are separated by an average distance, \,, referred to as the principal wavelength
of blue-noise. These minority pixels are the pixels that are used to represent the prop-
erties of a region on a grayscale image, for instance in a dark region the minority pixels

are labeled with 1 while in white regions the minority pixels are labeled with 0. Then,
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the value of )\, is defined as the radius of a round disc, surrounding a minority pixel,
such that the ratio of the surface area of a minority pixel to the surface area of the
disc is equal to the density of minority pixels, d = g for 0 < g <1/2 and d =1 — g for

1/2 < g <1, which we can write as:

d:

(2.13)

where D, and D, are the sampling periods (distance between samples) of the digital
image in the x and y directions, respectively.

In order to extend the notion of principal wavelength to graphs, we need a notion
of surface area as the expected number of graph nodes, E{A/()\)}, within a distance or
path length, X, of a given minority node. We expect the ratio of our single, minority

node to all nodes within a path length, )\, to equal the density level according to:

1
d= BN (2.14)

Being that E{N()\;)} is graph dependent, the graph blue-noise wavelength, \,, is
likewise graph dependent and its characterization is still an open area of research [40—
42]. In general, one can derive ), versus d experimentally as we have in Fig. 2.3 where
we show the principal wavelength versus the density sampling d for some commonly
used graphs. We note that in the case of the sensor graph, A\ varies smoothly with
d = 1/E{N(X\y)} while, in the case of the community graph, it varies with a piecewise
constant behavior with respect to d.

In light of the nature of graph blue-noise to isolate minority nodes, we can
begin to characterize blue-noise graph signals in terms of the pair correlation, R(p),
by noting that: (a) few or no neighboring minority nodes lie within a path length of
p < N\p; (b) for p > Xy, the expected number of minority nodes per unit area tends
to stabilize around a constant value; and (c) the average number of minority nodes
within the path length, p, increases sharply nearly A\,. The resulting pair correlation
for blue-noise is, therefore, of the form in Fig. 2.4 (top), where R(p) shows: (a) a strong

inhibition of minority nodes near p = 0, (b) a decreasing correlation of minority nodes
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Figure 2.4: The ideal (top) pair correlation and (bottom) power spectra for blue-noise
sampling patterns.

with increasing p (lim, o, R(p) = 1), and (c) a frequent occurrence of the inter-node
distance \,, the principal wavelength, indicated by a series of peaks at integer multiples
of \y. The principal wavelength is indicated in Fig. 2.4 (top) by a diamond located
along the horizontal axis. Returning to the sample blue-noise signal of Fig. 2.5 (top),
the resulting pair correlation of Fig. 2.5 (center) has a principal wavelength of A\, = 0.56
with a clearly visible peak of 1.55, meaning that nodes equal to 1 are 55% more likely
to occur at a distance of p = 0.56 from an existing 1 than for the unconstrained

probability of a node being equal to 1.

2.3.2 Spectral Characteristics
Blue noise sampling patterns are characterized in traditional halftoning for a

high frequency behavior [24]. In this section we state a connection between the spectral
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Figure 2.5: Illustration of the spatial and spectral properties of (top) a blue-noise
dither pattern on a Sensor Network graph with density, d = 0.1, with (center) a pair
correlation peak at the principal wavelength, \,, and (bottom) an approximately high
frequency only power spectrum for frequencies, .

characteristics of a sampling pattern and its vertex domain characteristics, using the

local properties of partitions of V(G) that are measured by the isoperimetric constants
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of local induced subgraphs. In order to characterize the frequency content of a sampling
pattern, a cost function is proposed. In particular, we propose a scalar measure of low-
frequency energy, R, in the signal s, as the weighted sum of all Fourier coefficients’

energies:

N .9 N .2
R TP D st (215)
2 4=2

He m= e
where § is the graph Fourier transform of s. Ry is coined as the redness of s as it
measures low frequency spectral content.
In order to establish a connection between Ry and the vertex domain charac-

teristics of a sampling pattern, it is important to consider the following theorems.

Theorem 4. For the graph G = (V(G), E(G)), let P = {V (), V(Qa),...,V(Qp)}
be a partition of V(G), where §; is the induced subgraph given by V (§2;). Let 0; be the

isoperimetric dimension of ;. Then if

Sy=0y=..=0p =0 (2.16)

Ap>min{C’5 (m)ag (m)} (2.17)

where Cy is a constant that depends on §.

Proof: See Appendix 2.7

it follows that

Theorem 4 indicates that when the graph has a local invariant isoperimetric dimension,
the quality of a partition P for the representation of bandlimited signals, measured by
Ap, is defined by the set in P with the largest volume. The concept of isoperimetric
dimension, originally defined on manifolds, provides a measure of how similar is the
global behavior of a manifold with respect to a Euclidean space [43]. Similarly, in the
case of graphs, the isoperimetric dimension indicates how close the behavior of a graph
is with respect to regular grid-like graphs. For instance, the isoperimetric dimension of
the n—dimensional regular grid is n [43]. In the following theorem, we indicate when

the right-hand side of eqn. (2.17) is maximized.
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Figure 2.6: Partition of V(G) for a graph G. Each color indicates the subgraph €2;
induced by V(). Ilustration shows how a sampling pattern can be built from the
partition selecting the sampling nodes on the set S, whose nodes are indicated in black
color. Notice that the sampling pattern indicated satisfies eqn. (2.19) and eqn. (2.20).

Theorem 5. Under the conditions stated in Theorem 4 and for a fized value of |P|,

the partition that mazimizes the right hand side of eqn. (2.17) satisfies that
vol(§;) = vol(Y;) Vi, j. (2.18)
Proof: See Appendizx 2.8

Under the conditions stated in Theorem 4, Theorem 5 provides the characteristics of
the partition that will maximize the bandwidth of signals that can be represented in a
unique way via their average values on the elements of the partition.

Now, it is important to notice that for any partition P = {V (),
V(Q),..., V(Q|p|)}, it is possible to build a sampling pattern, locating one sampling
node per partition element (see Fig. 2.6). In the following theorem, we show that the
spectral characteristics of such sampling patterns, measured by Rg, are bounded by

the local characteristics of the elements in P.
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Theorem 6. Let P = {V(h), V(Q),...,V(p|)} a partition of V(G) and let s €

{0, 1} a sampling pattern chosen according to

[s(V(2)llo=1 ¥j (2.19)
If s(v) =1, then s(u) =0 Yu~wv (2.20)
then
201 _ 2
If in addition, § = 6, = ... = éjp| and vol(2) = vol(21) = ... = vol(Qp|), then
201 2 2
< i+ (0= PN Puol( @)} 02,

4Csp2pN
Proof: See Appendiz 2.9

In order to discuss the meaning and implications of Theorem 6, it is important to
mention that eqn. (2.19) and eqn. (2.20) imply that there is one sampling node per
element of the partition with [|s||o = |P|, and that there is a minimum interdistance
between the sampling nodes in s (see Fig. 2.6). In particular, eqn. (2.20) assures that
the sampling points in s are far from the boundaries of the elements of the partition.

Notice that eqn. (2.21) presents a general upper bound for the redness of an ar-
bitrary sampling pattern subject to eqn. (2.19) and eqn. (2.20). Meanwhile, eqn. (2.22)
provides a tighter bound that is connected with blue-noise sampling patterns as a con-
sequence of having the elements in the partition with the same volume and the same
isoperimetric dimension. In this second case, we see that as the size of the partition,
P, increases (and therefore the number of sampling nodes in s) vol(f2) decreases and
so it is the value Rg, making clear the connection between a uniform vertex spread-
ing of the sampling nodes in s and a low redness. As a consequence, a behavior like
the one depicted in Fig. 2.5 (bottom) is expected. It is important to emphasize that

this statement is connected to Theorems 4 and 5, where the characteristics of good
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partitions for the representation of bandlimited signals is stated. In the case of the
traditional halftoning scenario where the problem is modeled on a 2-dimensional grid,
the conditions of Theorems 6, 5 and 4 hold and a typical response like the one shown
in Fig. 2.4 (bottom) is obtained.

Theorem 6 also implies that there is an upper limit about the number of elements
in the partition P that can be considered, and with that, it comes a limitation in the
number of sampling nodes for which these inequalities hold. In particular, for very
large values of |P|, eqn. (2.19) and eqn. (2.20) cannot be satisfied. We point out that
this does not diminish the quality of the sampling patterns, but instead points out that
the relationship between the spectral domain and the vertex domain is not guaranteed

to be governed by eqn. (2.21).

2.3.2.1 Spectral Metrics
It is also possible to characterize the spectral properties of binary dither patterns

on a graph where we extend the idea of periodograms to graphs such that the GFTs of ¢

realizations of x, i.e. &1, ®,, ..., x4, are averaged together to form the power spectrum:
N - &i(0)?

p()=—>" O oa N (2.23)
q = il

Notice that the ¢** component of p is associated with the ¢** eigenvalue p,. Like its
binary halftone counterpart, the GFT of a white-noise sampling pattern is expected
to be flat for all ys, and to visualize this power spectra, Fig. 2.1 (bottom) shows an
estimate of the power spectra for 100 unique white-noise dither patterns generated on

the 2000-node Sensor Network graph with pattern density d = 0.1.

2.3.3 Blue-noise Sampling Sets
In the following corollary we state how from a blue-noise sampling pattern a

good partition in the sense of Theorem 3 can be obtained.
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Corollary 7. Let s be a blue-noise sampling pattern obtained according to Definition 1,
with ||s||o = m and supp(s) = {s1,52,...,5m}. Let B(sj, \) be as specified in Definition
1. Then, there exists a partition P = {V(Ql), V(Q),..., V(Q|7>|)} of V(G) such that

ueV(Q) e ue B(sj,\),ud B(si,\) Vi#] (2.24)

and the elements in the intersection between the sets B(s;, \) are distributed on the
V(§) such that the quantity 3, [vol(§%;) — vol(§Y;)| is minimized. Additionally if
Ap>(1+1/a)w, a >0 any & € PW,(G) can be uniquely determined from its values
at {s1,52,...,5m} always that x(s;) =x"(£;0&;) Vj.

Proof: See Appendix 2.11.

This corollary indicates that given a sampling pattern whose sampling points are lo-
cated as far as possible from each other, it is possible to build a partition from which
a unique representation of a set of bandlimited signals is possible. Additonally, if the
conditions of Theorem 4 are satisfied, then the partitions obtained are the ones that
maximize the value of Ap.

Theorem 1 tells us that when a fixed value of the bandwidth w is considered
and a signal has to be sampled taking m samples, it is necessary to look for the set
of nodes, S, such that 5S¢ is a Age-removable set with w < Age. Finding the subset of
m nodes with the maximum Age would, therefore, give the best sampling set. On the
other hand, if a signal has to be sampled taking a number of m samples, choosing a set
of nodes S with the maximum value of Age will extend the class of signals, PW,(G),
that can be sampled and represented in a unique way with m samples.

Now if one can show that minimizing the redness in a sampling signal promotes
high values of Age, one could argue blue-noise was a desirable attribute for efficient

sampling. The following theorem establishes this relationship:
Theorem 8. Let s : V(G) — {0,1} be a sampling pattern with s(S) =1, s(5¢) =0
for S C V(G) and |S| = ||8|lo = m, then the Agc—constant of the set S¢ satisfies

R, ’
Age > Cs (Uol(G)RS T m)2> (2.25)
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where R is the redness in s from eqn. (2.15); § is the isoperimetric dimension of
G [27,44]; and Cs a constant that depends only on 0.
Proof: See Appendix 2.12.

To summarize, Theorem 8 tells us that the best sampling set, .S, is the one for which
the value of Age is a maximum; therefore while blue-noise sampling patterns (which
minimize Rg) are not necessarily the best sampling sets, they are good sampling sets.
Notice that eqn. (2.25) is well defined as vol(G)Rs — m (1 — %)2 > 0, which is tight
when S°U bS® = V(G) where bS¢ is the boundary of S¢. This criteria can be satisfied
making the nodes in S as spread apart as possible in the graph, which is reasonable as
a sampling set where all the nodes are too concentrated in one area could lead to poor
reconstructions of signals that exhibit fast changes in the sparsely sampled areas left
elsewhere.

As an approach to reinforce the benefits of blue-noise sampling sets, we can
use the quantities introduced in Theorem 2 to show how blue-noise promotes those

sampling sets that maximize the bandwidth of the signals that can be represented in

a unique way on a given sampling set as indicated in the following theorem:

Theorem 9. Let s: V(G) — {0,1} with s(S) =1, s(S°) =0, S C V(G). If Kg > 0,

then 12
2
1_-m
Ko > (771(1':4 _ 7) (2.26)

where ¥y = maxg / , (ZUGSC\U' wS(v)2> , and R is, again, the redness in s from eqn. (2.15).

Proof: See Appendiz 2.13.

Theorem 9 indicates that lowering the redness of the sampling pattern raises the min-
imum possible value of Kg and, therefore, extends the set of signals, PW,(G), that
can be represented in a unique way on a given sampling set. Therefore, again the
blue-noise sampling patterns that are characterized by small values of R, represent a

better option than arbitrary random sampling, which leads to large values of Rj.
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p(1)

Figure 2.7: Void and cluster blue-noise sampling patterns for different intensities d for
a sensor network graph. First row: Localization on the graph of the nodes selected
in a blue-noise sampling pattern. Second row: The pair correlation function R(p) for
the sampling patterns indicating with a diamond marker the value of A\,. Third row:
Power spectral density for the different blue-noise sampling patterns.

It is important to point out that, under the conditions stated in Theorem 4,
Theorems 8 and 9 show that the reduction of the redness is a desirable attribute for
any sampling pattern, which is something that can be considered with other sam-
pling approaches. Additionally, the tightness of the inequalities depends on the graph

structure which makes these results stronger in some families of graphs.

2.3.4 Stability and blue-noise sampling Sets

The selection of a sampling set, S, is not only associated to a possible unique
representation of a signal but also to the stability of its reconstruction when the samples
are corrupted by noise, or when the signal considered is not exactly bandlimited. This
stability can be measured considering the condition of the matrix Ug(S, :), which is the
matrix obtained by sampling Uy, on the rows indicated by S [31]. Several cost functions
can be formulated in terms of the condition of Ug(S,:), such that their minimum or
maximum values are given by the sampling set that provides the best condition [31].

The measures of stability provided in [31] can be equivalently obtained from
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a formal general definition of stability for sampling sets in arbitrary spaces [4]. In
particular, recalling the definition of stability presented in [4] for general sampling
schemes, we can say that PW,,(G) posses a stable sampling expansion or reconstruction
on S C V(G) if there exists C' > 1 such that ||z(S9)|2 < (C' — 1)||z(S)||3 Vx €
PW,(G). The value of C' provides a measure of stability associated to S; the larger
the value of C' the less stability we have. In the following theorem we provide an

estimate of C'— 1 in terms of Age.

Theorem 10. Let x € PW,(G). Then, if Ase > @, it follows that

w
ASC

N2

(S < #Hm(S)H% reRy (2.27)

- (i)

where @ is the bandwidth of 1, x1(S¢) = x(S¢) and x,(S) = 0.
Proof: See Appendiz 2.1/

From this theorem, it is important to point out that finding the sampling set .S
for which Age is maximum not only provides a unique representation of a bandlimited
signal, but also provides the sampling set in which the highest stability is achieved.
This result is consistent with the findings in [31].

As it was stated in Theorem 8, patterns with a low redness promote large
values of Age, therefore blue-noise sampling patterns not only promote uniqueness of

the representation but also stability in the reconstruction.

2.3.5 Connection with other works

The implications and properties of spreading the sampling points as far as pos-
sible from each other on non Euclidean domains were formally established by Pesenson
in [5] considering functions on compact Riemmanian manifolds. In [45-47] the concept
of blue-noise was used for the sampling of surfaces embeded in R? for applications in
computer graphics. This last result can be considered an application of the results

in [5] for two-dimensional manifolds embedded in R3. Tt is important to point out that
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the results in [45-47] rely on the mapping that can be established between the surface
and a subset of the 2-dimensional Euclidean domain, but they do not offer any insight
of how to deal with the problem in higher dimensions. In [48] a method is proposed
for the optimal location of sensors in Euclidean spaces. Exploiting the concepts of
entropy, mutual information and Gaussian processes (GPs), the problem of selecting a
subset of sensors among a predefined set of discrete positions, defined on a grid of an
n—dimensional Euclidean space, is addressed. To deal with a large number of possi-
ble sensor locations some relaxations based on lazy evaluations and local structure of
(GPs) are used.

In a different context, and before the emergence of graph signal processing,
functions defined on the vertices of a graph have been considered under the concept of
fitness landscapes [30,49], which were introduced as a tool for the study of molecular
evolution. In this context, the length of the autocorrelation function has been useful
for the analysis of a landscape. In particular, the correlation length of a landscape, x,

on a K-regular graph is given by [49]

g: 2(0)° (2.28)

The values of eqn. (2.28) provide an indication about how correlated are a given set
of samples of the landscape obtained using a random walk. As can be observed in
eqn. (2.28) this is proportional to the redness of . In this context, it is possible
to conceive blue-noise sampling patterns on graphs as landscapes with a low length

correlation.

2.4 Generating Blue-Noise Sampling Sets

Given that blue-noise graph signal sampling promotes the finding of good sam-
pling sets, it is natural to ask how such sampling patterns can be generated. An
algorithm that has been particularly successful in digital halftoning and that intu-
itively translates to graphs is the Void-And-Cluster (VAC) algorithm, introduced by
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Figure 2.8: Void and cluster blue-noise sampling patterns for different intensities d for
a community graph. First row: Localization on the graph of the nodes selected in a
blue-noise sampling pattern. Second row: The pair correlation function R(p) for the
sampling patterns indicating with a diamond marker the value of \,. Third row: Power
spectral density for the different blue-noise sampling patterns.
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Figure 2.9: Illustration of the redness, Ry = %222 5O of the void and cluster
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Ulichney [25]. VAC allows for the construction of artifact-free homogeneous dither-
ing patterns by iteratively measuring the concentration of minority pixels in a binary
halftone image, using a gaussian low-pass filter, and swapping the minority pixels in
the area of highest concentration with the non-minority pixel in the area of lowest
concentration. The adaptation of this algorithm to sampling signals on graphs consists
roughly speaking of the sequential computation of distances between sampling points
in such a way that points with short geodesic distances between them are relocated
trying to put them far from each other.

In order to exploit the above principle for the selection of sampling nodes on a
graph, a Gaussian kernel K (u,v) = exp(—I'(u, v)?/0) is evaluated on the set of geodesic
distances, I'. This provides a new set of distances that can be tuned according to the
parameter, o, where a small value of I'(u,v) leads to a value of K(u,v) that is close
to unity while a large value of I'(u,v) leads to a value of K(u,v) close to zero. As
a measure of how homogeneously distributed the sampling points are, the sum of all
distances from one node to the others via the kernel K is calculated as ¢ = K1 ;.
With this, an initial sampling pattern is generated selecting the m components of c at
random, where m = dN is the number of 1’s in the sampling pattern with density d.

The components of ¢ whose index is given by the location of the 1’s in s, are
then updated to be c(supp(s)) = > K(supp(s),supp(s)), where > K(A, B) is defined
by

> K(A,B)=> K(a;b;) a; € Ab; CB. (2.29)

ai,b;
The remaining components of ¢ are updated according to c(supp(s)®) = >_ K(supp(s),
supp(8)¢)—7, where 7 is selected as a large scalar value. With this update the distances
between sampling points in the pattern are represented as positive quantities without
adding the distances to other nodes. The distance between supp(s) and supp(s)® is
then represented with a negative value. Now the index of the component of ¢ with
the highest value will indicate the sampling point that is closest to the other sampling

points, and then the value of s at that index is forced to be 0 whereas in the index
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Algorithm 1 Void and cluster algorithm for graphs

Input: m: number of samples, o, NumIter.
Output: s: sampling pattern
Initialisation : s = 0, Indl2\=—1, IndB=-1.
Calculate K(7,7) = e for all 1 <1, < N.
2: ¢ = Klpyyg.
Get M as m nodes selected at random.
4: S(M) =1.
for r=1:1:NumIter do
6:  c(supp(s)) = 2_ K(supp(s),supp(s)).
c(supp(s)) = >_ K(supp(s),supp(s)°) — 7.
8:  s(argmax;{c(i)}) = 0.
s (argmin;{c(i)}) = 1.
10:  if IndA=argmax;{c(¢)} and IndB=argmin;{c(:)} then
break
12: else
IndA=arg min;{c(i)}.
14: IndB=arg max;{c(i)}.
end if
16: end for
return s

where ¢ is minimum, s is forced to be 1. Notice that the role of 7 is to make sure that
always c(supp(s)¢) < 0 and a variety of values for 7 would serve this purpose. Taking
into account that > K(supp(s),supp(s)¢) < N, it is possible to select 7 as any value
such that 7 > N.

Repeating the above process iteratively, it is possible to achieve a sampling
pattern with no clusters of 1s that exhibits a homogeneous distribution on V/(G).
The details of the VAC algorithm can be appreciated in Algorithm 1 with example
sampling patterns using VAC depicted in Fig. 2.7 for the Sensor Network graph and in
Fig. 2.8 for a community graph. From observation, one can see a clear distinction with
respect to random sampling when it comes to the nodes distribution of the sampling
set. The spatial and spectral blue-noise-like behavior is obtained as a byproduct of the
algorithm.

At this point, we note that the value of o in the kernel exp(—T'(u,v)?/o) plays a
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Figure 2.10: Averaged MSE using the reconstruction stated in (2.4) vs the sampling
rate considering the reconstruction of 100 different signals from its samples using several
sampling schemes and considering several graphs: (a) The graph G; and the signal
model SM1. (b) The graph G5 and the signal model SM1. (c¢) The graph G3 and the
signal model SM1. (d) The graph G and the signal model SM2. (e) The graph G,
and the signal model SM2. (f) The graph G3 and the signal model SM2.

critical role in VAC as it defines which sampling nodes are close enough to another one
in order to produce a relocation of the 1’s in the sampling pattern. Taking into account
the definition of A\, presented in previous sections, it is possible to establish a natural
connection between o and \,. In order to do so, we note that if the blue-noise sampling
pattern is ideally distributed on the set of nodes, V(G), then when u and v are sampling
nodes it follows that exp(—T'(u,v)?/o) ~ 0 if T'(u,v) > A. This criteria is considered
to be satisfied when o = A?/In(10), i.e selecting o in this way the exponential reaches
a value of 0.1 when I'(u,v) = Ap. The number of iterations NumIter is selected as a
multiple of N. In the numerical experiments performed, we have found that choosing
NumIter = N is enough for the algorithm to reach a stationary behavior. As indicated
in Fig. 2.9, there is a clear reduction of the redness of the patterns as they get better
distributed on the nodes of the graph. It is important to mention that the number
of iterations required for the redness to drop to its minimum value increases as the
value of d increases. This is related with the fact that, as d is reduced, there are more

possibilities for the relocation of the 1’s in the sampling pattern.
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Figure 2.11: Averaged MSE using the reconstruction method proposed in [1] vs the
sampling rate considering the reconstruction of 100 different signals from its samples
using several sampling schemes and considering several graphs: (a) The graph G and
the signal model SM1. (b) The graph G5 and the signal model SM1. (c) The graph
G5 and the signal model SM1. (d) The graph G; and the signal model SM2. (e) The
graph G5 and the signal model SM2. (f) The graph G3 and the signal model SM2.

2.5 Experiments

In order to evaluate the benefits of blue-noise sampling, a set of numerical exper-
iments is performed comparing the obtained results against state of the art techniques.
The simulations are performed considering different graphs and signal models. The

experiment is described by the following steps:

e For each graph model, a set of 100 signals is generated according to the specific

signal models selected.
e Each signal is sampled by means of different sampling schemes.

e The signal reconstructed from the samples is compared to the original one, and its

mean squared error (MSE) is calculated.
e The values of the MSE are averaged over 100.
The schemes of sampling considered for the experiment are the following:

e Blue noise sampling by void and cluster.
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e Sampling scheme proposed by Chen et. al. [21].

e Sampling scheme proposed by Anis et. al. [31].

e Sampling scheme proposed by Tsitsvero et al. [34].
The signal models are:

e Signal model 1 (SM1): A random signal of bandwidth & = 50, where the Fourier
coefficients are generated from the Gaussian distribution N'(1,0.5%). The samples

captured are contaminated with additive Gaussian noise such that the Signal to

Noise Ratio is SNR = 20dB.

e Signal model 2 (SM2): A random signal with Fourier coefficients generated from the
Gaussian distribution A/(1,0.5%). This signal is modulated on the spectral axes by

h(u), where

W) = 1 It p < pso (2.30)
6_4(U_H50) If ,U/ > ,U/E)O

The graphs considered in the simulations are different from each other in their nature
and represent typical graphs that can be found in different scenarios and applications.

The graph models used are:

e Graph Gi: A random sensor network with N = 1000 nodes. The weights in the
graph are given by the Euclidean distance between points. The maximum number

of neighbors for each node is 6.

e Graph G5: A community graph with N = 1000 nodes, 16 communities generated
using the GSP toolbox [50].

e Graph G3: A Barabési-Albert random network [11] with N = 1000 nodes.

The reconstructions are performed by means of eqn. (2.4) and by the interpolation
splines proposed in [1] and implemented in [50]. In Figs. 2.10 and 2.11, the performance
of different algorithms can be appreciated including VAC sampling. Notice that the
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Figure 2.12: Illustration of the redness R, = % ZéV:Q 3%2 for the sampling patterns

generated by different sampling approaches on different graphs. (a) Swiss roll graph;
(b) Sensor network graph; (c¢) Sphere graph; (d) Bunny graph.

decay rate of the error curves show consistently the benefits of blue-noise sampling.
The results obtained using VAC are close to the ones obtained in [31]. Additonally,
in Fig. 2.12, the redness of the sampling patterns obtained by different techniques
are presented considering different graphs. It is possible to see how low redness is a

characteristic attribute of good sampling patterns.

2.6 Conclusion

Blue-noise sampling on graphs is defined based on the traditional blue-noise
model associated with digital halftones. The properties and benefits of blue-noise
sampling on graphs are linked with theoretical results related to uniqueness sets in
sampling, showing why blue-noise patterns promote good sampling sets. We also ex-
tended void and cluster, a popular halftoning scheme to generating blue-noise sampling
sets on graphs. Numerical tests on different graphs corroborate the good qualities of
sampling with blue-noise. We specified conditions under which the traditional rela-

tionship between vertex-domain spreading and frequency behavior is preserved. We
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further note that the results obtained in this work can be extended for specific families
of graphs. The delimitation of the properties for the graphs under consideration could
lead to sharper bounds and could allow the definition of other quantities extensively
used in halftoning, like the principal frequency.

An overlooked benefit to blue-noise sampling is the wealth of computationally
efficient algorithms used in digital halftones that can be extended to graph sampling
without spectral estimation, namely error-diffusion where the produced halftone pat-
terns conform to the local spectral content of the image to optimally preserve salient
features like edges, gradients, flood fills, etc. Also, a very valuable attribute of error-
diffusion that is not widely recognized outside the halftoning community is that error-
diffusion can be trained to produce arbitrary spectral profiles (blue-noise, green-noise,
etc) and even designed to match the dither patterns produced by other means, includ-
ing ones with high computational complexity [24,51]. For graph signal sampling, this
opens up the possibility of error-diffusion algorithms trained to mimic sampling algo-
rithms based on spectral estimation and vertex-domain characteristics. We consider
that an interesting topic for future research would be the analysis and implications of
blue-noise sampling on graphs for signals that are bandlimited but not necessarily low
pass [52]. This could provide a generalization of the results that were stated in this
work.

It is important to point out that blue-noise sampling promotes large values of
Age, but there is not a guarantee about reaching the maximum value of Agc. For this
reason the stability is affected when the value of Agc is not large enough, which also
happens when m is not large enough. This aspect is something that can be improved in
future works adding additional constraints to the method used to generate blue-noise

sampling patterns.
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2.7 Proof of Theorem 4
Proof. As stated in [44] (page 168), by means of Sobolev inequalities, it is possible to

state that
1

vol(§2;)

where 9; is the isoperimetric dimension of €2; and Cj; is a constant that depends only

/,LL]‘ > ng (231)

k?"“

on ¢;. Taking into account the definition of Ap in Theorem 3 we do have that

C
Ap > min Céll,..., é‘P'L
vol (€))% vol(Q|p|)5|7"
if 61 = 0y = ... = djp| = 0, then it follows that

Ap>mind ——2 G
vol (€)% vol(Qp|)s

2.8 Proof of Theorem 5
Proof. In order to simplify notation let us represent z; = vol(£%;)*°/Cs and let us

consider the optimization problem

maximize  min{l/xy,1/xs,...,1/z1p}
{z1,22,.., :v|7;‘}

|P| (2.32)
subject to Zml =c, x;>0W

i=1

where ¢; is a constant. Now, taking into account that

|P| IP|

. 1
min{1/xqy,1/xs, ..., 1/x‘p|}2xi < szx— = |P|
i=1 i=1 ¢

min{l/xy,1/zs,...,1/zp} < |P|/c1.

Then, the maximum value of the objective function in eqn. (2.32) is |P|/¢;. Let

(1,23, ..., 2p) the optimal solution of (2.32), then it follows that |P|/c; < 1/z;.
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|P|} such that

Let us assume there exists a subset of indexes {j1,j2,..., 7, C {1,...,
|P|/er < 1/} which implies 27 < ¢;/|P|. Then it follows that
[P ol
sz (1P| —q>ﬁ+;xﬁ < (2.33)
ich implies & = 5 = ... = afp. [

which is a contradiction. Therefore z¥ = ¢;/|P| which implies z} = x}

2.9 Proof of Theorem 6
Proof. Let s € {0,1}" selected according to (2.19) and (2.20), then it follows that
s'Ls = Z'Pl s(V(9,)) Lo, s(V(£2;)). Additionally, directly from the definition of y
j i)

and using the Raleyigth coefficient we have u;; < s(V(Q;)) "Lg, s(V(£;)). Therefore
(2.34)

|P| [Pl
7)) Lo, s(V(Q;)) = s'Ls.

21y = 2 oV

Now, taking into account eqn. (2.31) we have
C P
P min —2— < Z 1, < s'Ls = ng(ﬁ)? (2.35)
T owol(Q)% = =2
and using lemma 11, we obtain
o (k)20 — [PV
N , Cs.
412y Min —
J {vol(Q )5 }
Now, when § = 9, = 0|p|, it follows that
|P|
C
;'PL < ZMJ <s'Ls= Zugs (2.36)
vol(2)5

and from lemma 11, it follows that
(12 + po)* (1 = [PI/N)?ool()5
ACsp2pin '

Rs <
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2.10 Redness inequality

In this section an important and useful lemma used in several proofs is stated.

Lemma 11. For any sampling pattern s : V(G) — {0, 1}, it follows that

m(l—%)2 < R.< m(p + pn)? (1——)
Doema 8 (02 T T T Apapy D0, 11e5(0)?

(2.37)

Proof. By Cauchy inequality we know that

2 N N
1
(1 . —> (Z N \/—_s )) < (Z W@(@)?) (Z E@(ﬁ)?) (2.38)
(=2 (=2
Now, as indicated in [53] when 1,8(¢) > 0 for all £ we have that
N N 2 2
~ 2 iA 9 o+ B) L
(; nes(() ) (; pdy ) < (—QW (Z Vies(() f 8(¢ >)
a+ B\ m\ 2
- (zm) m? (1- )
with 0 < a < pp < . Then, with o = py and § = uy it follows that
Aot Mo m 2
A@j;; <§:Mﬁ )(E:—@wf)gnﬁ<y—ﬁ) (2.39)

combining eqn. (2.38) and eqn. (2.39) we obtain

m(1- %) Y502 (pp pn)? (1-2)'m
> emn eS(0)? = ; My~ Apain S gy 1e8(0)? (2.40)
O

2.11 Proof of Corollary 7

Proof. The first part of the proof follows directly from the Definition 1. Now, let
us assume Ap > (1 + 1/a)w with a > 0, then according to Theorem 3 any signal
x € PW,(G) is uniquely determined by the values x'¢; = /|[V(Q;)[x"(&; o &;),

therefore if &(s;) = 2T (§; 0 §;),  is uniquely determined from a(s;). O
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2.12 Proof of Theorem 8
In order to prove Theorem 8, some preliminary lemmas and theorems are dis-

cussed.

Lemma 12. For any subset of nodes S C V(G) and sampling pattern s € {0, 1} with
supp(s) = S, it follows that

(2.41)

where m = ||s|lo = |5].

Proof. Let us consider the Laplacian matrix L. Multiplying on the left by s’ and
on the right hand side by s it follows that s"Ls = s"Ds — sTWs, which leads to
SO 18(€)? = wol(S) — s"W s and therefore S0, 1105(¢)? < wol(S). Now, taking into

account the Lemma 11 eqn. 2.41 is obtained. O

2.12.1 Proof of Theorem 8
Proof. Fuhr and Pesenson [27] show that if a subset of nodes S C V(G) is removable
with constant Ag, it follows that Ag > up(S), where pup(S) is the Dirichlet eigenvalue
of the induced subgraph! of S. This inequality is tight always that S UbS = V(G),
where bS' is the vertex boundary of S.

As stated in [27], pp(S) satisfy the following inequality

2/6
1n(S) > Cp <#(5)) (2.42)

where § is the isoperimetric dimension of the graph, Cs is a constant that depends only

on ¢ and vol(S) = s D(v,v).

! Definitions and inequalities about induced subgraphs can be found in [44]
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Now, taking into account that vol(G) = wvol(S) + vol(S¢) for any S C V(G),
and the lemma 12, we have that
vol(G) —vol(S) < wol(G) — (2.43)

and then

1 Yoy 5(0)?
“ <vol<G) - vol(5>) = (Uol(G) Yen 7802 —m? (1 - mf) B

Now, taking into account that Age > up(S€), it follows that

>l

ASC Z C5 ( 1 - é2 5 ™
vol(G) D -yy5-8(0)? —m (1-=

2.13 Proof of Theorem 9
In this section the proof of Theorem 9 is provided. Before this proof is presented

an important lemma is introduced.

Lemma 13. Let s : V(G) — {0,1} a binary signal defined on V(G) and let 3 =
1 — s, then it follows that

pes(0)® = s () (2.45)

Proof. Let us consider the Laplacian matrix L and multiply on the left by sT and on

the right by s, it follows that
s'Ls=(1-35)"L(1-5)=5"Ls. (2.46)
Now, taking into account that x"Lx = Zévzl we(0)?, it follows that
N N
D ns(l) = s (). (247)
=2 (=2

Notice that p; = 0 and consequently the sum can be computed for ¢ > 2. O]
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2.13.1 Proof of Theorem 9
Proof. Taking into account that
(La) (v) = Y (x(v) —x(u)) W(v,u) (2.48)
ueV(Q)

and wg(v) = >, W(u,v). It is possible to infer that

(Ls) (v) = wslv) i ve st (2.49)
—wge(v) if veSs

where § =1 — s. Now, taking into account eqn. (2.49) and Lemma 13 it follows that

N
gTLg = Z Mg§(€)2 = Z w‘%(v)
(=2

veSe

which leads to

K> (Z pes(0)* — 7)

(=2

where 7 is given by 7 = maxg, ZUG{SC\v/} wg(v)? and taking into account Lemma

m? (1 — 2)° :
Ks > (#—”O

D i 7, 8(0)?

11, it follows that

2.14 Proof of Theorem 10

Proof. Let us consider € PW,(G) written as ¢ = & + x2 with x1(S°) = x(5°),
x1(S) = 0, 2(S) = x(5) and x»(S°) = 0. From eqn. (2.5) we have that |z|3 <
(1/A%.)
From this we have |13 < (1/A%)0% (||1||3 + ||z2]|3) leading to eqn. (2.27). O

Lz,||?. Now, using Bernstein’s inequality [27,54] we get ||@1]|3 < (1/A%)0% ||z ||3.
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Chapter 3

LOW COMPLEXITY BLUE-NOISE ALGORITHMS

3.1 Introduction

As shown in the previous chapter, blue-noise sampling on graphs relies essen-
tially on the simple principle of spreading up the sampling nodes of a sampling pattern.
Having shown that there is a strong connection between the characteristics of these
sampling patterns and the theoretical measures of the quality of sampling sets, we
state the basis for the development of low computational cost algorithms that can fol-
low these basic principles. The void and cluster algorithm proposed before provides
sampling patterns close to the expected ideal blue noise sampling pattern relying on
the use of geodesic distances. In this chapter we propose to exploit random walks on
graphs and the concept of error diffusion, extensively used in digital halftoning, in
order to generate blue-noise like sampling patterns. The notation and symbols used in

this chapter are the same used in Chapter 2.

3.2 Random Walk Sampling

/ »
.,‘//“\v i

d(u,v) < A
e v /d(u,v)>/~\

Figure 3.1: Illustration of how a random walk can be use to select sampling points that
can be far away an approximate distance of \.
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Algorithm 2 Random Walk Sampling: RWS-1

Input: W, )\, numiter.

Output: A blue-noise-like sampling pattern, s.
Initialisation : s = 0y, count = 0
Randomly select v € V(G).

2: s(v) =1
while count < numiter do
4: di =0
while d;, < )\, do
6: Select u € N (v) at random
dy = d(u,v) +dy
8: vV=1U
end while
10:  count = count + 1
s(u) =1
12: V=U
end while

14: return s.

The central idea in the definition of a blue-noise sampling pattern, is related
with the minimum inter-distance between closest points. Ideally, this distance should
be \,, which is graph dependent. Therefore, a blue-noise-like sampling pattern on
the graph can be built jumping from one sampling node, u, to other nodes marking
every node, v, that is at a distance greater than a given value X, i.e., d(v,u) > Ap.
Figure 3.1 illustrates the intuition behind this idea. This approach offers a simple way
to mark the sampling nodes at the expense of using a distance between nodes that is
not necessarily geodesic, as it would be calculated as the length of a path followed by
the random walk. These ideas are formalized in Algorithm 2 that we called random
walk sampling (RWS1), where N (v) indicates the set of nodes that are connected to a
given node v.

It is important to remark that because the distance considered in the random
walk is not geodesic, a rough estimate of )\ is enough to run the algorithm and therefore
no prior calculation before the sampling set search are needed. Indeed, as it will be
shown in later sections, the guarantee of a minimum interdistance is going to be affected

by the density of the sampling pattern as well as the size of the graph. However,
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Figure 3.2: Vertex-domain distribution of a blue noise sampling pattern generated by
means of Algorithm 2 considering different densities on a sensor network of 2000 nodes.
Left: density d = 0.1. Right: density d = 0.2.

Algorithm 2 offers an extremely low computational cost, O(numiter[2:]), where w
is the average of nonzero weights in W. Additionally, the results for some densities
exhibit characteristics on the vertex domain close to the ideal blue-noise sampling

patterns, as can be appreciated in Fig. 3.2 for a density of d = 0.1.

3.2.1 Ensuring a minimum distance and a minimum number of sampling
nodes

Algorithm 2 exhibits a characteristic that is convenient when it comes to per-

form computations in large graphs, it requires only knowledge of the local structure

around one node and no pre-calculations are needed for the search of the sampling set.

Additionally, this local information is not stored as the random walk is performed on

the graph. As a consequence, it is not possible to guarantee that two sampling nodes

are not going to be connected by an edge. It is important to point out that the number
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of sampling nodes cannot be controlled in advance. In this subsection we introduce a

variant of Algorithm 2 in which we add the following constraints:
1. (C1) The sampling nodes cannot be connected by an edge.

2. (C2) The information of the nodes visited when marking the sampling nodes is

stored.
3. (C3) The number of sampling nodes is fixed.

The first constraint is ensured as a post processing stage after having performed the
random walk on the graph. Line 23 of Algorithm 3 shows how this condition is imposed.
It is worth noticing that imposing this constraint will change the number of ones in
the sampling pattern. Additionally, for high sampling densities this constraint is not
well suited and may not be applied.

The second constraint is imposed taking into account not only the nodes visited
in the random walk, but also the neighbors of those points. In this way, we try to
maximize the distance between sampling points, and also promote a random walk that
is not concentrated on one region of the graph. Algorithm 3 shows how this task can
be performed by means of sets T', () and R. The set @) is meant to store the neighbors
of those nodes that have not been wvisited on the random walk. In that way, we can
promote a random walk that is spread enough on the vertex domain. The set R keeps
track of the nodes that are marked as sampling nodes, while set T" has the cumulative
storing of the neighbors locally stored in Q.

The imposition of the first and the second constraint affects the total num-
ber of sampling nodes generated by the algorithm. In some applications, the use of
Algorithm 2 or Algorithm 3 would be satisfactory, but in some others the number of
sampling points is fixed and the optimal distribution of those points has to be obtained.

If the number of sampling points, m, has to be fixed, challenges in two scenarios
are faced. On one side we have the case where the number of sampling nodes is larger

than the number of desired samples, and on the other side we have the case where
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Algorithm 3 Random Walk Sampling: RWS-2

Input: W, A\, numiter.

Output: A blue-noise-like sampling pattern, s.
Initialisation : s = 0y, count = 0
Randomly select v € V(G).

2: S(U) =1
while count < numiter do
4: dy=0,T=0,R=0.
while d;, < )\, do

6: Q= N(v)
Q=0Q\(T'UR)
8: if Q =0 then
dt - )\b
10: v € supp(s)
else
12: u€eQ
dy = W(v,u) +d,
14: R = {U} UR
T=QuUT
16: vV =1U
end if
18: s(u) =1
end while
20: count = count + 1
s(u)=1

22: end while
z(N(v)=0 Vs(v)=1

24: return s.
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Algorithm 4 Random Walk Sampling: RWS-3

Input: W, Ay, numiter, m: number of sampling nodes.
Output: A blue-noise-like sampling pattern, s.
Initialisation : s = 0y, count = 0
Randomly select v € V(G).
2: s(v) =1
while count < numiter do
4 dy=0,T=0, R=0.
while d; < )\, do

6: Q= N("U)
Q=Q\(TUR)
8: if Q =0 then
dt - )\b
10 v € supp(s)
else
12: u € Q
dy = W(v,u) + d;
14: R={v}UR
T=QuUT
16: v =1U
end if
18: s(u)=1
end while
20: count = count + 1
s(u) =1

22: end while
x(N(v)=0 Vs(v)=1
24: if ||s||o > m then
Get S C supp(s), with [S| =m
26:  s(9)=1,s(59=0
end if
28: if ||s|lo < m then
Get J = {v € supp(1 — s) : N(v) € supp(1 — s)}
30 s(J) =1, with J C J, |J| = min{m — ||sl|o, |/|}
end if
32: while ||s||o < m do
q(v) = |N(v) Nsupp(s)‘| if v € supp(s) and q(v) =0 if v € S°
34:  Get J, the m — ||s||o indexes where g has the largest value
U =¥ ly, with U; = {u;} and w; € N(v), v € J
36: s(U)=1
end while
38: return s.
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the number of selected sampling nodes is lower than m. The solutions we propose to
deal with these issues differ substantially for each case. In particular we propose the

following solutions:

¢ When the number of sampling points is larger than the desired number
of samples m: The impositions of the first and second constraints considered
above focus on the spreading of the nodes and try to ensure a minimum interdis-
tance between sampling nodes. As a way to still preserve the overall distribution
of the sampling nodes and reduce the number of sampling nodes, we discard the

excess uniformly at random.

e When the number of sampling nodes is lower than the desired number
of samples m: This scenario exhibits more difficulties than the previous one,
as the random selection of a set of nodes on the complement set can affect seri-
ously the characteristics and benefits achieved by the imposition of the first (C1)
and second (C2) constraints i.e., the uniform spreading and minimum distance
between sampling nodes. To deal with these challenges, we propose a two-stage
solution. In the first stage we fill the voids identifying nodes are not selected in
the sampling pattern and whose neighbors are not selected either. On the second

stage, we select at random the nodes that are needed to complete the pattern.

We formalize these ideas in Algorithm 4 that we call fast blue-noise sampling.

3.3 Error Diffusion on Graphs

Error diffusion in traditional halftoning represents an efficient way to generate
dither patterns and has been extensively used for the generation of blue noise-like
sampling patterns [39,51]. The basic principle in error diffusion relies on the idea of
using the error obtained as the difference between a signal at a given pixel and its
halftone approximation, to influence the halftone approximation of the signal in other
pixels. The way this error is diffused is known as the error diffusion algorithm. The

application of these ideas to build sampling patterns on graphs is quite natural as
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Figure 3.3: Pictorial illustration of how the error is diffused in the Error diffusion
algorithm. In (a) the error calculated in v is diffused to all the neighbors of v; and in
(b) it is illustrated that the diffusion of the error from v, is diffused only to those nodes
that have not been visited. Notice that the the contribution of the error is normalized
by the weights of the edges that connect the actual node to the nodes to which the
error is going to be diffused.

Figure 3.4: Illustration of a Blue-Noise sampling pattern generated on a sensor network
with NV = 50000 nodes.
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nodes are the direct analogous of the pixels in an image and the edges define how
the interaction between nodes is defined. The set of edges F(G) in the graph offer
the structure over which an error can be diffused. The main difference between the
diffusion of the error in a regular rectangular grid and the graph will rely on the fact
that there is not a standard way to label the nodes in order to visit them when it comes
to the generation of the diffusion error. However, it will be possible to follow any given
labeling of the nodes in the graph and diffuse the error according to that ordering.
Error diffusion on graphs proceeds as follows. Given a constant signal @ =
(%) 1yx1 with amplitude d = m/N and following the ordering given by the labeling
of the nodes in the graph, an error is generated in the first node as e, = s(1) — (1),
where s(1) = 1 if @(1) > ¢, or s(1) =0 if (1) < ty,. Then, the value of e, is diffused
to the neighbors of the first node, N(1), as e(i) = %, i € N(1). This
process is repeated iteratively following the ordering given by the labels of the nodes
in such a way that the error at the node v would be computed as e, = s(v) — u with

s(v) = 1if u >ty or s(v) = 0 if u < ty, and u = x(v) — e(v), diffusing this error

W (v,i)ep
2ien () W,i)’

local connections of each node. Notice that this diffusion of the error is completely

as e(i) = e(i) + In this way, the error is cumulated according to the
equivalent to the one performed in traditional halfoning [39]. The only difference is
that the concept of directions on V(G) is not defined and therefore the error is diffused
as dictated by the neighbors of the nodes that are visited. This represents a substantial
difference with its classical counterpart.

The steps and details of this approach are given in Algorithm 5. In Fig. 3.4
a sample of an error diffusion pattern is depicted indicating the distribution of the

sampling points on V(G) on a large sensor network graph.

3.4 Computational Complexity
We now compare the computational complexity of the developed algorithms
with respect to the state of the art techniques and with respect to the void and cluster

algorithm. This complexity is considered in two separated components. The first
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Algorithm 5 Error diffusion Algorithm on Graphs

Input: ¢, =0.5,m
Output: s: sampling pattern
Initialisation : x© = (%) Ivy1, V=0, e=0pyy.
1: forv=1:1:]V|do

u=x(v) —e(v)
if u > t;, then

s(v) =1
else

s(v)=0
end if
e, =8(v) —u
for i € N'(v) do

. . W(v,i)ep

1 e(i) =e(i) + m
11:  end for
122 V=Vu{v}
13: end for
14: return s

@

component states the calculations that are involved before the sampling set search
(SS), while the second part states the cost of finding the sampling set assuming the
knowledge of some quantities. Table 3.1 illustrates the computational cost of void
and cluster (VC), the approach in [31], fast blue noise sampling (RWS-3) and error
diffusion.

It is important to point out that approaches like [31] and void and cluster
require previous calculations before performing the search of the sampling sets, while
error diffusion and RWS-3 do not. This is a key component when it comes to the
sampling scenario in huge graphs, where pre-calculations cannot be afforded.

Notice that in table 3.1 ¢ is the power of the Laplacian considered in the appli-
cation of [31], n corresponds to numiter in Algorithm 4, m is the number of sampling
nodes, k is the bandwidth of the signals considered, w represents the average of the
non-zero elements in W, dg, is the average number of neighbors of each node, « is
a constant associated to the difference between the desired number of sampling nodes

and its effective value and T} is the average number of iterations required for the
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convergence of a single eigendecomposition pair.

Table 3.1: Computational Complexity.

Case VC Anis [31] RWS-3 Error diffusion
pre-SS  O(N(|E(G)|+ N)logN) O(q|E(G)|kTy) 0 0
SS O((N =1)(m+2)) O(Nk) O@[2] +2N +m—a) O(N(2+ daeg))

3.5 Numerical tests

In order to test the algorithms developed in this chapter in terms of the re-
construction error, we perform a set of numerical experiments considering two main
scenarios: medium size graphs and large size graphs. In the first case, we consider
graphs with one thousand nodes while in the second case we use graphs with fifty
thousand nodes. In the first part of the experiments, we can use the approaches con-
sidered in the previous chapter. However, in the second case, it is impossible because

of the high computational cost.

3.5.1 Medium Size Graphs
Considering three graphs and two types of signal models a set of sampling and

reconstruction simulations is performed. The graphs considered are:

e Graph Gi: A random sensor network with N = 1000 nodes. The weights in
the graph are given by the Euclidean distance between points. The maximum

number of neighbors for each node is 6.

e Graph G5: A community graph with N = 1000 nodes, 16 communities generated
using the GSP toolbox [50].

e Graph G3: A Barabasi-Albert random network [11] with N = 1000 nodes.

The signal models considered are
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e Signal model 1 (SM1): A random signal of bandwidth & = 2500, where the
Fourier coefficients are generated from the Gaussian distribution N(1,0.5). The
samples captured are contaminated with additive Gaussian noise, making the

Signal to Noise Ratio to be SNR = 20dB.

e Signal model 2 (SM2): A random signal with Fourier coefficients generated from
the Gaussian distribution N(1,0.5). This signal is modulated on the spectral

domain by the function hA(u), defined as

1 It p < pasoo
674(#'7#50) If H/ > M50

The details of these simulations are the following:
e We generate a set of 100 signals for each signal model.

e Each signal is sampled considering several approaches and then reconstructed by

means of eqn. (2.4), calculating the mean squared error (MSE).
e The values of MSE are averaged.
The sampling approaches considered for this experiment are

e Uniform random sampling.

Blue noise sampling by void and cluster.

Blue noise by error diffusion.

Blue noise sampling by RWS-3 (fast blue noise).

Sampling scheme proposed by Chen et. al. [21].

Sampling scheme proposed by Anis et. al. [31].

Sampling scheme proposed by Tsitsvero et. al. [34].
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Figure 3.5: Averaged MSE considering different sampling approaches. From left to
right we consider the graphs G1, G5 and G35 respectively. First row is associated to the
experiments considering the signal model SM 1, while the second row is associated to
SM?2.

The results of these experiments are given in Fig. 3.5. Notice that the perfor-
mance exhibited by error diffusion is close to the one obtained by the other approaches
in graphs whose local isoperimetric dimension is homogeneous, like the sensor network
for instance. However, in graphs like the community type its performance is still not
competitive. In the case of the fast blue noise, we observe a poor performance on the

sensor network, but a superior behavior on the community graph.

3.5.2 Large size graphs

The benefits of blue-noise sampling on graphs can be better appreciated when it
comes to the analysis of signals on large graphs. The numerical evidence on medium size
graphs shows that blue-noise can compete with the optimal state of the art approaches
for the sampling of bandlimited signals, and the scenario in large graphs is substantially
different as the applicability of approaches like the ones proposed in [21], [31], and [34] is
not an option because of the computational complexity. The details of these simulations

are follows:
e We generate a set of 100 signals for two signal models.

e FEach signal is sampled considering several approaches and then reconstructed by

means of eqn. (2.4), calculating the mean squared error (MSE).
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e The values of MSE are averaged.
The sampling approaches considered for this experiment are
e Blue noise by Error Diffusion.
e Blue noise sampling by RWS-3 (fast blue noise).
e Uniform random sampling.
The signal models considered are

e Signal model 1 (SM1): A random signal of bandwidth & = 2500, where the
Fourier coefficients are generated from the Gaussian distribution N'(1,0.5). The

samples captured are contaminated with additive Gaussian noise, making the

Signal to Noise Ratio to be SNR = 20dB.

e Signal model 2 (SM2): A random signal with Fourier coefficients generated from
the Gaussian distribution N(1,0.52). This signal is modulated on the spectral

domain by the function h(u), defined as

1 It p1 < piasoo
h() = >
e~ 4n—p2500) If 1 > o500

The graphs used in the simulations are:

e Graph Gy: A swiss-roll graph with N = 50000 nodes. The weights are given by

the Euclidean distances between nodes.

e Graph Gs: A sphere graph with N = 50000 nodes. The weights are given by the

Euclidean distances between nodes.

e Graph G3: A random sensor network with NV = 50000 nodes. The weights in
the graph are given by the Euclidean distance between points. The maximum

number of neighbors for each node is 6.
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Figure 3.6: Averaged MSE for several sampling approaches on large graphs (N = 50000
nodes). From left to right we consider the graphs G, G5 and G3 respectively. First row
is associated to the experiments considering the signal model SM1, while the second
row is associated to SM2.

The results of these experiments are given in Fig. 3.6. We observe that error diffusion
outperforms substantially random sampling, while fast blue noise sampling still exhibits

some instability when the number of samples is close to the bandwidth of the signal.

3.6 Admisible partitions of V(G) and future work

Now we discuss theoretical results that could represent a promising tool for
the development of low complexity algorithms for sampling signals on graphs. This
theoretical framework was developed by Fuhr and Pesenson [27] using a novel approach
to quantify the quality of a sampling set, using partitions of V(G) and quantities that
can be calculated without requiring spectral decompositions. This represents the basis
of the theoretical analysis that will be developed in the future to further advance the
low complexity blue-noise algorithms discussed in previous sections. Moreover, it will

serve as a tool to understand the performance of techniques like error diffusion.

3.6.1 Previous Theoretical Results
Let us consider a partition P of the set of nodes V(G) in the graph G as
P ={So,S1,...,S,}, and let us define the following quantity for any subset A C V(G)

wa(v) => Wiu,v), (3.3)

ueA
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which is a measure of the connectivity between the node v and A. Now, given the

partition P we let

D, = max {ws,,,(v)} (3.4)
VES)
and
Ky, = min {ws,(v)}. (3.5)
vESp41

The set S is called the initial set of the partition P. The following theorem is presented
in [27].

Theorem 14 ( [27]). If P = {So,S1,...,Sn} is a partition of V(G) with D;, K; finite
and K; >0 for alli=0,...n, then for all1 <p < oo,1 <qg<oo with1/p+1/q=1,
and & € DP(V) with x|s, € L,(Soy), we have

n m—1 % n m m—1 %
D 1 D;
|z, < ( Hﬁ,) sl + (Z (Z 7 <H ?>>) |V, (3.6)
0 j=0 "7 K=\,

m= m=1 \k=1

where DP(V) is the space of functions x : V(G) — C with |V, < co and

P

1Vel,= {3 5latw) — o)P W) (3.7

u,veV(G)

2
Additionally, in [27], it is established that HL:UH — ||Va|2 for all z € 2(Q)
2
contained in the domain of L.
From these results it is possible to conclude that for any signal @ € PW,(G)

the initial set Sy of a given partition is a uniqueness set when w < 1/0% ,, where 6%,

m—1 Dz
(I15) -

The problem of finding the best sampling set is then reformulated as the problem of

is given by

n

m=1

1
Ky

building partitions of V(G) such that the value of 6% , is minimized.
Notice that, as pointed out in [27], building the optimal partitions is a combi-

natorial problem. However, if this process has to start from an arbitrary set of nodes,
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Figure 3.7: Pictorial illustration of a possible partition of V(G), intended to maximize
K; and to minimize D;.

it would be possible to eventually design the best possible partitions given the starting

set of nodes given.

3.6.2 Minimizing 03,
Despite the fact that the minimization (572;,2 is a computationally expensive task,

eqn (3.8) allows to establish some basic desirable properties of a given partition P of

V(G). The subsets Sy in P should be selected such that:
e The values of K; are as large as possible.
e The values of D; for ¢ > 1 are as small as possible.

These basic principles can be used in order to build sequences step by step. In Fig. 3.3
a pictorial illustration of a partition of V(G) is shown. It is intended to have large

values for K; and low values for D;, always having K; > 0.

3.7 Conclusions and Future work
In this chapter we presented two types of algorithms for a low complexity com-

putation of blue-noise patterns on graphs. We exploited the properties of random
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walks on graphs for the generation of patterns with a typical spreading of the sam-
pling nodes, and we proposed an extension of the error diffusion algorithm extensively
used in digital halftoning. The results obtained for large graphs are promising as they
provide lower reconstruction error than random sampling. Additionally, at the end of
the chapter, we proposed to explore the theoretical framework developed by Fuhr and
Pesenson in [27] as a tool for the design of sampling patterns and also as a framework

that would allow a better understanding of techniques like error diffusion.
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Chapter 4

UNIQUENESS SETS IN THE PALEY-WIENER SPACE OF
COGRAPHS

4.1 Introduction

The analysis and processing of signals on graphs has become a central topic
in data science, and problems like sampling, filtering, and representation have been
considered extensively in the literature [12,21,64-66]. These results are promoted for
arbitrary graphs in general without considering the differences among several classes
of graphs. As a consequence, some results that could be well suited for some graphs
might not be the best option for others, and the limitations of a given approach are
not completely highlighted.

In this work, we study the uniqueness sets for signals defined on cographs and
provide an efficient algorithm for their closed form solution calculation. Studying
the structure and tree representation of cographs, we show how the uniqueness set of
bandlimited signals can be obtained by simple operations on small size graphs, without
requiring spectral decompositions or the calculation of geodesic distances. The use of
cographs is linked to crucial applications in orthology analysis [59,60] and community
detection [61]. Additionally, we provide a closed form solution for the sampling sets of
threshold graphs. Taking into account that threshold graphs is a subfamily of cographs,
we exploit the properties of a tree representation in order to calculate the uniqueness
sets directly from the binary sequence that is traditionally used to represent threshold
graphs.

Given the potential applications of cographs and threshold graphs for the rep-
resentation of arbitrary graphs, we perform a set of numerical experiments in which

we evaluate the effectiveness of the uniqueness sets of graphs that are obtained from
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perturbed cographs. The numerical experiments show that these sampling sets are
robust under changes of a considerable number of edges. This opens the door for the
idea of considering the construction of a graph from data, forcing the resultant graph
to be a cograph or threshold graph. We also point out that the cotree structure itself

has potential applications on the analysis of power distribution grids [67].

4.2 Background and preliminaries

We will use the following notation. For any n € N, we let [n] := {1,...,n}. We
identify vectors f = (fi,..., f,)T € R® with functions f : [n] — R, where f(i) = f;.
Given a n x n matrix A and subsets S,7 C {1,...,n}, we will denote by Agr the
submatrix of A with rows in S and columns in 7. We also define Ag := Agg when
S =T to simplify the notation. Similarly, for a vector v € R", we will denote by vg
the restriction of the vector to its entries corresponding to indices in S. The matrices
in R™*™ with all entries equal to 0 and 1 are denoted by 0,,x, and 1,,y, respectively.
Similarly, the vectors in R™ with all entries equal to 0 and 1 are denoted by 0,, and 1,,.

Central to this paper is the notion of a uniqueness set.

Definition 2. Let U be a subspace of R™. We will say that a subset S C [n] is a
uniqueness set for U if for all g, h € U, the condition g(i) = h(i) for all i € S implies
g = h. A uniqueness set will be said to be minimal if it does not contain a uniqueness

set as a proper subset.

In other words, a set S C [n] is a uniqueness set for U if the entries of any vector
f € U are entirely determined by its entries in S. Note that, equivalently, a subset
S C [n] is a uniqueness set for U if f(i) = 0 Vi € S implies f = 0,,. The following

simple result provides a useful way to test if a given set is a uniqueness set.

Proposition 15. Let U be a k-dimensional subspace of R and let {w;, ..., w} CR"
be any basis of U. Let W be the n x k matriz with columns wy, ..., wg. Then the

following are equivalent for a subset S C [n]:

1. S s a minimal uniqueness set for U.
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<
PW(G)
Figure 4.1: Representation of the spaces PW,(G), PW? and CPW,(G).

2. |S| =k and det Wgp # 0.

Proof: See Appendix 4.7.2

4.2.1 The Paley—Wiener space of a graph

Let G = (V, E) be a simple graph with adjacency matrix A and graph Laplacian
Ls :=D — A, where D = diag(ds, . ..,d,) and d; is the degree of the i-th vertex of G.
Let 0 =X\ < X\ < --- < )\, denote the eigenvalues of Ly, and let 1, = wq,...,w, €
R™ be an associated orthogonal basis of eigenvectors. We identify functions f : V(G) —

R to vectors in RV(G),

Definition 3. For w > 0, the Paley—Wiener space PW,(G) is given by
PW,(G) := span{w; : \; < w}.
The Modified Paley-Wiener space PWC (G) is defined as
PW?(G) := span{w; : i > 2 and \; < w}.

If0 < w < Ay with Ay > 0, we set PW?(G) := 0. Finally, we define the Complementary
Paley-Wiener space CPW,,(G) as

CPW,(G) = span{w; : \; > w}.
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Clearly, PW,(G),PW?(G) and CPW,(G) are vector spaces over R of dimension
dim PW,,(G) = k, dimPW?(G) = k — 1 and dim CPW_(G) = n — k + 1, where k
is the largest integer in [n] such that Ay < w. Notice that PW(G) = PW,(G) N 1|LG‘.
If w > Ay and k is the largest integer in [n| such that A\, < w, then the modified
Paley-Wiener space PW? (G) is a subspace of RIV(@) of dimension k — 1. For the
spaces PW,,(G), PW2(G), and CPW,(G), the value of w is going to be refered to as
the bandwidth of the space.

Remark 16. When some eigenvalues of L are repeated, there is some ambiguity in
choosing a basis of eigenvectors of Lg. When choosing such a basis below, we will
always assume 1, is an eigenvector associated to \y = 0, and that all the eigenvectors

are orthogonal.

Proposition 15 immediately implies the following characterization of uniqueness

sets for PW(G), PW2(G), and CPW,,(G).

Corollary 17. Let G be a simple graph on n vertices with Laplacian Lg. Let W =
[wy, ..., w,] € R™™ be any matriz whose columns form a basis of eigenvectors asso-
ciated to the eigenvalues 0 = A\ < Ay < --- < X\, of Lg. Also, w > 0 and let k be the

largest integer in [n]| such that \y, < w. Then the following are equivalent for a subset

S CV(G):
1. S is a minimal uniqueness set for PW,(G).
2. We have |S| = k = dim PW(G) and the matriz W is non-singular.

Corollary 18. Let G be a simple graph on n vertices with Laplacian Lg. Let W =
(w1, ..., w,] € R"™™ be any matriz whose columns form a basis of eigenvectors asso-
ciated to the eigenvalues 0 = \y < --- < A\, of Lg. Also, let w > Xy and let k be the

largest integer in [n] such that \y, < w. Then the following are equivalent for a subset

S CV(Q):

1. S is a minimal uniqueness set for PW°(Q).

69



2. We have |S| =k — 1 =dimPW_(G) and the matrit Wg 2y} is non-singular.

Corollary 19. Let G be a simple graph on n vertices with Laplacian Lg. Let W =
(w1, ..., w,] € R™™ be any matriz whose columns form a basis of eigenvectors asso-
ciated to the eigenvalues 0 = Ay < Ay < --- < A\, of Lg. Also, w > 0 and let k be the
largest integer in [n] such that \y, < w. Then the following are equivalent for a subset

S CV(G):
1. S is a minimal uniqueness set for CPW,(G).

2. We have |S| = n —k + 1 = dimCPW,(G) and the matric Wg g, n} is non-

singular.

Remark 20. In the case where Lg has repeated eigenvalues, notice that Corollary 17

holds for any choice of a basis of eigenvectors of L.

In traditional Fourier analysis, a common practice relies on separating the anal-
ysis in frequency of the signal in two essential components. A first component, called
the dc value, corresponds to the energy of the signal associated to the complex exponen-
tial of frequency zero, and a second component which contains the energy associated
to all the remaining complex exponentials. This second component describes how fast
the signal changes and determines where the signal can be sampled in order to have
a unique representation. Informally speaking, this is way to state that the signal is
essentially determined by the sampling set required to preserve its wvariation behav-
ior. Now, it is important to notice that any signal in PW?2(G) can be considered the
representation of a signal in PW,,(G) excluding its dc component. Therefore, there is
a close relationship between the uniqueness sets of PW?(G) and of PW,,(G). This is

formalized in the following theorem.

Theorem 21. Let G be a graph on n vertices and let U the matriz whose columns form

an orthonormal basis for PW,,(G) and let S a uniqueness set of PW2(GQ). Then, T is
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a uniqueness set of PW,(G) if and only if T = SU{v} where v € S¢. In particular, v

is any node for which x(v) # 1, where x is given by
T = Up) 1y & (4.1)

with
o =Ug iy Lisixa- (4.2)

Proof: See Appendix 4.7.3

Theorem 21 is going to play a central role in the calculation of sampling sets

of cographs as in some cases it is more convenient to work with PW?(G) than with

PW.(G).

4.3 Cographs

Cographs are a subclass of graphs that are built from simple operations and have
been considered as modeling tools in evolutionary biology and the study of evolution
of diseases among different species. The fact that cographs are define in terms of only
two basic operations endows these type of graphs with particular structures for the

uniqueness sets that we study in this chapter.

4.3.1 Definition and characterizations

Definition 4. Let G = (V(G),E(G)),H = (V(H),E(H)) be two graphs on disjoint
sets of vertices. The join of G and H, denoted GV H, is the union of the two graphs
G, H, together with all edges joining V(G) and V(H). Formally, V(GV H) =V (G)U
V(H) and ab € E(GV H) if and only if either

e abe E(G) orabe E(H); or
e acV(G), beV(H) orace V(H) and b e V(G).

Recall that the graph complement of G is the graph G¢ := (V(G), E(G)°). The union
of two graphs G and H on disjoint sets of vertices is the graph on V(G U H) =
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Figure 4.2: Top: Representation of the union operation between two graphs. Bottom:
Representation of the join operation of two graphs.

V(G) UV (H) where ab € E(GU H) if and only if either ab € E(G) or ab € E(H).
Using these notions one can equivalently define GV H = (G°U H°)°.

Definition 5. A cograph (or a complement-reducible graph) is a graph defined recur-

siely as follows:
1. Isolated vertices are cographs;
2. If G and H are cographs on disjoint vertex sets, then so is their join GV H;
3. If G and H are cographs on disjoint vertex sets, then so is their union G U H.

In other words, cographs are graphs that can be constructed from isolated ver-

tices by joints and unions.

Remark 22. Alternatively, cographs are often defined as follows [58]:
1. An isolated vertex is a cograph.
2. If G is a cograph, then so is its complement G°.
3. If G and H are cographs, then so is their union G U H.

Clearly graphs that can be constructed from joins and unions can be constructed from

complements and unions since GV H = (GUH®)¢. Conversely, if G can be constructed
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ﬁ

(G° U H®"

Figure 4.3: Top: Representation of the union operation between two graphs. Bottom:
Representation of the join operation of two graphs.

(%} V2 U3 Vg4 s

(a)

Figure 4.4: (a) The cotree representation of the cograph G =
({vr} U{ve}) U ({vs} V{vs})) vV {vs}. (b) The cotree representation of the co-
graph G depicted in (a) using complements and unions. (c) A tree representation
showing the equivalence G V Gy = (G§ U G5)°. (d) Representation of a cotree
indicating the construction of a cograph from smaller size cographs G, G5 and G3.
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from complements and unions, then every non-trivial connected induced subgraph of G
has a disconnected complement (see [58, Theorem 2]). Thus, if G1,...,Gy denote the
connected components of G¢, then G = G{V ---V G and GY,...,Gj are induced
subgraphs of G. It follows easily that G can be constructed from joins and unions and

so the two definitions are equivalent.

Cographs can be characterized in several interesting ways. The following result
shows that they are precisely the graphs with no induced paths of length 3 or more.
Denote by P, the path graph on n vertices.

Theorem 23 ( [58, Theorem 2|). A graph is a cograph if and only if it does not contain

Py as an induced subgraph.

4.3.2 Representations of Cographs

Cographs are traditionally represented by a rooted tree or cotree in which the
main nodes indicate the operations of join V, union U and complement (-)¢. For in-
stance, consider Figure 4.4(a) in which the cograph G = (({v1} U {v2}) U ({vs} V {v4}))
V {vs} is represented. The nodes of this cotree indicate the operations of joint and
union. In Figure 4.4(b) we show exactly the same cograph but using the operations of
union and complement.

It is important to point out that in Figure 4.4(b) the nodes of the cotree are
related to the union operation and the complements are considered operations realized
on each branch. In this chapter we will describe our main results in terms of unions and
complements, taking into account that any given cograph can be always represented
in this way since G; V Gy = (G{ U G5)¢. As we will show in the following sections,
the cotree representation provides a very useful tool for the calculation of the sampling

sets.

4.4 Uniqueness sets of cographs
Before doing a formal calculation of the uniqueness sets in cographs it is natural

to find the uniqueness sets for graphs that are obtain from unions and joins separately.
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4.4.1 Uniqueness sets of unions and complements
We start this section by describing the minimal uniqueness sets for PW,(G)

and PW? (G) when G is a union of two graphs.

Lemma 24. Let Gy = (V}, E1), Gy = (Va, Es) be two simple graphs, let G := G U G,
and let w > 0. Then

1. dimPW,(G) = dim PW,(G;) 4+ dim PW,,(G,).
2. The following are equivalent for a subset S C V(G1) UV (Gs):

(a) S is a minimal uniqueness set for PW,(G).

(b) S = S1USy where Sy is a minimal uniqueness set for PW,(G1) and Sy is

a minimal uniqueness set for PW,(Gs).

Proof. The result follows easily from the fact that L = Lg, @ Lg, and from Corollary
17. O

The pictorial representation of Lemma 24 is presented in Fig. 4.5(top). Observe
that any submatrix that is obtained by sampling the eigenvectors associated to \; < w
on the rows related to a given subset of nodes is a block diagonal matrix whose deter-
minant is the product of the determinants of each block. Therefore, the determinant
of the submatrix is only different from zero when the determinant of each block is
different from zero.

The analogous statement for PW? (G U Gs) is more complicated.

Lemma 25. Let Gy = (V1, E1), Gy = (Va, Es) be two simple graphs, let G := G U G,
and let w > 0. Then

1. dimPW?(G) = dim PW?(G}) + dim PW?(Gy) + 1.
2. The following are equivalent for a subset S C V3 U Vy:

(a) S is a minimal uniqueness set for PW° (G).
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V(G2)
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PWS(G>

Figure 4.5: Top: Pictorial representation of the results indicated in Lemmas 24. Bot-
tom: Pictorial representation of the results indicated in Lemma 25. The sampling on
the rows considering a given sampling set is indicated by the indexes highlighted in
blue color. The resultant submatrix is always a block diagonal matrix when unions are
considered.

(b) S = S1USy where Sy is a minimal uniqueness set for PW,(G1) and Sy is
a minimal uniqueness set for PW° (Gy), or Sy is a minimal uniqueness set

for PWY(Gy) and Sy is a minimal uniqueness set for PW,(Gy).
Proof: See Appendix 4.7./
A simple graphical representation of Lemma 25 is indicated in Fig. 4.5(bottom).

Remark 26. [t is important to point out that the pictorial representations indicated in
Fig. /.5 can be considered even when one of the Paley-Wiener spaces involved is empty.
For instance, if Lemma 25 is applied in a scenario where PWY(Gy) = 0, the matriz
basis representation, U, for the calculation of the uniqueness sets of PW2(G1 U Gy)
would be given by

Upw,(c)

U= . (4.3)
Ov (@) xdim PW.(G1)
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CPWY_(GY) |

CPW,(G) N

Figure 4.6: Pictorial representation of the results stated in Theorem 28.

From this equation we can see clearly that if we want a submatrix with a determinant

different from zero, we cannot select nodes associated to G.

We now introduce the characterization of the Paley-Wiener spaces for the com-

plement graph. In order to do so, let us consider the following lemma.

Lemma 27 (see e.g. [63, Section 1.3.2]). Let G be a graph with Laplacian eigenvalues

0=XA < X < ... < )\, and associated eigenvectors 1, = uy,Us, ..., u,. Then the
complement graph G¢ has Laplacian eigenvalues {0,n — N\, ..., n — Ay}, and eigenvec-
tors 1,, = v1,V3 = Uy, ..., UV, = Us.

Using the above lemma, we can now describe the Paley-Wiener space of the

complement of a graph.

Theorem 28. Let G = (V(G), E(Q)) be a graph with |V (G)| = n. Then for any w >
0, we have PW?_(G°) = span (Ucpw, @) \ {1.}) and span (Ucpw, .o \ {1.}) =
PWY@G).

Proof: See Appendix 4.7.5

Theorem 28 provides a connection between the complementary and modified
Paley-Wiener spaces on a graph and its complement, and is going to play a central role

for understanding the structure of eigenvectors in a cograph.
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Remark 29. Notice that in light of Theorem 21, Theorem 28 provides a complete
characterization of the uniqueness sets of the Paley-Wiener spaces in the complement

graph.

Remark 30. In the applications of Lemmas 24, 25 and Theorem 28 we consider that
PW,(G) = PWYG) =0 for any w < 0.

4.4.2 Cotree representation and Paley-Wiener spaces

The results stated previously about PW,,(G) when G is obtained from unions
or joints of graphs, can be connected to a cotree representation of G. Specifically,
given a cotree representation like the one depicted in Fig. 4.4(d), it is possible to
determine what is the bandwidth of the Paley-Wiener spaces associated to the smaller
cographs size that are being used to build a large size cograph. For instance, considering
Fig. 4.4(d), we can see that if we want to calculate the uniqueness sets of PW,,(G), we
require the uniqueness sets of the two Paley-Wiener spaces associated to the cographs
seen from those branches, and therefore we can consider the bandwidth w suffers no
changes when it propagates trough the cotree, while it changes after a complement node
is met. If we travel on the cotree, applying systematically Lemma 25 and Theorem 28
we reach GGy, Gy and (3, knowing exactly what is the bandwidth of the Paley-Wiener

spaces involved in the calculation of the uniqueness sets of the cograph.

Lemma 31. Let G a cograph, then the uniqueness sets of PW,(G), PWY(G) and
CPW,(G) can be calculated with systematic and sequential application of Lemma 25

and Theorem 28 on the cotree structure of the cograph.

Proof: See Appendix 4.7.6.

As a consequence of the previous Lemma 31, the convention PW,,(G) = PW(G)
= () for any w < 0 and the fact that every cotree representation reaches its end on the
leaves always on a vertex, we can determine which nodes can be selected as part of
a uniqueness sets considering the sign of the bandwidth of the Paley-Wiener spaces

associated to each vertex.
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(b)
Figure 4.7: Cotree represention of the cograph G = (G{ U G3)¢ U G that is built from
more elementary cographs G, Go and G3. (a) Indication of how the set of eigenvectors
associated to G are obtained from G, G5, Gz and the transformations involved when
moving on the cotree. (b) Indication on the cotree of the Paley-Weiner subspaces of
G1, G, G involved in the calculation of the uniqueness set of PW,,(G), and how the
bandwidth changes when mowving on the cotree.



Before stating these ideas formally, we introduce the following definition:

Definition 6. Let us consider a cotree representation of a cograph G where the leaves
end always on a vertex i.e., no knowledge of small cographs is used in the cotree repre-
sentation. Let W(v) be the bandwidth of the Paley- Wiener spaces associated to the node
v that can be obtained applying Lemma 25 and Theorem 28 on the cotree. We define
Vizo(G) by

Viso(G) ={v e V(G) : ©(v) > 0}. (4.4)

Definition 6 introduces a notation to represent the set of nodes in the cotree
representation of a cograph, that have a nonnegative bandwidth associated to the their
Paley-Wiener spaces once the cotree representation is considered for the calculation of

the uniqueness sets.

Corollary 32. Let G be a cograph and let &(v) be the bandwidth of the Paley- Wiener
spaces associated to the node v on the cotree structure built from unions and joins.
Then, any subset S C Vg>o(G) with |S| = dim PW,,(G) nodes is a uniqueness set of
PW,(G).

Proof: See Appendix 4.7.7.

It is important to point out that this result is, as far as we know, the first broad
family of graphs for which the uniqueness sets can be computed in closed form.

Corollary 32 provides a concrete characterization of the nodes in the uniqueness
sets of cographs of a Paley-Wiener spaces with a given bandwidth. The application of
this corollary can be considered in those cases where the detailed cotree is known, i.e.

the leaves on the cotree structure reach their end on a vertex.

Remark 33. When the size of the cograph is large, we do not necessarily assume we
start building the cograph from a set of vertices, but instead we start with some small

size cographs as it is indicated in Figures. 4.4(d) and 4.7.
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Algorithm 6 Uniqueness set for Cographs

Input: Cotree of cograph G, w.
Output: A minimal uniqueness set U of PW,,(G).
Initialisation : U = ()
P =PW,(-).
2: fori=1:1:c¢cpy do
Get the branches b = by, b, of ¢(7). Then for each b:
4:  if b has no complement then

U, = P(b).
6: else
P =CPWp-w(")
8: U, = P(b —))
end if
10: u:ubeuubruu
end for

12: return .

4.4.3 Complete multipartite graphs

An important example of cographs with extensive applications in communica-
tions and data sicence are complete multipartite graphs. In this section we derive the
uniqueness sets for these graphs from the above results.

Let K; = (V(K;), E(K;)) be a family of complete graphs (i = 1,...,¢;9 € N)
and consider an arbitrary complete multipartite graph M = K7V K5V ---V K{. Now,
taking into account the connections between the join operation and unions and comple-
ments we have that M = (K; N KyN---NK,)°. Therefore, considering Lemma 24 and
Theorem 28 and their pictorial representations in Fig. 4.7 we know that the eigenbasis
matrix associated to M is as indicated in Fig. 4.8, where the support of the eigen-
vectors is indicated in colors. From Fig. 4.8 we can see clearly the dependency of the
uniqueness sets in PW,,(M) with respect to the uniqueness sets in the Paley-Wiener
spaces for each K;. The results stated in Fig. 4.8 are formally presented in the following

theorem:

Theorem 34. Let M = K{V K5V -V K¢, with |V, | < [Vg,| < ... < |[Vk,| the
complete multipartite graph. Then the uniqueness sets for the Paley-Weiner space

PW,(M) are given by:
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1. If0 <w <n—|Vg,|: Any node in Uj_, V.

2' [fn - |VKq—r| S w<n-— |VK¢1—(T+1)’:

(Uss..) Ut 15)

|Skhié|::|V%%7£|—-1 and

A s) e

where Squz C Vg

q—t’

withr =20,...,q—1.

q

3. lf?l SEUJJ <:LJ ‘G(e)
=1

Proof: See Appendix 4.7.8

In Appendix 4.7.8 an alternative calculation of the uniqueness sets of PW,,(M)

is presented as a confirmation of the results obtained.

4.5 Numerical Experiments with Uniqueness sets of Cographs

In this section we perform a set of numerical experiments in which the benefits of
the calculation of uniqueness sets in cographs show promising applications for the anal-
ysis of signals defined on more general graphs. The characteristics of the experiment

are given as follows:

e Considering a cograph G, a graph G is obtained from G by modifying a number
of edges.

e A uniqueness set of PW,,(G) is calculated and used as a sampling set for PW,,(G)

for several values of w.

e A set of 100 signals are randomly generated from each PW,,(G), then sampled
and reconstructed. The mean squared error is calculated and averaged over the

100 signals.
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Figure 4.8: Illustration of the support of the eigenvectors of the combinatorial Laplacian
for the complete multipartite graph.

Cograph Graph
g odify some edges G

PWL(Q) CPWLG)

Figure 4.9: Pictorial representation of the numerical experiments performed. A cograph
G is generated and then a subset of edges is modified to generate a graph G (not
necessarily a cograph), then the uniqueness sets of PW,,(G) are used on PW,,(G). The
numerical results of this numerical tests can be appreciated in Fig. 4.10.
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Figure 4.10: First row: reconstruction error for random bandlimited signals defined on
a graph G with cograph approximation G. The number ¢ indicates the number of edges
that differ between the graph G and G, whereas m = w indicates that the number of
samples is equal to the bandwidth of the signal. Second row: same results without the
random sampling approach.

e The approaches considered are: uniform random sampling, sampling approach

proposed by Anis et al. [64] and the approach we proposed.

The results of this experiment are given in Fig. 4.10. It is possible to notice that the
values of the error attained by the use of the uniqueness sets obtained from PW,(G)
are similar to the ones obtained by using the approach in [64]. However the uniqueness

sets calculated from PW,,(G) are obtained at a very low computational complexity.

4.6 Threshold graphs

A particular family of cographs is the threshold graphs.

Definition 7. A simple graph G is said to be a threshold graph if it can be constructed

from a one-vertex graph by repeated application of one of the following operations:
1. Adding an isolated vertex to the graph.

2. Adding a dominating vertex to the graph, i.e., adding a vertex that is adjacent to

all the other vertices.

It is important to point out that, as threshold graphs are a particular case of a
cograph. Figure 4.11 depicts the particular structure of the cotree for a threshold graph,

observe that any operation, join or union, is always performed between a cograph and
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Figure 4.11: (a) The cotree structure of a threshold graph. (b) An equivalent repre-
sentation of the threshold graph depicted in (a) using the characterization indicated in
Theorem 35.

a vertex. As we will show later, some results about the uniqueness sets for the join
between two graphs simplify considerably when threshold graphs are considered.
Threshold graphs admit several interesting characterizations. Recall that a sub-
set of vertices is said to be independent if no two vertices in the set are adjacent. In
what follows, we shall denote the neighborhood of a vertex a € V in a graph G = (V, E)
by
n(a) ={z eV :ax € E}.

Theorem 35. Then following are equivalent for a simple graph G = (V, E):

1. G is a threshold graph.

2. There exist an integer vertex labeling ¢ : V — N and an integer t € N (called the

threshold) such that for any distinct vertices a,b € V,

abe E <= c(a)+c(b) > t.

3. There exist an integer vertex labeling ¢ : V- — N and an integer t € N such that

for any subset of vertices S C'V,

S is independent <= Z cla) <t
acs
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Figure 4.12: Cotree representation of a threshold graph, G, obtained from the binary
sequence {1, Ts,...,T,}, showing the changes in the bandwidth in the Paley-Wiener
spaces involved in the calculation of the uniqueness sets for PW,(G).

4. The set of vertices V' can be partitioned as V = C'UI where C induces a mazximal

cliqgue in G, and I := {i1,...,ix} is an independent set such that

n(iy) € nliz) C - Cn(ig).

5. G does not contain Py, Cy and 2Ky as an induced subgraph, where P, and C,
denote the path and cycle on 4 vertices respectively, and 2Ky denotes the union

of two disjoint edges.

Remark 36. Note that a vertex labeling satisfying property (3) in Theorem 35 auto-
matically satisfies property (2). The converse is false. However, if (2) is satisfied, the
theorem guarantees the ezistence of a (possibly different) labeling satisfying (3).

The following result provides a characterization of the eigenvectors of the Lapla-

cian matrix of the join of two graphs.

Theorem 37 ( [68, Theorem 2.1]). Let Gy = (Vi, Ey) and Gy = (Va, E3) be graphs on
disjoint sets of |V (G1)| and |V (G2)| vertices, respectively. Then

1. If the eigenvalues of the Laplacian of Gy are 0 = py < po < -+ < pyv(ay)
with associated eigenvectors 1jy(g,) = U1, ..., UGy, and those of Gy are 0 =
v < vy < -os < Yyay) with eigenvectors 1y g,y = Vi, ..,Uv(ay)|, then the

eigenvalues of the Laplacian of GV Gy are
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o (.
o [V(G1)|+ |V(Gy)l;
o k2 +|V(Go)| < < pyvien + V(G
o 1+ |V(G)| < S yyay + V(G-
2. Assume ua, ..., uy(a,) are orthogonal to 1jy(a,) and va, ..., Vv (qy) are orthog-
onal to 1jy(gy) . The eigenvectors of G1 V G2 are as follows:
® 1jy(g)+|v(G) 'S associated to 0;
o (—|V(G2)|1y,) ® ([V(G1)|1vy) is associated to |V (G1)| + |V (Ga)l;

o uy @ Oy, ..., U () D Oy, are associated to po + |V (Ga)l, ..., pyvicy +
V(G2)l;

o Oy, Dva, ..., 0y, DUy (e, are associated to vo+|V (GY)|, . .., Yy aw)+IV(G1)].
We can now explain how to compute the uniqueness set of a join of two graphs.

Theorem 38. Let |V(Gy)| < |V(Ge)| and let Gy = (Vi, E1),Ge = (Va, Ey) be two
simple graphs on |V (G1)| and |V (G2)| vertices, with spectrum 0 = g < prg < --- <
Hvay and 0 =1 < vy < - <Yy respectively. Let G = GV Ga, and let w > 0.
Also, let S C VLUV, and let S1 := SNV and Sy := S NV, Then the following are

equivalent to S being a minimal uniqueness set for PW,(G):
a) If [V(Gy)| > w, then S = {a} for any a € V1 U V;.

b) If [V(Gy)| < w < |V(Gs)l|, then either Sy is a minimal uniqueness set for
PW,,_ v (Ge) and Sy = 0, or Sy is a minimal uniqueness set for PW,, _vin) (G2)

and Sy = {a} for some a € V.

c) If [V (Gs)| S w < |[V(Gh)|+|V(Gs)|, then either Sy is minimal uniqueness set for
PW,,_ v (e (G1) and Sy is a minimal uniqueness set for PW, _vian(Ga); or Sy

is minimal uniqueness set for PW? (G (G1) and Sy is a minimal uniqueness

set for PW,,_jva,)(G2).
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d) If w > |V (Gy)|+ |V(Gs)], then S = V1 U V4.
Proof: See appendiz 4.7.9.

Theorem 38 can be applied recursively to compute the minimal uniqueness sets
of a cograph. However, in the process, ones needs to be able to compute minimal
uniqueness sets for the modified Paley~Wiener space PW9 (G} V G5). We now prove
an analog of Theorem 38 to address that case. Notice that when A < min(|V4], |V2]),
the space PW$(G; V Gs) is empty and there is nothing to prove. We therefore restrict

ourselves to the case where A > min(|Vy|, |V3|).

Theorem 39. Let |V(Gy)| < |V(Ga)| and let Gy = (Vi, E1),Go = (Va, Ey) be two
simple graphs on |V (G1)| and |V (G2)| vertices with spectrum 0 = g < pg < -+ < py,
and 0 = vy < vy < --- <y, respectively. Let G := G1V Gy, let S C V(Gy) UV(Gy),
and let S1:= SNV(Gy) and Sy := SNV (Gy). Then the following are equivalent to S

being a minimal uniqueness set for PW? (G):

a) If[V(Gy1)| < w < |V(Gs)| then Sy is a minimal uniqueness set for PW37|V(G1)|(G2)
and S, = 0.

b) If |[V(Gq)| < w < |V(G1)| + |[V(G2)|, then Sy is minimal uniqueness set for

PW?U—\V(GQM(GI) and Sy is a minimal uniqueness set for PWg_‘V(Gm(GQ).

c) Ifw > |V(G)|+ |V(Gy)], then S is any subset of size dim PW? (G) = |V (G1)| +
V(Ga)| - 1.

Proof: See Appendix 4.7.10

Remark 40. [t is important to point out that the items a), b) and c) in Theorem 39

can be unified and reformulated in one statement considering the Paley- Wiener spaces

PWY vy (Ga) and PWJ_ ¢,y (G1). In particular:

o Ifw < |V(Gh)| then PWJ_ gy (G2) = 0 and PW]_ 1, (G1) = 0 and therefore
PW?(G) =0).
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o If|[V(Gh)| < w < |V(Gy)], then PW) _v(e)(G1) = 0 and therefore the unique-

ness sets are derived from PW" e (G2)-

o IfIV(G2)| < w < |V(G)|+|V(G2)| then both PW]_ 1,y (Ga) and PWJ_ 1, (G1)

are nonempty and the uniqueness sets are derived from them.

4.6.1 Cotree structure of a Threshold graph

Any threshold graph is obtained as a sequence of joints and unions, therefore
Theorems 38 and 39 play a central role for the calculation of uniqueness sets. Now, it
is important to point out that in light of Theorem 21, we can focus on the systematic
application of Theorem 39. The consequence of the systematic application of these
results lead to closed form solution for the uniqueness sets in threshold graphs. In

order to show this, let us consider the following notation:

e A threshold graph G with |V(G)| = n nodes is represented by the ordered se-

quence {1, T2, ..., Tn 1}, x; € {0,1}Vi.

e Starting with a single vertex unions and joins are computed according to x;. If

x; = 0 a union is performed, and if x; = 1 a joint is performed.

e The cotree of the threshold graph is depicted in Fig. 4.12, where the changes of
the bandwidth trough the cotree are shown. In particular w(v) represents the

bandwidth of the Paley-Wiener spaces associated to the node v.

e In Fig. 4.12 the term €, ., indicates the bandwidth that propagates from the

node xp,q to the node x; in the cotree.

e Remember from the remarks and results of previous subsections that if the band-
width in one of the branches of the cotree is negative, the Paley-Wiener space
associated to that branch is empty and therefore we do not select nodes associated

to that branch.
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e Notice that Theorem 39 simplifies substantially when we perform the join between

a cograph and a vertex, as it is always obvious which graph is G; and which graph

is GQ.

Then, the following result can be stated.

Theorem 41. Let the ordered binary sequence {x1,xs,..., T, 1} be the representation

of a threshold graph G. Then, any uniqueness set of PW,(G) is given by any subset

{viy, viy, - v, } € V(G) of q nodes where w — d(v;,) > 0, when d(v;,) denotes the

degree of the node v;. and q = dim PW,,(G). Additionally, the uniqueness set with

mazimum stability is obtained by the q nodes with the lowest degree.

Proof. From the cotree structure of the threshold graph depicted in Fig. 4.12, and

considering Lemma 25 and Theorems 38, 39 we have that:

W(vk1) =
Q$k+1*>ffk —k If T = 1
Additionally, we have
Ql’k+2_>$k+1 If T+1 = 0
Q$k+1—>9ﬂk =
ka+2‘>$k+1 - 1 If .fljk+1 - 1

Now, from eqn. 4.8 and the structure of the cotree, we can conclude that

Q:Bkﬂﬁﬂﬁk =W Z Ly
Combining eqn. 4.9 and eqn. 4.7 we have

w=> T I =0

W(vkt1) = .
w=> et~k If oz =1

Now, taking into account that

Dkt I ae=0

d(vi+1) = "

90

(4.7)

(4.10)

(4.11)



we obtain

O(vg) = w — d(vg) (4.12)

With this result and the previous results we got for cographs in the cotree, we emphasize
that if w(vg) < 0 the associated Paley-Wiener space is empty and therefore no nodes

are selected from that space. O

4.7 Proofs
4.7.1 Schur Complement Lemma

Lemma 42. Let
A 07’L1 Xng

¢ D

be a matrixz with blocks A € R™>*™M (' e R™*™ and D € R™*", Then M 1is invertible

if and only if A and D are invertible.

Proof. (=) Suppose D is not invertible. Then the columns of D are linearly depen-
dent. Hence the last ny columns of M are linearly dependent as well and so M is not
invertible. A similar reasoning applies to the rows of A if A is not invertible. Therefore
A and D are invertible if M is.

(«<=). Now, suppose A and D are invertible. Using the theory of Schur comple-

ments, we have
det M = (det D) x det(A — 0, xn, D" 'C) = det A x det D # 0.

Thus, M is invertible. O

4.7.2 Proof of Proposition 15
Proof. (2) = (1). Suppose |S| =k and Wg
be such that fg = S2F a;i(w;)s = 05 Since the vectors {(w;)s : i = 1,...,k} are

77777

1} is non-singular. Let f = Zle a;w;

linearly independent, we conclude that a; = 0 for all ¢ = 1,...,k, and so f = 0,, as

desired.
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(1) = (2). now suppose (1) holds. If |S| < k, then the vectors (wy)s, ... (wg)s are

linearly dependent. Thus, there exist scalars aq,...,a; € R (not all zero) such that

k

Zai(wi)g = O‘S‘. (413)

=1

Let f = Zle a;w;. Then fg = 0). Since S is a uniqueness set, we conclude that

f = 0,. This contradicts the linear independence of wy, ..., w,. Hence |S| > k. now,
assume |S| > k, and suppose Equation (4.13) holds for some ay,...,a; € R. By as-
sumption, it follows that Zle a;w; = 0,, and so a; = --- = a5 = 0 by the linear
independence of wy, ..., wg. Thus, the vectors (wy)g, ..., (wg)s are linearly indepen-

dent. Since the row rank equals the column rank of a matrix, there exists S’ C S of
size k such that (wy)g, ..., (wy)s are also linearly independent. By the (2) = (1)
implication above, the set S’ is a uniqueness set, contradicting the minimality of S.

Finally, suppose |S| = k and Wg .k is singular. Then there exist scalars

.....

ai,...,a; € R (not all zero) such that Equation (4.13) holds. Defining f = Y2 | a,w;
as above, we obtain that fg = 0jg;. By (1), we conclude that f = 0, contradicting the

linear independence of the eigenvectors wy, ..., wg. O

4.7.3 Proof of Theorem 21

Proof. Let us consider the matrix M given by

Uspmpgr  Lispxa

M = (4.14)

Uty mpgy 1

with v € §¢. Calculating the determinant of M using the Schur-complement theorem,

we obtain

det(M) = (1 = Ugoy fun\ {13 Ug oy 1y Lisix1) det (U ppa3) (4.15)

therefore det(M) # 0 if and only if

-1
Ut i\ 13 Usg o 1y Lisixa 7 1 (4.16)
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We claim that there exists always v € S¢ such that eqn. (4.16) holds. Indeed, suppose
for a contradiction that there is no such v. Notice that the sampled version of a signal

x € PWY(G) on a subset of nodes S is given by

w(S) = US’[R]\{l}a (4.17)
If S is a uniqueness set for PW?2(G), then « is unique and can be calculated as

o= Ugjn]\{l}w(S) (4.18)

If (S) =1, then
—1
Uty mny@ = Uy n 13 Usg oy a3 Lisixa (4.19)

Now, if there is no v € S such that Uy o)1y # 1, this would imply that

Liv@e)xt = Uplmppe (4.20)

which is a contradiction since the columns of U are assumed to be an orthonormal

basis. O

4.7.4 Proof of Lemma 25

Proof. Let m := |Vi| and n := |V,]. Also, let 0 = A\ < Ay < -+ < A\, and 0 =
< pe < - < g, denote the eigenvalues of Lg, and Lg, that are less than A,
respectively. Denote the associated eigenvectors of Lg, and Lg, by 1,, =: uy, us, . .., ug,
and 1, =: v1,va,...,0,. Then PWS(GQ) = span(—nl,, @ ml,,us © 0,,...,up ®
0,,0,, ® vy,...,0,, O vy,). Hence dimPWS(G) = dim PW}(G;) + dim PWS(Gy) +
1. Let W be the matrix with columns —nl,, ® ml,,us ® 0,,...,ux, ® 0,,0,, &
Va,...,0,, @ vy, and let S be a minimal uniqueness set for PW{(G). By Corollary
18, we have |S| = dimPW%(G;) + PWS(Gy) + 1. Proceeding as in the Proof of
Theorem 38(d), we obtain that |S;| > dim PWY(G;) and |Sy| > dim PW$(G5). Hence,
either |S;| = dim PW(G,) + 1 and [S,| = dim PW{(Gy), or |S;| = dim PW(G) and
|Sy| = dim PW{(G3) + 1. The result now follows by writing W in block form as in the
proof of Theorem 38(d) (see eqn. (4.36)). O
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V(G1)

V(Ga)

V(Gy)

V(Ga)

alV(G)l + BIV(Ga)| = 0

Figure 4.13: Top: Representation of the union operation between two graphs. Bottom:
Representation of the join operation of two graphs.

4.7.5 Proof of Theorem 28

Proof. Let 0 = puy, pa, ..., i, denote the Laplacian eigenvalues of G°. We know that
PW,_,(G°) is generated by all eigenvectors associated to the eigenvalues pu; < n — w,
and by Lemma 27 the pu;’s are given by 0,n — \,,,...n — \; with ¢ > 1. This implies
that n — \; < n—w = \; > w then PW,_,(G°) = 1, ® CPW,(G). Similarly, we
have that C PW,,_,(G°) is generated by the eigenvectors associated to the eigenvalues

Wi > n — w which implies \; < w. O

4.7.6 Proof of Lemma 31

Proof. Any cograph has a cotree representation based on unions or joins. At any node
in the cotree, the calculation of a uniqueness set for any modified or complementary
Paley-Wiener space is based on the application of Lemma 25 and Theorem 28. Now,

by means of Theorem 21 a uniqueness set of a Paley-Wiener space can be obtained as

described. n
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4.7.7 Proof of Corollary 32

Proof. The proof follows by the systematic application of Theorems 38 and 39 O

4.7.8 Proof of Theorem 34
Lemma 43. The eigenvalues of K, = (Vi,, Ex,) are given by {0, Vg, |V%!='} with

eigenvectors given by: u; = 1|VK Ix1 and

(=1 £=Vk,|—(i-1)
u;(€) = -1 0> |Vi,| — (i —2) (4.21)

0 otherwise
fori=2,...|Vk,|.

Proof. Given that the components of the j* row, r;, of the Laplacian matrix for the

complete graph can be written as

Vi, | —1 if (=
r;(0) = Vial 1 / (4.22)

-1 C# ]
we have that

(L) (5) = (IVie,| = 1) wi(5) + Y (~1 (4.23)

t#j
Now, taking into account 4.21 for the resultant sum in equation 4.23, we have the

following possibilities:

o If j < |Vk,| — (¢ — 1) then u;(j) = 0 and therefore

(Vie,| = D) + D (Dw) = 0 = |Vigu(j) (424)
t#j
o If j = |Vk,| — (i — 1) then u;(j) = (¢ — 1) and therefore

(IVie, | = )+ (-1 = (Vi,| = )i — 1) + (i — 1) = Vi, |wi(j)
£

(4.25)
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o If j > |Vk,| — (i — 2) then u;(j) = —1 and therefore

(IVie,| = 1) wi(j) + > (—1 = (V| =D(=1) = (i = 1)+ (i = 2) = —[Vk,|
2

= Vi, lui(j) (4.26)

and therefore Lu; = |Vi, |u; for i =2,...|Vg,|.
The fact that L1|VKq| «1 = 0 follows directly from the fact that I'1|VKq| «1 = 0 for all
j. O

Lemma 44 ( [63]). Let G be a graph with Laplacian eigenvalues p; < ps < ... <

ln and eigenvectors uy = 1,us, ..., u,; then the complement graph G° has Laplacian

eigenvalues {0, — fiy, ..., m— lo}.

Lemma 45. Considering the eigenvalues of the complement graph indicated in Lemma
44, it follows that the set of eigenvectors associated to the eigenvalues {0, n—fip, ..., n—

e} with e # 0, are given by vy = 1,09 = Up, ..., Up.

Proof. Let us consider the Laplacian matrix of the complement graph L = nl — J — L,
where J is the all ones matrix,. Then, let us consider p, # 0 the eigenvalue of L with
eigenvector uy, then

Eu@ = HIUg — JUg — LU(
Lug = nug — prug = (n — i)y

Additionally, considering the vector 1 we do have
L1=n1-nl1-L1=0
O

Lemma 46. Let us consider the complete graphs K; with i = 1,...,q and |Vk,| <
\Vi,| < ... <|Vk,|. Then the set of eigenvalues of G = K1 UKy U---U K, is given by

{0(]7 |VK1||VK1‘_17 |VK2|‘VK2|_17 ceey |VKQ||VK‘Z|_1} (427)
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with associated eigenvectors

~K ~Kg-1 ~K ~ K ~ K. ~K ~ K ~K
{1nx1,u1 el ke, ._.u‘viw...,u2q7...ulvj(q|}, (4.28)
where n =Y 1_, |Vk,|, and
. 0 (& Vi
il = # Vi, (4.29)
uz(ﬁ) {e Vij
with i > 2, j =2,...,q and where u; denotes i*" Laplalcian eigenvector of K.

Proof. By lemma 43, it is immediate that the eigenvalues of G = K; U Ko U --- U K|

are given by

{0(]7 |VK1||VK1‘_17 |VK2|‘VK2|_17 sy |VKQ||VK‘Z|_1} (430)
Now, since i )
Ly, 0 0 O
0 Lk, 0O O
Le = . . , (4.31)
: : o0
0 0 Lk,
it follows that ) ) -
0 0
0 0
Lat = ' =29 (4.32)
LKjUi U
0 0

where Al € {0, |Vk, V551713 and w; is the i eigenvector associated to Al7. Addition-

ally L1 = 0. O]

Theorem 47. Let M = K{V K5V -V K¢ with |Vi,| < |Vi,| < ... < |Vk,| the

complete multipartite graph. Then the set of Laplacian eigenvalues is given by

{07 (TL - |VKq|)|VKq|_17 RS (n - |VK2|)‘VK2|_1’ (n - |VK1|)|VK1|_17 nq—l} (433)
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and the set of eigenvectors associated to
{0, (n— Vi, Vel =1L (= (Vi )V I8 (= Vi [)V0 1 (4.34)
s given by

~ Ky ~ K ~ Ko ~ Ko ~ K3 ~ K3
{1nx1,u2 v Ty gy g Uy Ty g (4.35)

Proof. M = (K;UKyU---UK,). The result follows by applying Lemmas 46, 43,
and 44 to M. O]

4.7.8.1 Proof of Multipartite uniqueness sets

Proof. Let us take into account the results of lemma 47, that describes the set of
eigenvectors of the Laplacian matrix for all eigenvalues except n? and its pictorial
representation in Figure 4.8.

In Figure 4.8 It is possible to see the structure of the support of the set of vectors
that span each PW,, space. For example on left side of the gray line there is just the
vector 1,1, which indicates that the Paley-Weiner space PW,, for 0 < w < n — |VKq|
is generated by 1,.1. On the left side of the magenta line, it is possible to see the
vectors that span PW,, for n — Vi, [ <w <n—|Vk, _ ., | which includes the vectors
whose support is in magenta color and the vector 1,,;. The use of this figure allows
to determine how the rows of the submatrices must be selected in order to guarantee

a full rank matrix.

1. When 0 < w < n — |Vg,|, we do have that PW, = span(1,), therefore any

node in M is a minimal uniqueness set for PW,,.

2. When n — |Vg,_, | Sw <n—|Vg it is possible to see in Figure 4.8 that

q—(T+1)’
_K, Kyr ~Kq,T)

s Uy 17 SERUNAE Additionally, from the

PW,, = span(1,x1, ﬂfq, .

figure, notice that:
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e The selection of rows from the matrix (nodes in the graph) should be done
in such a way that no zero column is obtained in the resultant submatrix.
This happens only when at least |Vg,| — 1 nodes (rows) are selected in each

Vi, involved in the span of PW,,,.

e The size of the sampling sets is given by 1+, _(|Vk,_,| —1), and therefore

it is possible to select one node v out of the Vi, involved in the span of PW,,.

3. If n <w PW,,(M) is generated by the complete set of eigenvectors, therefore the
size of the sampling set must be n and all nodes in the graph are part of the

minimal uniqueness set.

4.7.9 Proof of Theorem 38

Proof. Let 0 = A} < Ay < --+ < A\, denote the eigenvalues of G that are smaller or
equal to A\. By Theorem 37, each of the eigenvalues X, ..., \; is of the form u; +n or
v; +m for some eigenvalue p; of Lg,, or some eigenvalue v; of Lg,. Let {A\g, ..., \¢} =
Ay U Ay, with Ay = {pe +n,..., 4, +n}, and Ay = {vo +m,... vk, + m}. Let
uy @ 0y, ... ug, © 0, and 0, B vq,...,0,, ® vk, denote the eigenvectors of L that
correspond to the eigenvalues in A; and A, respectively. We consider each of the four

case separately.

a) If m > A, then dimPW,(G) = 1 and only contains constant signals. Thus S is a

minimal uniqueness set if and only if |S| = 1.

b) If m < A < n, then
PW\(G) = span(1,4n, 0 @ va, ..., 0y D vy, ).

Consider the matrix W with columns 1,,1,,0,, ® v, ...,0,, & vg,. If S; = 0, then it
follows easily by Corollary 17 that Sy is a minimal uniqueness set for PW,(G) if and
only if it is a minimal uniqueness set for PW,_,,(G2). If |S1] > 2, then two rows of

W, 41,...ko} are equal and Corollary 17 implies that S is not a uniqueness set. If |S1| =1,
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then it is not hard to see that the columns of Wy 1,) are linearly independent if

-----

and only if the columns of W, (o 1,1 are linearly independent. It follows that S is a

minimal uniqueness set for PW,(G) if and only if S5 is a minimal uniqueness set for
PWY_ (Gs), as claimed.

c) Now, suppose that n < A < m+n. Let S be a minimal uniqueness set for PW,(G).
Note that dim PW,(G) = k = k; + ko — 1. Hence, |S| = k1 + k2 — 1 by Corollary 17.
We first claim that |S;| > k3 —1 and |Se| > ko — 1. Indeed, suppose |S1| < k1 —1. Then
the vectors (us)g, , .. . (ux, )s, are linearly dependent, say 25, t:(u;)s, = 0 with not all
t; equal to zero. Consider the signal f = Zle tiu; ® 0, € PW,(G). Clearly, f =0 on
S. Hence f =0 on V; UV, since S is a uniqueness set for PW,(G). This contradicts
the linear independence of ua, ..., uy,. We therefore must have |S;| > k; — 1. A similar
argument shows that |Ss| > ks — 1. Hence, either |S;| = k; and |Sy| = ks — 1, or
|S1] = k1 — 1 and |S3| = k. Assume |S;| = ki and |Ss| = k2 — 1. Consider the matrix
W with columns 1,,,,,us & 0y, ..., ux, & 0,,0,, & ve,...,0, & vg,. Observe that W
can be written in block form:

Ui Opx(ka—1)
X Us

W = (4.36)

where U; € R™* U, € R0 and X € R” . By Lemma 42, the matrix
..... ko—1} are invertible.
It follows by Corollary 17 that S; is a minimal uniqueness set for PW,_,(G;) and
Sy a uniqueness set for PW} | (Gy). If instead |Si| = k; — 1 and |Sy| = ky then a
similar argument shows that S; is a minimal uniqueness set for PW}_ (G;) and S, a
uniqueness set for PW,_,,(G2) . Conversely, suppose without loss of generality that
S is a uniqueness set for PWy_,(G;) and Sy a uniqueness set for PWS_(G5). Then

the matrices (U1)g, (1,...k:} and (Uz) s, (1,...ks—1} in Equation (4.36) are invertible. Thus

-----

ky 1s invertible and S is a uniqueness set by Corollary 17.

d) Finally, if A > m + n = |[V(G)|, then Theorem 37 shows that PW,(G) = R™*™.
Thus dim PW,(G) = m +n and it follows easily from Corollary 17 that S = V3 UV, is
the only uniqueness set for PW,(G). O
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4.7.10 Proof of Theorem 39
Proof. The proof follows the proof of Theorem 38, with some minor adjustments. With

the same notation as in that proof, we consider each of the three case separately.

a) If m < A < n, then
PWY(G) = span(0,, ® va, ..., 0, © v,).

Consider the matrix W with columns 0,, ® vy, ..., 0,, ® vy,. If S; = 0, then it follows
easily by Corollary 18 that S, is a minimal uniqueness set for PW9(GQ) if and only if

it is a minimal uniqueness set for PWS_, (Gs). If |Si| > 1, then Wg (i _4,-1} contains

.....

a row of zeros and S is not a uniqueness set.

b) Suppose n < A < m +n. Let S be a minimal uniqueness set for PW9(G). Note
that dim PW,(G) = k1 + ks — 2. Hence, |S| = k1 + ks — 2 by Corollary 18. We first
claim that |S;| > k; — 1 and |Sy| > ky — 1. Indeed, suppose |S1| < k3 — 1. Then the
vectors (ug)s,, - .- (uk,)s, are linearly dependent, say Zf;Q ti(u;)s, = 0 with not all ¢
equal to zero. Consider the signal f = Zf;l tiu; 0, € PWS(G). Clearly, f =0on S.
Hence f = 0 on Vi U V4 since S is a uniqueness set for PWS(G). This contradicts the
linear independence of ua, ..., ux,. We therefore must have |S;| > k; — 1. A similar
argument shows that |S;| > ko — 1. We therefore have |S;| = k; — 1 and | S| = ko — 1.
Now, consider the matrix W with columns us @0, ..., ug, ®0,,0, Bva,...,0, Buvyg,.

Observe that W can be written in block form:

Uy O (ka—1)

V= (4.37)

0 (k1 —1) Us
where U; € R™®1=1 and U, € R™*2=D. Clearly, the matrix Ws (1, r,—2} 18 in-

vertible if and only if (U1)sg, f1,...k,—13 and (Uz)s, (1, k,—13 are invertible. It follows by

Corollary 18 that S; is a minimal uniqueness set for PW$_ (G;) and S, a uniqueness
set for PW}_, (G5). Conversely, suppose that S is a uniqueness set for PW}_ (G})
and S, a uniqueness set for PWS_ (G,). Then the matrices (U1)s,.41,... ;1—13 and

(U2)ss,11,....ks—13 in Equation (4.37) are invertible. Thus Wg 1,k 4+k,—2y is invertible

77777

and S is a uniqueness set by Corollary 18.
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c)Finally, assume A > m +n. Then PW}(G) = 1. Let 1, uo @ 0pye ooy Uy B

0,,0,, ®vy,...,0, Dv,_1,—nl,, & ml, be an orthogonal basis of eigenvectors of L.
Denote these vectors by 1,1, = wy,ws, ..., Wyin = —nl,, & ml, and let W be the
matrix with columns wy, ..., wy,. By Corollary 18, any minimal uniqueness set for

PW}(G) had size m + n — 1. Let S be any subset of [m + n] of size m +n — 1, say
S = [m+n|\ {p} for some p € [m + n|. By Corollary 18, it suffices to show that
the determinant of the matrix obtained from W by deleting its p-th row and its first
column is nonzero. Let X = W~!. Using properties of the adjunct matrix, this is
equivalent to showing that X;, # 0. Let x1 = (21,;)1<i<m+n denote the first row of X.

Then x; is characterized by:

m+n
Z T =1 (4.38)
=1
(x1)v, Ly 2<i<m (4.39)
m m—+n
—-nNn Z L1, +m Z L1, = 0, (441)
=1 i=m+1

where (z1)y, and (x;)y, denote the restriction of x; to its first m and its last n entries
respectively. Now, since uso,...,u,,_1 form a basis of the orthogonal complement of
1,, in R™  we conclude by Equation (4.39) that (x1)y, = al,, for some o € R. Simi-
larly,using Equation (4.40), we obtain (x1)y, = 1, for some 8 € R. Now, by Equation
(4.38) and (4.41), we have

ma+nf =1

—nma +mnf = 0.

Solving for «, 3, we obtain

1
a=[0p= 0.
p m+n 7
Therefore, S is a minimal uniqueness set, as claimed. O
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Chapter 5

COLORED CODED APERTURE DESIGN IN COMPRESSIVE
SPECTRAL IMAGING VIA MINIMUM COHERENCE

5.1 Introduction

Spectral imaging is extensively used in remote sensing applications and thus the
development of more efficient sensing architectures is of interest, including compressed
sensing approaches such as coded aperture spectral imaging (CASSI). Multispectral
imaging based on CASSI has received considerable interest in recent years. In partic-
ular, the design of coded apertures has been shown to be a key to increase the quality
of the reconstructions [69]. Whereas initial designs of the CASSI considered the use
of random binary coded apertures [70] [71], it has been proven that the use of colored
coded apertures can significantly improve the quality of the reconstructions [72] [2].
Colored coded apertures are two dimensional arrays of pixels that have selective spec-
tral response, i.e. each pixel allows or blocks specific parts of the light spectrum. It
is fabricated as a patterned multilayer optical coating, that allows to have a compact
two dimensional array of pixels, each one with an specific spectral response [73].

This paper addresses the design and optimization of compressive spectral im-
agers with this new coded aperture technology. The solution proposed is based on the
analysis of the coherence of the sensing matrix. It is found that exploiting the highly
structured transfer function matrix of the system, leads to a solution that can be ob-
tained as the set of designs of smaller submatrices. It is shown that diverse families
of codes exists that can be considered optimal in the sense that an upper bound of
the coherence is minimized. The obtained codes are tested by simulation against tra-
ditional random binary codes and the codes obtained with other methods [2], showing

that the results obtained with the approach proposed in the present work exhibit a
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Figure 5.1: Components of the CASSI with the use of a general coded aperture
T(z,y,A). The multispectral scene f(z,y, ) is modulated by T'(x,y,\), and the re-
sultant modulated field is dispersed by an Amici prism with dispersion curve S(\) to
be finally integrated in the Focal Plane Array (FPA). When the classical binary coded
aperture is used T'(z,y, A) € {0,1} V.

clear improvement in the quality of the reconstructions. Additionally, the methods in-
troduced present a simple and fast way to generate optimized codes with high diversity
in the kind of spectral responses in the colored coded aperture, reducing the large scale
optimization problem to a subset of smaller problems, which is also an advantage with
respect to previous designs that are obtained using the analysis of the RIP constant [2]
using genetic type optimization algorithms, leading to limited specific constraints in
the spectral responses of the colored coded apertures. The designed codes based on
the coherence are tested against random codes in the presence of noise, showing that
despite the fact that the coherence is considered less suited than the RIP constant to
deal with the noise, the resultant codes lead to reconstructions of higher quality than

the obtained with random binary codes.

5.2 CASSI Modeling

The components of CASSI are shown in Figure 7.1. The multispectral scene
f(z,y,A) is coded by a coded aperture T'(z,y,\), where (z,y) indicates the spatial
coordinates and A is the wavelength component. If traditional binary coded aper-
tures are used, then T'(z,y,\) € {0,1} VA € A, where A is the spectral range of
f(z,y,A) [69] [71]. When T'(z,y, ) is a non constant and non negative function with
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respect to A, T'(x,y, A) represents colored coded apertures which modulates the incom-
ing light field both in space and wavelength [74]. Once f(x,y,\) has been modulated
by T'(x,y,A), the resultant field is dispersed by a prism and ¢(z,y, A) is obtained as
q(z,y,\) = f(x —S\),y, \) T (x — S(N\),y,A), where S()\) is the dispersion curve of
the prism. The continuous representation of the compressed measurements g(z,y) in
the Focal Plane Array (FPA) are obtained by the integration of ¢(z,y, \) across the
spectral axes as g(z,y) = [, q(z,y, A)dA [69] [74].

5.2.1 Discretization of the Model

The focal plane array (FPA) measures a sampled set of points. In order to adapt
the continuous model to a discrete sampled formulation, all operators are approximated
[74]. Let 2 € R? be the spatial domain of the FPA, represented as = Un,ne[N]Qm,ns

where (2, ,, is given by
Q= {(z,y)|A(n —1/2) <z < A(n+1/2),

A(m —1/2) <y <A(m+1/2)},

and [N] = {0,1,... N — 1}. The FPA measurement is then represented as an N x (N +
— 1) array conformed by the union of N(N + L — 1) domains of size A x A. The

pixel (m,n) with pitch size A is associated with €, ,, and its measurement sample is

— T _nY_
= //g(x,y)rect <A N m) dydz, (5.1)
Qm,n

which represents the contribution of g(z,y) to each Q,,,. The multispectral scene
f(z,y,A) is modulated by T'(z,y, \) such that

M—-1N-1

flz,y, T (z,y, A Z Z (TF)pmn(N)rect (% — n,% — m) , (5.2)

m=0 n=0

105



L=,
Hﬁ
=2|=

Shot 1

==

ﬁ
2)
T

Shot 2

\ \/ A\
diag(T'?) diag(T®)) diag(T?),)

(a)

T oo r®, T, )
ﬂrr i

Colored Coded (1) Unfolding T.(l.)o
Aperture in shot 1 1 by columns to form

3D representation a column vector
of the Colored Coded Aperture

-

(b)

Figure 5.2: The graphic representation of the transfer function matrix H is depicted,
when the capture of one multispectral scene of . = 3 bands and N = 3 is considered
using K = 2 shots. On the indicated diagonals the spectral response of the pixels of
the coded aperture are shown for each band respectively, i.e. on the diagonal of the
band %, the lexicographic ordering of the elements of T. . ; is considered.
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where (T'F)pmn(A) = Thnn(AN) Frn(X) and T,y ,,(A) is the spectral response of the coded

aperture at pixel (m,n), and where F, ,(\) is given by Fy, ,(A) = [[ f(z,y, \)dzdy.
Qm,n

Taking into account these facts and using (1), gm.n can be written as

min{n,L—1}

8mn = Z (T o F)m,n—k,ka (53)

k=0

Appendix 5.7 provides a detailed derivation of (7.4). (ToF)unix = TinxFmnr where
T.nx and F,, . are the (m,n, k) elements of the arrays T and F, respectively, where
the first two dimensions represent the spatial location and the third one indicates the
spectral component. The term T, , » is the spectral response of the coded aperture at
pixel (m,n) at wavelength k. Equation (7.4) can be rewritten in matrix notation as g =
HF, where g is the vectorized representation of g. H is of dimension K N (N+L-1)x
N?L with K being the number of shots and F is the vectorized form of F (see Fig.
5.2). Figure 5.2 shows the structure of H for CASSI with colored coded apertures.
The vectorization of 2-dimensional arrays is performed by columns. For 3-dimensional
arrays like F € RV*NXL the vectorization is performed concatenating vertically the
vectorizations of each F(:,:, i) withi=1,..., L.

When the sparsity properties of the signal F in a basis 1) are used, the problem
can be written as

& = Hyf, (5.4)

where F = f and f is a column vector whose entries are the coefficients rep-
resentation in the basis. The recovery of f is obtained as the solution of the nonlinear

optimization problem [75] [71]

P . ]- —
f =argmin - [|Az — g[; + 7 2], , (5:5)

where A = Ht is the sensing matrix of the problem and 7 a regularization

parameter.
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5.3 Coherence of the Sensing Matrix

Two measures for the quality are often used to describe the effectiveness of
compressed sensing projections, the coherence of the sensing matrix and the Restricted
Isometry Property (RIP) [75] [76] [4]. The RIP is traditionally used in theoretical
analysis of compressed sensing because of its elegance. However, even with simple
representations of the sensing matrix, it is in general difficult to calculate [75] [4]. On
the other hand, the coherence offers a measure of quality that is often more tractable.
In particular it allows one to exploit the structure of the sensing matrix, and it also
gives the degree of ill-posedness of the system. The coherence of the sensing matrix
A = H¢v is defined as the maximum absolute value of the inner product between any
two columns of A, with each column normalized by its /;—norm. A good sensing
matrix will have the coherence as small as possible to guarantee uniqueness of the
solution [77] [76].

In the following, a detailed calculation of the coherence is presented showing
how the structure of H can be exploited, in turn, leading to the proposed optimization

framework.

5.3.1 Matrix Formulation and Analysis of the Coherence

The structure of H is depicted in Fig. 5.2. The nonzero elements lie on the
indicated diagonals representing the spectral response of the coded aperture in each
band.

Let H=[h; hy... hy2], where each column h; is of dimension KN (N + L — 1) x
1. The basis matrix ¥ can be written as ¥ = [¢1T, wg, e ,¢§2L}T, where each
1, is of dimension 1 x N2L. Then, the sensing matrix can be represented as A =
HY = Zij\ff h;7,, and the element of A in the (m,n) position can be written as
A(m,n) = Zi]\ZL h;(m),(n). The inner product between the m and n columns of A

is given by
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N2L

(Al m), An) =D (b hy) g (m)e) (n).

ij=1

The coherence of the sensing matrix A can be written as

(TacmrTaca) (56)

ft(A) = max
7n¢n

= MAX fiyn (A) (5.7)
1n¥n
where
NZ2L
121 pijR
i (A) = Jl , (5.8)

=

N2L mm) 2 (N2
> pijR > piiR
,j=1 i,j=1

and R{7™ = 4 (m);(n), @i; = (hi,hy).

From the structure of H (see Figure 5.2), it is possible to identify a set I of
pairs of columns of H, that can be written as I = {(¢,7)|7 # j,¢;; # 0}, that is the
set of all possible pairs of columns of H whose inner products are different from zero.

Taking into account I, equation (7.10) can be written as

o\m,n
[ (A) = | <; ) T (5.9)
o(m,m)2o(n,n)>
where
N2L
Zgo“ DT R, (5.10)

(4,9)el

The coherence p1(A) in (5.7) is therefore determined by the functions ¢; ; and
©i;. In the next sections, it is established how the values of ¢; ; and ¢;; can be used

in order to get an upper bound on the values of i, ,(A) and consequently u(A).
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5.4 Optimization of the H matrix
The intended values of p(A) should be as small as possible in order to improve
the quality of the reconstructions [78] [79]. The problem of designing H such that the
minimum value of p(A) is attained, can be formulated as
minimize  p(A)
H (5.11)
subject to H € Cn 1k

where Cy 1k is the set of matrices for a CASSI system reconstructing multispectral
images with image size N, L bands, using K shots and, the entries of H are binary
nonnegative. The expression for (A is nonconvex [78] [80], therefore a direct solution
of the problem (5.11) is not workable. However, it is possible to take into account the
relationship between (i, ,(A) and o(m,n) to get an alternative formulation. This

relation is presented in the following theorem.

Theorem 48. Let A = Hvp be the sensing matrix for the CASSI system considering
the reconstruction of multispectral scenes of size N x N x L using K shots. Then, there

1s € € Ry such that

NZ2L
mn(A) < ‘R(»”?’") + R 5.12
P (A) < € <;¢,>miax > v max |, (5.12)

(i,9)el

Proof: See Appendiz 5.8.

The quantities from (7.12) ¢;; and ¢; ; play a key role in bounding the value of
fm.n(A). In particular, note that minimizing ¢; ; and ; ; implies a minimization of the
right side of equation (5.12). This reduces the range of values of (A), and therefore it
represents an indirect minimization of p(A) that allows the finding of local minimums.

The maximum values of ¢;; can be determined by the use of the Cauchy-
Schwarz inequality as ¢;; = |[(h;,h;)| < ||hy||, [[h,||, and for ¢;; it follows that ¢;; =
thHg Then, the values of the functions ¢;; and ¢;; are bounded by the ¢,—norm of
the columns h;. Because all the vectors h; have binary nonnegative components the

minimum value of ||h;||, # 0 for an arbitrary 7 is attained when |/h;||, = 1.
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Figure 5.3: The structure of H is depicted showing how the different sets I, are defined
and how its structure is related with the submatrices H,. The support of some subset
of columns of H for which ¢; ; # 0 is indicated in different colors, and it is shown how

is its relation with IZIT.

Taking into account this, the term ¢;; in (5.12) must be such that ¢;; = 1.

With this value of ¢, ; it is possible to write an alternative formulation of (5.11) as

mlngnlze (Z%I Pi,j
subject to ;; = (hy, hy) (5.13)

HeCnrx

il = 1.
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5.4.1 About the structure of H
The set I indicates the set of inner products between columns of H that can be
different from zero, with |I| << N2L(N2L — 1). The structure of I can be additionally

described as a union of simpler and smaller sets as

R
I=Jr (5.14)
r=1

where each I, represents a subset of pairs of I that indicate the subset of columns of
H that have the same support (see Figure 5.3), and R is the total number of subsets.
As shown in Fig. 5.3, these sets have the property that

L(\L=0 Vr#t (5.15)

Hence the possible values of the inner products between columns of H are described by
the set of inner products of the submatrices H,. Because the structure of H is explicitly
known as indicated in Fig. (5.2) and Fig. (5.3), it is possible to determine the sets I,
and the indexes L, of columns that define I, in a systematic way. In Appendix 5.12
an auxiliary algorithm used to obtain the indexes of the columns L, is indicated.

The design of H can then be formulated as the design of the submatrices H.,.
This idea is summarized in Algorithm 1. It is pointed out here that the structure of H
indicates where the elements of T are located in H, this has been stated in previous

paragraphs and Figures (5.2) and (5.3).

Algorithm 7 Design of H based on the design of submatrices H,

Input: structure of H
Output: H
1: Identify the sets L, and the dimensions of the matrices H, (see Figure 5.3 and
Appendix 5.12);
2: Design the submatrices H, for each r;
3: Assemble values of H, in H (see Figure 5.3 and Appendix 5.12);
4: return H

The assembling of the values of H, in H can be obtained given the knowledge of
the structure of H (see Fig. (5.2) and Fig. (5.3) ). Additionally an auxiliary algorithm
is presented in Appendix 5.12 showing how this task is done.
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Different criteria can be applied in the design of the submatrices H, in order to
get direct or relaxed solutions of (5.13). In the following subsections a direct solution
of (5.13) is presented and a relaxed solution of this problem based on the coherence of

H is also presented.

5.4.2 Minimum Coherence design of H,

Before a direct minimization of Z(i, fer Pij 18 obtained, a relaxed formulation
of the problem is presented based on the minimization of the coherence of H.

Despite the fact that the relationship between p(H) and g, ,(A) is nonlinear, a
minimized value of u(H) is related to the minimization of Z(m)el i as Z(z‘,j)el i <
[[|Kp(H). Then as the value of y(H) is reduced, the upper bound on >~ ;¢ is
also reduced, which represents an indirect way of minimization of 2( i jyel Pi- This fact
makes any formulation in which x(H) is minimized, a relaxed formulation of (5.13).
Taking into account that w(H) = max, u(H,) because the sets I, are disjoint, the

formulation using the minimum coherence criteria is presented as

~

minimize p(H,) VI,
H, (5.16)
subject to ﬁﬁ” c {0, 1}
where the [, are specified according to (5.14) and flg’“) is the " column of H,. This
formulation, which constitutes a set of disjoint formulations for each I:IT, allows one to
get H with the minimum coherence p(H).
The algorithm proposed to solve this minimization problems in an efficient way,
without extensively evaluating all possibilities in the feasible set, is presented below.
It is shown how we can exploit the structure that the vectors on the unit hypercube

have.

5.4.2.1 Minimum coherence matrix construction with nonnegative binary
entries
The general procedure to build nonnegative binary matrices is presented here

in order to be used for the design of the submatrices I:IT. Let Ay be defined as Ay =

113



{x € Qx |||x||¢, = 0} where Qk represents the hypercube in the K —dimensional space
described as Qx = {x = [z1,...,zx|" € R¥ |z; € {0,1} Vi}. Then Ay represents the
set of binary vectors that have exactly 6 of its components equal to 1 and the remaining

components equal to 0. In particular it is important to take into account that

Qx \ {0} = ] A (5.17)

This means that the set of possible vectors that can be used as column vectors in
the construction of a matrix can be represented as a union of the sets Ay. Then,
the representation of Qi in (5.17) is exploited in order to calculate the coherence
of any matrix whose columns are in Q. The following theorem exploits this last

representation.

Theorem 49. Consider xi,...,x, € Ui, Dy, with x; #x; Yi# jand by < ... <

0,.,. Then
6, 1
p([x1, ..., %)) <maxqmaxy/—,1— — (5.18)
¢ 011 Om

with € =1,...,m — 1. The bound is satisfied with equality when

m

=1

(5.19)

Proof: See Appendiz 5.9

Theorem (49) establishes an upper bound for the values of the coherence of a set
of vectors given the knowledge of the sets Ay from which these vectors are taken. It can
be interpreted as a worst case value of the coherence for those vectors. Additionally, this
upper bound is in the set of possible values of the coherence. From the computational
point of view, it is important to note that this worst case value can be calculated
basically considering the largest value of # and the value of max, efﬁ'

On the other hand it is possible to see that given any value of the term

max {maxé A /92%, 1-— QL}, it is always possible to choose a set of vectors from a col-

lection of sets Ay,,7 = 1...m that have exactly this value of the coherence. This fact
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can be used in order to determine the minimum coherence as the minimum between

those worst case values. This idea can be described by the following theorem.

Theorem 50. The minimum coherence that can be achieved for a matriz of u columns,
whose column vectors are distinct elements of the set Qg \ {0} with 2 < u < 2K — 1,
18 given by

i (1) = D { f 5 () } (5.20)

where the function f; s(t) is defined as

fg,s(t) _ [ for t=2,....,s (5.21)

oo otherwise
where [i is in the set of values given by the terms max {maxf 9;%, 1-— t}, €. [l 1S

the highest possible value of the coherence estimated by the upper bound in theorem 49.

The value of s is given by

S:Z‘A@

i=1

(5.22)

considering the collection of sets {Ag,}i" | with 6y < ... < 0.

Proof: In Appendiz 5.10

The function f; s(t) establishes all the possible number of vectors that can have
the value of the coherence fi. Given a number of vectors it is possible to achieve
different values of the coherence, and then between those possible values the minimum
is chosen in order to determine the minimum coherence value.

These ideas are considered in Algorithm 2, used in order to calculate the min-
imum coherence given a number of vectors u and the dimension of the embedding
space K. Additionally, it is also possible to obtain the classes Ay from which the

vectors should be selected in order to achieve the minimum coherence'. The set

! The number of possible combinations of vectors that achieve this minimum value is
not of interest.
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Algorithm 8 Minimum Coherence Calculation for Binary Matrices
Input: K
Output: (i, (u) and Cpin(u)

1: for j =2to K do

2: V =comb{K,j}.

32 fori=1to|V]do

£ p=max{maxe [ 1= Ehwith 6= 1,05 1,
5 5= A,

6: C(ﬂ’s) :{01,...,0]'}

7:  end for

8: end for

9: for u=2to 2% —1do

100 fimin (u) = ming { fas(u)}
11: Crn(u) = O/ (Bmin (w),u<s)

12: end for

13: return iy, (u) and Chpn(u)

V = comb{ K, j} is the set of combinations of j numbers taken from the set {1,... K}
and indicate the sets Ay that are considered. The *" combination in the set V is given
by VO = {6,,... ,0;}. Once the combination of sets Ay is selected, they are ordered
as 0y < ... <6;. The function fi,,(u) represents the minimum coherence that can be
achieved with a matrix whose number of columns is u, and the term C,,;,(u) indicates
a collection of sets Ay from which the set of vectors achieving fi,,i, (1) can be selected.
Then any submatrix H, with K rows and u columns can be designed taking a set of u
vectors from the classes Ay indicated by Ciin(u). The construction of the submatrices

H, based on the results of Algorithm 8 are presented in Algorithm 9.

Algorithm 9 Building the matrices H, considering the results of Algorithm 8

Input: K, L, (the L, can be obtained using Algorithm 12)
Output: All submatrices H,

1: Considering K use Algorithm 8 to get Chin(u);

2: for r=1to R do
3:  Choose u, = |L,| different columns from the classes indicated in Cp (uy);
4:  Put those columns in a matrix I:I,,;
5
6

. end for R
. return All submatrices H,
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In the minimum coherence designs of PAIT, it is important to remark that the
maximum number of columns that these submatrices can have is L (See Figure 5.3).
Then, taking into account that in K shots the total number of vertices of the hypercube
Qx without the zero vector is 25 — 1, it is necessary to have L < 2% — 1. If that is not
the case, then it will be necessary to use again one of the vectors already used in the
construction of the H,, which implies M(IAL) = 1 for some of the H,. Therefore, this

condition could be represented as

K > [logy(L+1)] +1. (5.23)

5.4.3 Minimizing > jc; ¥i;
Taking into account that
Z Pij = Z Pij +...+ Z i j (524)

(i,9)€l (4,9)e (i,9)ElR

with Z(i Del, Pis > 0 Vr and the sets I, are disjoint. A direct minimization of the

term > ooy @i in (5.13) can be formulated as

minimize Z vij VI,
i, -
(DEL (5.25)
subject to ¢, ; = <f1(r) ﬁ(r)> , hzm = 1.

U R 1

Then, the problem is again decomposed in a set of smaller problems in which the sum

of all possible inner products are minimized but considering the submatrices }AIT, which
would lead to a direct minimization of »; ;; @i ;. For (5.25) it is possible to establish

closed form solutions as it is shown next.
Theorem 51. The solution submatrices H, to the problem (5.25) are given by
H, = 7 {[uy,...,u,]}, (5.26)

where n, is the number of columns required in the submatrix H, and the operator
represents the random permutation operator on columns. The vectors w; are obtained

as the first n, columns of U, which is given by

U:11><L®IK><K. (527)
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Proof: See Appendiz 5.11

Algorithm 10 Building the matrices H, based on the minimization of Z(i, fel Pis

Input: K and L,

Output: All submatrices H,
1: forr=1to R do

2 U=11x ®Igxk.

33 H,=w{U(,1:|L])}

4

5

: end for R
: return All submatrices H,

The construction of PAI,, based on the minimization of Z(i fer Pis and the closed

form solution of (5.25) is presented in Algorithm 10.

5.4.4 About additional restrictions on H

Since H models a physical device, it is important to consider some physical
constraints related with colored coded apertures. Coded apertures with large number
of color filters lead to costly implementation since its cost increases directly with the
number of colors [73]. Thus, a constrained optimization procedure restricting the
number of colors is of interest.

In this work this restriction is added in a post-optimization stage considering
the relation that different pixels exhibit in the structure of the H matrix. In Figure 5.4
it is possible to see, how the spectral responses of some pixels are related. In particular,
it is possible to appreciate that following the lexicographic order on the pixels of the
colored coded aperture, the pixels i,i+ N,i+ 2N, ..., i+ (L — 1)N are related, in the
sense that their spectral responses are involved in at least one of the H, matrices. As
it is indicated in Fig. 5.4, this related pixels are identified looking at the support in the
rows of H. The idea is to keep those spectral responses in the designed H, such that the
values of the inner products between columns of H are preserved as much as possible.

For this reason the value of ¢ should be chosen such that the spectral responses selected

118



Lexicographic ordering
of the elements in the

colored coded aperture —_ JR—
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Figure 5.4: Illustration of H for 1 shot considering a multispectral scene of 3 bands
and N = 3. As it is indicated in yellow color, three entries in the support of one of the
rows of H are involved in one of the submatrices H,. The lexicographic order in each
diagonal indicates which pixels have their spectral responses related by H,.
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are related with the submatrices H, with the largest number of columns, in particular
1 = 1 satisfies this requirement.

The proposed strategy then consists on using the optimal designs of H obtained
without restrictions on the number of spectral responses and after that, the maximum
number of spectral responses per shot ( is taken into account such that the new colored
coded aperture uses some of the spectral responses of the pixels i,i+ N,i+2N, ..., i+

(L —1)N (using lexicographic order). This procedure is summarized in Algorithm 11.

Algorithm 11 H design with restrictions on the number of colors

Input: ¢ (maximum number of spectral responses per shot)
Output: H
1: Design H using Algorithm 1, with criteria 1 (see Algorithm 9) or criteria 2 (see
Algorithm 10).
2: for k=1 to K do

3. Get T® from H (see Fig. (5.2) and Appendix 5.12)
4. forn=1to N do

5 V=T®(1,1:¢,:)

6: Q=1

7 for g =1to [N/(] do
8: Q= [Q,m.(V,2)];

9: end for

10: Q=Q(1,1:N,:);

11: T&Q(n, L) =Q;

12: end for

13: end for

14: Put the values of T'%) in H (see Fig. (5.2) and Appendix 5.12)
15: return H

The variable T*) is the three-dimensional array representation of the colored
coded aperture in the shot k, and T the resultant colored coded aperture after
applying the restrictions on the number of colors. The values of T can be located
in the final designed H matrix considering the structure of H showed in Fig. 5.2
and Fig. 5.3. In Appendix 5.12 an auxiliary algorithm designed to do this task is
presented. The operator 7.(-, 2) is the random circular shifting operator acting through

the second dimension. In Fig. 5.5 it is shown how the restriction on the maximum

number of spectral responses in the coded aperture is applied. The statement V' =
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Circular shift Circular shift
of the original of the original
sequence sequence

The new Colored Coded Aperture
is built concatenating randomly
these sequences

Colored Coded Aperture Colored Coded Aperture
as a result of the designed H after applying the restriction
using Algorithm 1 (=3

Figure 5.5: Illustration of how the designed coded aperture with restrictions on the
number of colors is obtained. In the original coded aperture there is a large number of
spectral responses whereas the coded aperture obtained with the restriction ( = 3 can
have at most 3 different spectral responses.

T® (1,1 :¢,:) indicates that in the variable V are stored the spectral responses of the
coded aperture in the row 1 from the column 1 up to the column ¢ (see Fig. 5.5), which
considering the lexicographic ordering of the pixels of T*) makes reference to the pixels
1+ N,1+2N,...,1+(N. The maximum possible number of these spectral responses
is given by K (. In line 8 of Algorithm 5, the arrays @) and m.(V,2) are concatenated
along the second dimension, i.e. if dim(Q) = a x b x ¢ and dim(7w.(V,2)) =a x d X ¢,

then dim([Q, 7.(V,2)]) = a x (b+d) x c.
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5.5 Simulations
In order to evaluate the performance in CASSI of the designed matrices H using
the strategies and algorithms proposed, a set of simulations is realized considering also

the effects of the noise in the measurements.

5.5.1 Parameters of the Simulations
5.5.1.1 Multispectral scene
A datacube of dimension 64 x 64 x 12 is considered. The representation of this

datacube decomposed by bands can be appreciated in Figure 5.7.

5.5.1.2 Reconstruction Algorithm and Basis Representation

The multispectral scene is represented in the basis ¥ = Wpor ® Wy, where
W por is the Discrete Cosine Transform (DCT) basis for the spectral domain and Wy,
is the wavelet basis for the spatial domain. The GPSR algorithm is used in order
to perform the reconstructions, the regularization parameter is tunned empirically

following the guidelines in [81].

5.5.1.3 Measure of the quality of the reconstructions
The Peak Signal to Noise Ratio (PSNR) is used as a measure of the quality of

the reconstructions.

5.5.2 Optimal H designs
The results of the simulations are presented in Figures 5.6, 5.7 and 5.8 using

the two different optimization criteria discussed before

e Criteria 1: Minimizing the Coherence of the submatrices H,. Here the designed
H is obtained as the result of the methods and algorithms presented in section

IV(B).

e Criteria 2: Minimizing >, ¢ ; using the solution presented for (5.25). Here the
designed H is obtained as the result of the methods presented in section IV(C).
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Figure 5.6: Simulations results comparing the performance of the different designs of
H using two different optimization criteria. Several values for the number of shots K
are considered. In blue color, the results using optimization criteria 1, based on the
minimum coherence of H, are presented. In red color, the results using optimization
criteria 2, based on minimizing Z(i, el Pijs are presented. It is possible to see that
the results obtained with the designed H are consistently superior than the results
obtained with random binary coded apertures.
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As can be appreciated in Figure 5.6, the highest performance is obtained when
criteria 2 is used, i.e. when Z(i,j) ¢;; is minimized. This superiority with respect
the use of random black and white coded apertures is consistent through the different
number of shots used. Additionally, despite the fact that the reconstructions using
criteria 1 are not as good as the ones for criteria 2, the result is still superior to the
results that can be obtained with the classical random black and white coded apertures.

In Figures 5.7 and 5.8 the reconstructed multispectral scene is shown using
the designs of H based on the criteria 2 and with the configuration of H using a
black and white coded aperture. The results show clearly how the bands recon-
structed with the designed codes are superior. The differences are evident in the bands
519[nm], 539[nm], 559[nm], 619[nm] for instance. In Figure 5.8 a zoomed version of the
band 559[nm] can be observed, in particular it is possible to appreciate the substantial
improvement in the reconstructed bands when the designed codes are used.

Figures 5.9 and 5.10 show the details of the resultant coded aperture from the
designed H using the criteria 2. In Figure 5.9 the two dimensional representation of
the coded aperture is depicted, and the spectral responses of selected pixels are shown
in Figure 5.10 as a function of the wavelength. In Figure 5.11 it is possible to see the
results obtained using criteria 2 versus the results obtained with the codes designed
in [2]. The results obtained with the approach present in this paper allow to obtain
higher values of PSNR than the values obtained with the RIP based designs. The result
that the RIP methods allow, do not have arbitrary spectral responses [2], whereas the
proposed solution here allow the use of a more diverse variety of spectral responses,

which gives a more flexible design.

5.5.3 Optimal H designs with restrictions

In Figure 5.12, the results of the reconstructions using optimal designs with
restrictions on the number of spectral responses in the coded aperture are presented.
Different cases are considered, going from a maximum number of spectral responses per

shot ¢ = 3 up to {( = 8. As the value of ( is increased, the PSNR of the reconstructions
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Figure 5.7: Simulation results showing the reconstructed bands of the multispectral
scene are considered. In the first row of each group of images, the original bands of the
multispectral scene are shown. In the second row the reconstructed bands obtained
with the designed H are presented, and in the third row the reconstructed bands using
the traditional black and white coded aperture are depicted.
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Original Designed Random Binary

Original Designed Random Binary

Figure 5.8: A zoomed version of the band at 559[nm]. On the left, the original band
of the multispectral scene is shown. In the center, the reconstructed band using the
designed H with the criteria 2 is presented. On the right, the reconstructed band using
the random black and white coded aperture.
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Figure 5.9: A representation of the spectral response of the resultant coded aperture
from the designed H used in the reconstructions of Figures 5.6, 5.7, 5.8 is presented.
For each shot, each spectral pattern in the coded aperture is shown. The representation
of the spectral response of some pixels as functions of the wavelength is depicted in

Figure 5.10.
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Figure 5.10: Spectral responses of selected pixels in the resultant coded aperture used
in the reconstructions of Figures 5.6, 5.7, 5.8 (See also Figure 5.9) as functions of the

wavelength. The units of horizontal axes are in nanometers [nm]. The term T%)n()\k)
indicates the spectral response of the coded aperture at position (m,n) in the shot /.
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Figure 5.11: Simulation results comparing the designed codes proposed in this work
using criteria 2 versus the results obtained in [2].

with restrictions gets closer to the curve that is obtained with the designed H with
criteria 2. It is also possible to see, how the final number of spectral responses in the

resultant coded aperture is smaller than its maximum limit which is K.

5.5.4 Considering the effects of the noise

The designed codes are tested against the classical random binary codes when
the measurements g, ,, are contaminated with white Gaussian noise. Different values
of SNR on g, ,, are considered.

In Figure 5.13 it is possible to appreciate the performance of the designed codes
with criteria 2 versus the random binary codes for several levels of noise. Clearly
the designed codes allow to get higher PSNR than the obtained with random black
and white codes, and these results are consistent for different values of SNR in the

measurements.
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Figure 5.12: Results of the reconstructions using the designed H with restrictions on
the number of spectral responses in the coded aperture. The resultant PSNR is shown
for different values of ¢ ranging from ¢ = 3 up to ( = 8. The number of spectral
responses in the resultant coded aperture is indicated on each marker of the curve.
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Figure 5.13: Simulation results showing the quality of the reconstructions in the pres-
ence of noise. The designed codes allow to obtain higher quality reconstructions than

the random binary codes in the presence of noise, considering different values of the
SNR in the measurements.
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5.6 Conclusions and Future work

The coherence analysis of the sensing matrix of the CASSI system proposed in
this work, allows the design of families of matrices H which lead to reconstructions
with higher PSNR than the obtained using random black and white coded apertures
and coded apertures designs obtained with the RIP approaches. It is also shown that
the proposed method allows to obtain the designs of H in a fast and simple way.

The approach used in this work, showed that there are numerous designs of H
that are obtained as a result of the minimization of an upper bound of the coherence. It
was also shown that given those designs, it is possible to restrict the number of spectral
responses exploiting again the structure of H. This allows more flexible designs with
higher diversity of spectral responses than the proposed in [2].

The results obtained with the designed H are more robust than the configura-
tions obtained when the random black and whited coded apertures are used, if noise
in the measurements is considered. This behavior is consistent for different values of
SNR.

In future works the approach presented in this paper can be improved consid-

ering more specific knowledge on the basis W.

5.7 Discretization of CASSI Model

The rect function used in equation (5.1), can be represented as

1 if —1/2<2<1/2, —-1/2<y<1/2
rect(z,y) =
0 otherwise

This function is separable and can be equivalently written as
rect(x, y) = rect(x)rect(y)

with

1if —1/2<2<1/2
rect(z) =
0 otherwise
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Considering this facts, it is possible to see that there are concrete cases in which the
product between rect functions is different from zero. With this, it is possible to define
the limits of the integral operators in (5.1); in particular it is considered that?

rect <% —m/> rect (% —m) £0 <= m =m,

n.

Then, in the x variable the integration limits are

[o(e-t). (eed) 5[] s}

Additionally, if A (n' — 1) +5(\) > A (n— 1) and A (' = 1) +S(\) < A(n+ 1), it

2

follows that n' = — {(T—‘ +n+ 1. In this case for the x axes the integration limits are

HREENE RN

Using these facts, the measurements at pixel (m,n) can be written as

1+s)  pa(m+d)
S ¥ P

2

(TF),, (s (N dydxd

m,n—

a(m})
//A(SWMA ;)+sm/a(m+1)

. . . . . . / / .
2 In the analysis considered in this section the variables m,m ,n,n represent integer
numbers.
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by the mid point rule approximation® for the spatial operators, the measurements are

given by

B /A A2 <— [%w + 5, 1) (TF),,,,_ s (A

B /AA2 (_ {%W + %) (TF),p 15027 (NdA. (5.28)

When discretization in A axes is considered, the bands in the super resolution model
define the limit points of the intervals of integration. Using again the mid-point rule

for the approximation of the operator in A axes, it follows that

L—1 A 3
S(A S(A
8mn = ZA)\(k)AQ <_ ( k)“ + ( k> + 1)
k=0

A A

L-1 :
S(A
+ E A A’ (—{ (Ak)
k=0

where )\, = (Ak1 + Ak)/2, Ax) = Aeg1 — Ap. Considering the properties of TSA(A)J
presented with all detail in [74] (also discussed at the end of this appendix) and the
fact that |[—u| = —[u], the representation of g, , takes the form

A A’ (— F(ﬁﬂ " S(ﬁk) + 1) (TF) -t (M)

S| S )
A “ + A > (TF)mvn—k’-i-u/-i-l()\k)] )

3 For any integrable function f(z) in the interval [a, b], the midpoint rule approximation
can be represented as fab f(x)dx =~ (b—a)f((a+b)/2).
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with ¢ € N. The value of ¢ represents the number of pixels of the detector affected by
one voxel of the datacube model [82] [74]. If

S(A
Aqmnk = A)\(k:)A2 <_ { ( k)

+ () + 1) ,

A A
and . .
S(A) | | S
= —A AQ _
IBm,n,k A(k) ( { A + A )
it follows that L
8mn = Z Z (Wm,n,k’,u(T o F)m,n—k—l—u,k) )
k=0 u=0
where
Qmon k If u=20
Wmnku = Aypyon ke + IBm,n,k If O<u<e
Bm?n’k If u=-c

for ¢ > 2. When ¢ = 1 the traditional model of the CASSI* can be obtained, with an
abuse of notation, redefining Fp, . x = QmniFmn—rk + B pFmn—rs1r such that

min{n,L—1}

8mn = Z (T o F)m,nfk,kv
k=0

For simplicity ¢ = 1 is used for the presented analysis.

5.7.1 About the meaning of {%J
Taking into account the Weierstrass approximation theorem it is possible to
obtain a good representation of S(A) as a polynomial [74]. In particular this represen-

tation can be stated as

Q
S(\) ~ Zar)\’" Q eNa eR.

r=0

* This model was used and proposed in [70] [71].
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With this representation it is possible to separate the linear and nonlinear components
of S(\). Renaming ¢(\) = Z?:z a, A" and using the properties of the floor function [74],
it follows that

2o fod] = [ < (3 el o

The term « is associated with the mismatching in the dispersion axes of the multi-
spectral image on the focal plane array [74], and it is considered that the nonlinearities
in S(\) are contained in ¢()), whereas the term |a; 2| is directly related with the
changes in the dispersion axes with respect to A. It is possible then to associate a
variable index to the term Lal AJ indicating the changes through the spectral axes and
another variable index can be associated to the term L% + %J. This leads to the

indexes involved in the representation of g, .

5.8 Proof of the Theorem 48

Taking into account equations (7.11) and (7.12) it follows that

fimn(A) < lo(m,n)| €

with
1

min  o(m,m)
H, ||h;[|>0Vi

o(n,n)z

o=

Using the triangle inequality on |Q(m n)| it is possible to get

mn|<2<ﬁu + > i | RS

(i.3)€l
Now, applying Holder’s inequality to the right-hand side of the previous equation, it

l’L

follows that

N2L
< Rimm) . R
ot < | (L s 2 4 3 ) s [
=1 (i,5)€
Therefore it finally follows that
Rmn)

Z}j

N2?L
fmn(A) <& [(Zgo”> max)Rm")

ol 2 e )

(1,9)€el
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5.9 Proof of the Theorem 49
The inner product between any two different vectors in the set Q \ {0} can be

written as

<Xi>Xj> < — % If Xi, Xj € Ny VO (529)

Bl Bl = /5 16 x € Apuxy € At <0

Because the function 1 — 1/6 is monotonic increasing in 6, it follows that

1
<Xiaxj> < 1— @ If Xiy X € Ag, 0 € {91,/. .. ,(9;,1} (530>

il T T, O k€ Ayixs € gl <0
where the sequence of values {0y, ...,60,,} satisfies 6, < ... < 6,,. Consider the term

\/0i/0; with i < j. It is possible to see that

1 T
1—— 1—— =2 ....0; 31
\/ 9j>‘/ 7, Vr N (5.31)

then the maximum value of the term ,/6;/6; is given when 6; and 6; are successive

elements in the sequence {61, ...,0,,}. Therefore, it follows that

(Xi, X;) 1_$ If x;,x; €0, 0€{bh,....0,}

ik e VA (5.32)
%15 1% 11, max 1|
r<ft eg

with 0, 6, successive elements in the sequence 64, ...,0,,, and therefore from this it is

10, 1
u([Xl,...,Xn])SmaX{I??g( e_gjl_a}

5.10 Proof of theorem 50

obtained that

Let us consider u € N such that 2 < u < 2% — 1, then the minimum coherence

for this number of vectors in Qk \ {0} is calculated as

Pomin (W) = mgn {fﬁ,S(u)}
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as indicated in theorem (50). Let us assume by contradiction that there exists a set
of u vectors in Qr \ {0}, with coherence equal to v < pimin(u), i.e. there exists u € N

vectors Xp,Xa, ..., X, in Qg \ {0} such that

w([x1, X, ..., Xy]) =7

The value of « is in the finite set of the possible values of the coherence for any set of

vectors taken from Qg \ {0}. Therefore, v can be written as

6, ] 1
= Imax { max a— -
v ¢ 9[—1—1 ’ ‘9m

for a collection of classes {Ag, }i—1... . In particular, taking into account Theorem 49,

we have that for any set of different vectors y,...,y, € {Aq, }iz1,.m

| 0 1
M([ylw"ayv])SmaX{m?X ﬁi’l_%}

When v = 7" |Ay,|, equality is achieved and the maximum number of vectors that
can have this coherence value of v is v. Therefore u < v, which implies that 3f, ,(u) <

oo. This is a contradiction because fiyn(u) = ming { fz s(u)}.

5.11 Proof of theorem 51
In this proof, two cases are considered separately. In the first case, the number
of columns n, of the submatrices IZIT is such that n, < K. In the second case, n, > K.
It is important to take into account that the constraint ||hy||; = 1 in (5.25) and
the fact that the entries of H belong to the set {0,1}, indicate that the vectors h;
must be taken from the set F = {ey,...,ex}, where e; is the vector with 1 in the 4

component and 0 in the remaining components.

1. When n, < K: In this case the columns of ﬂr can be selected as any subset of
the set I/, and as a consequence of this ¢; ; = 0 for any choice of these subsets.
Therefore

H, = 7 {U}
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where U is the matrix whose columns are selected as any subset of the set F.

This is a particular case of (5.26).

. When n, > K: Let u be the number of columns of the matrix ﬂr. This number «
is going to be represented as u = j+mK wherem e Nand 1 < j < K. If/; > 1
is the number of times that the element i of the set E appears in the choosing
of the columns of the matrix PIT, then the number of ones in the term ¢; ; (with
j > 1) in (5.25) as a consequence of this choice, is given by (g) = M%—_I) This
expression can be also used to describe the number of ones in ¢; ; for the case

l;=1.

Taking into account this, the objective function in (5.25) can be rewritten as
Gl ... lg) = K, ¢(6;) where ¢(z) = x(z — 1)/2 and then, the original
problem can be rewritten as
K
minimize Zqﬁ(&)
i=1

(1,lrc)

- (5.33)

subject to Zﬁi =u, (€N

i=1
The solution of the problem (5.25) presented in the equation (5.26) corresponds
in the rewritten version of the problem (5.33) to the point

bo=(l,... lg)=7(m,m,....m, m+1m+1... m+1)
where there are j components with value m and K — j components with value
m + 1.

It is going to be shown that the solution to (5.25), which is the same solution of

(5.33) is given by £o.

In order to get a better knowledge of the objective function we are dealing with

in the specific domain (constraint), it is possible to use Lagrange multipliers
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optimization, relaxing the domain of the ¢; to be ¢; € R,. Then, the Lagrangian

can be written as

K

1
5:52@(@—1)+A

=1

igi_u].

i=1
Calculating the gradient and equating to zero all the components, it is obtained
that
1 .
li—5+A=0 Vi=1. K > li=u,

i=1
which gives the optimal point £ = (u/K,u/K,... u/K). This solution would
be acceptable for (5.33) always that v = rK, where r € N, however that is not

always the case.

Now, the function G restricted on the set of points S = {(¢1,...,lg)| S35, £; =

u} is given by
K
1
Gls=75 [Z 2 — u] (5.34)
i=1

which is a convex function on S. Then, the solution to (5.33) can be found solving
the problem
pize (5o ) =],
minimize — =, = =V
v K’ K K 2
K (5.35)
subject to ZUL‘ =u, v; €N
i=1
Because v; € N, the solution vector of (5.35) must be obtained such that its
components are obtained either as v; = |u/K| or v; = [u/K]. It is clear that
in general® not all the components can be obtained using just one type of op-
erator because the condition Zfil v; = u could be violated. Therefore, some of

this terms are approximated using the floor function and the others the ceiling

function, case in which some components of v are given by L”%J = m while

the others by [%W =m + 1. Now, let ¢ the number of components obtained

® The only situation in which both operators can be used for all the components is
when u/K is an integer.
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using the floor function operator for the rounding process and p the number of
components obtained using the ceiling function operator, then it must happen
that

gn+pm+1)=u=j5+mK, p,qeN.

Because, p + ¢ = K then j = p, therefore when v = j +mK with 1 < 7 < K the

optimal solution for (5.35) which is the same solution for (5.33), is given by
w(m,....mm+1,....m+1) =4~ (5.36)

where there are 7 components with value m+1 and K —j components with value

m.

5.12 Auxiliary Algorithms
5.12.1 Obtaining the L, and the dimension of the matrices H, (Algorithm
12)

With the purpose of determining the sets L, in a systematic way, it is convenient
to consider a matrix H obtained when all the entries of the coded aperture have a value
of 1. This matrix is denoted by H. The set L, = supp(#(i,:)) indicates the indexes
of the columns of the matrix H in the support of the row i. .J, represents the row
indexes of the support of the columns of H indicated by the set L, in the first shot.

The information contained in J, is used to assemble the values of fIT in H.
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Algorithm 12 Obtaining the sets L,

Input: H
Output: L,, J,.
Initialisation : r =0

1. fori=1to N(N+L—-1)do

2. r=r+1;

3: L, =supp(H(i,));
4: J, =1

5: end for

6: return L,, J,

5.12.2 Assembling the values of H, into H (Algorithm 13)

The designed values of H, can be assembled in H using Algorithm 13.

Algorithm 13 Assembling the values of H, into H

Input: I,.,J, and H,
Output: H
1: forr=1to R do
2 for k=1to K do
3 H(J, + (k= )N(N + L —1); L,) = H,(k,);
4:  end for
5: end for
6: return H
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5.12.3 Obtaining the values of the coded aperture from H (Algorithm 14)

Algorithm 14 Obtaining the values of the coded aperture from H
Input: H

Output: T® for k=1,..., K

1: for k=1to K do

2:  for /=1to N? do

3: T @,:) = [Hl+(k—-1)N(N+L—-1),0),Hl+N+(k—1)N(N+L—1),(+

N?),...,Hl+(L—1)N+ (k—1)N(N+L—1),0+ (L—1)N?)];

4:  end for

5: end for

6: for { =1to N do

7. TWE ) =TH((=1)N +1:(N,):
8: end for

9: return T® fork=1,..., K

The term
T(k)

tea(ly) =H{ +(k =1)N(N + L —1),¢),
H({+ N+ (k—-1)NN+L—1),0+N?),...
H(+ (L—1)N+(k—1)N(N+L—1),+ (L —1)N?)]
indicates that the spectral response of the pixel ¢ (using lexicographic ordering) in
the colored coded aperture is saved in the /—row of ng The assignment T®)(:, 7, :
) = Tl(g((é —1)N 4+ 1 :¢N,:) indicates that the spectral responses in the rows from
(¢ —1)N + 1 up to {N of Tl(f; are located along the second dimension in the position

(k

¢ on the 3D-dimensional array T®*). Then, the spectral values are contained through

the third dimension of T®*),

5.12.4 Locating the values of T*) in H (Algorithm 15)
The term diag(T®(:,:, £)) in line 3 of Algorithm 9, represents a diagonal matrix

where the diagonal is the vectorized version of T®¥)(:,:, ¢).
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Algorithm 15 Locating the values of T®) in H

Input: T® for k = 1,..., K
Output: H
Initialisation : H = [];
1: for k=1 to K do

2. for/=1to L do
3: H®(1+ (0 —1)N: N2+ (£ —1)N,1+ (£ — 1)N? : (N?) = diag(TW®(:,:, 0));
4:  end for
5: H
B | o |
6: end for

7. return H
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Chapter 6

CODED APERTURE DESIGN FOR COMPRESSIVE X-RAY
TOMOSYNTHESIS VIA COHERENCE ANALYSIS

6.1 Introduction

X-ray tomosynthesis imaging plays an important role in biomedical imaging ap-
plications like mammography and angiography [83]. As in most X-ray computational
tomography imaging systems, radiation exposure can significantly increase the risk of
adverse radiation effects, producing damages in body cells [84]. To reduce the dam-
age that radiation can cause, different approaches have been proposed by lowering the
number of angles at which projections are taken [85]. However, the consequent reduc-
tion of measurements leads to an ill-posed problem, highly sensitive to modeling and
measurement errors. Moreover, the reconstructions based on filtered backprojection
(FBP) with ill-posed systems of equations produces artifacts and noise which makes
the reconstructions useless for medical diagnosis [86] [87].

In order to acquire measurements in parallel, coded aperture X-ray tomosyn-
thesis was introduced in [88]. The substantial differentiation in this approach is the
use of a coded aperture between the sources of radiation and the objects. This coded
aperture codes the radiation signal that impinges on the object allowing a differentia-
tion between the projections on the detector. As a consequence, multiple projections
can be captured at the same time instead of capturing sequential measurements as
it is done in conventional systems [88]. The projections used in [88], however, used
totally random coded apertures. No coded aperture optimization was considered. The
optimized design of coded apertures for the compressive X-ray tomosynthesis system
was considered first in [3], the results obtained in [3] were superior to the ones obtained

with totally random patterns. However, the computational complexity required for the
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Figure 6.1: (a)The matrix P determines the mapping of the X-ray sources to the
detector. (b) Coded aperture compressive X-ray tomosynthesis. The radiation of each
source is modulated by the coded aperture.

computation of the optimized codes in [3] is high and the objective function used for
that purpose is only indirectly linked with the parameters that are commonly used in
compressed sensing. In this work, the coded aperture design is addressed considering
the analysis of the coherence of the sensing matrix. It exploits the highly structured
sensing matrix that represents the X-ray tomosynthesis architecture. The idea is to
minimize the inner products between columns of the sensing matrix considering a gen-
eral basis representation of the signal of interest. It is shown that, families of codes can
be obtained which provide better results than the ones obtained by the use of totally
random patterns, and the results can be also comparable to the ones obtained in [3].
The reduction in the computation of the solution is dramatic, because the solution is

obtained in seconds whereas in [3] the time is in the order of hours.

6.2 Forward Projection Model

Let us consider an X-ray source that is located at position § and radiates an
object in direction 0 the continuous X-ray model is given by: y(s, 9 fo S—i—x@ dzx,
where the function f corresponds to the three-dimensional object of interest. This

imaging model is known as the X-ray transform [3] [85].
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Because only a discrete number of radon measurements can be acquired, the
continuous model is discretized. Let F € R@1*@2%E he the three dimensional array
that represents the object. The value of ()7 indicates the number of slices of dimensions
Q2 X Q3. The detector considered is of dimension N; x N, and is placed under the
considered object as indicated in Fig 6.1(a).

The projection measurements are represented by the vector y. Then, the tra-
ditional forward model in tomosynthesis can be written as y = PF where F is a
vectorized version of F, and the matrix P is the system matrix obtained by specifying
the hardware settings. The entries of P correspond to the mapping of the cone-beam
energy radiating from the X-ray source onto the detector [3]. As it is shown in Fig.
6.1(a), each entry of P represents the portion of the volume of a given voxel that is
irradiated by the X-ray associated with one detector element. In particular, each row
of P indicates the information gathered by one detector and each column corresponds
to the information gathered from a single voxel [3].

In compressive X-ray tomosynthesis the measurements are multiplexed from
multiple sources onto the detector. Coded apertures are located between the sources
and the object to modulate the radiation of each source producing a coded projection
onto the detector plane [88]. The size of the elements of the coded apertures is fixed
to obtain a one to one correspondence with the detector elements [3]. Let Tgk) be the
coded aperture related with the source ¢ in the shot k, then the measurements y can

be represented as

y = CPF (6.1)
where the matrix C is given by

ciV ¢ ...cy
c? ¢ ..cY

K K K
c® ¢ . cl
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Figure 6.2: A graphical representation of the sensing matrix is depicted when K =1
shots and S sources are considered. The matrix C is composed by the diagonalized
version of the coded apertures related to each source.

where C" = diag (Tgk)) The problem (6.1) is ill conditioned and cannot be solved
using traditional approaches. Compressed sensing allows the solution of this problem
considering an sparse representation of F in one basis ¥. The quality of the recon-
structed solution is directly related with the coherence of the matrix CPW [75] [77].
Let us consider the representation of F in the basis ¥ as F = Wf , where f is the
sparse coefficients vector representation. Then, the problem (6.1) can be equivalently
written as y = Af where A = CPW is the sensing matrix. The solution of this problem

via compressed sensing can be obtained as the solution of

A~ 1 9

f:mf1n§ ly — Af||5 + 7||f]|1 (6.3)
where 7T is a regularization parameter.

6.3 Analysis of the sensing matrix and Coded aperture optimization

A measure of the quality of the solutions of (6.3) in compressed sensing is given
by the coherence of the sensing matrix, which is the maximum absolute value for the
normalized inner products between any two columns of the sensing matrix [75] [77].

The value of this parameter is desired to be as small as possible, to guaranty unique
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Figure 6.3: A graphical reyresentation of the matrix C is depicted, showing the effects
of the condition S | Cgk (u) = 1 when the number of shots is K = 3 and the number
of sources is S = 2.

recovery and low error in the numerical solution of the problem as the quality of the
solution is directly related to the coherence [4].

In [89] an approach based on the analysis of the coherence was developed to
exploit the structure of the sensing matrix in compressive spectral imaging, in order
to increase the quality of the reconstructions. The approach proposed in [89] shows
how an upper bound of the coherence can be minimized, analyzing the structure of the
inner products of the transfer function matrix of the system. It is shown, that when
the set of measurements is given by y = HWf, it is possible to achieve a minimum
for an upper bound of the coherence when the inner products for the columns of the
matrix H are minimized. In this work, this approach is used to consider the computed
tomography problem such that a designed sensing matrix is obtained minimizing the

inner products in the matrix H = CP, considering arbitrary values on the entries of

P.
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The inner product of the columns m and n of the matrix CP is given by

N2 K S

S
=3 33> P Qi (m,n) (6.4)

u=1 k=1 i=1 j=1

where Q42 (m,n) = PP (m)PY (n) with PY(m) representing the m!" —component of
the row u of the projection submatrix 7 related with the source . Additionally the
convention Cgk)(u) = Cgk) (u,u) is used to simplify the notation.

Equation (6.4) can be equivalently written as

=325 (S 00 @it
+ZZ (Z ¥ (w)C (u >) QU (m,n) (6.5)

u=1 i#j

Taking into account that Qu,’u (m,n) > 0, it follows that the minimum of ¢y, is
achieved when the terms Zszl CZ(-k) (u) and Zszl Cgk)(u)C§-k)(u) are minimized. Ad-

ditionally, using the Cauchy-Schwartz inequality the following relation is obtained

de )C ) < ([ D CH ), | > P (w). (6.6)

From this relation it is possible to see that the minimization of Z,{;l Cgk) (u) and

Zszl Cl(-k) (u)C§k)(u) is achieved by the minimization of Zle Cgk)(u). Because the
entries of the coded apertures are represented by binary nonnegative entries, this min-

imization is achieved when! .
> CH(u) = 1. (6.7)
=1

Then, the family of solutions for the coded apertures that satisfy this equality can
T
be written as C(»l)(u), c? (uw),..., c!® (u)} = w{diag(1xx1)}1 Vu, where 7 repre-

3 K3 3

sents the random permutation operator of the columns, and the subindex 1 the first

column of the matrix after applying .

! The zero solution is not considered because using it would imply that there would
be a voxel that is not sensed in any of the shots used in the measurement process
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Figure 6.4: (a) Configuration for X-ray tomosynthesis simulation. The 9 sources are
placed uniformly over a 128 x 128 phantom with 16 slices. For the simulation scenario
that was studied here a = 128,b = 128, ¢ = 675,d = 60,e = 150

6.4 Simulations

In order to have a precise comparison with the approach presented in [3], the
same simulation scenario is considered. Then, to simulate the compressive X-ray to-
mosynthesis the configuration of a flat 2D detector plane composed by N; x Ny =
150 x 150 elements, S = 9 cone-beam X-ray sources placed uniformly in a 3 x 3 ge-
ometry and an object of interest F of dimensions Qs x Q3 x Q1 = 128 x 128 x 16 are
used. Each pixel in the coded aperture corresponds to a particular detector element as
detailed in Fig. 6.4(a). Therefore, the coded apertures placed in front of each of the

sources are also composed by 150 x 150 elements.
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Figure 6.5: Left: PSNR of the 13 slice in the reconstructed datacube. Right: The
mean PSNR of the reconstructed datacube. K = 3 shots are considered. The results
obtained in [3] are depicted in blue color whereas the new designs in red color.

The ASTRA Tomography Toolbox (All Scale Tomographic Reconstruction Antwerp)
[90] is used to obtain the system matrix P as well as the projection measurements for
each of the X-ray cone beam sources. The codes developed according to the ideas
presented in Section III are generated and compared with the totally random codes
and the codes generated in [3]. In the last case the algorithm developed in [3] is used
to obtain a set of codes for K = 1,2, 3,4, 5 shots. The GPSR algorithm [81] is used for

the reconstructions, doing an experimental tunning of the regularization parameter.

6.4.1 Results

Figure 6.5 plots the PSNR of all the reconstructions obtained. It is possible
to appreciate that for a number of shots from K = 2 up to K = 5 the PSNR of the
reconstructions with the designed codes is superior. Also appealing is that the time
necessary to generate those codes is in the order of seconds. Figure 6.5 also shows
that the time necessary to obtain the designed codes according to [3] for K = 3 shots
is 34 hours, whereas the designs obtained with the presented approach is 4 seconds.
Additionally in Figure 6.6 the slices 4" and 13"* are showed when random codes are
used against the results obtained with the new designs. In the zoomed regions it is clear

that with the new designs more details in the reconstructed object can be obtained.
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Figure 6.6: The slices 4 and 13 of the reconstructed datacube are depicted, comparing
the results of using random codes versus the new design approach.
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PSNR on 13"-slice
K | New approach | Approach of [3] | Random
1 26 27.34 24.83
2 27.70 27.6 25.92
3 27.82 27.76 26.14
4 27.94 27.70 26.48
5} 27.98 27.76 27.57
Mean PSNR
1 25.24 26.86 26.21
2 27.85 27.40 27.14
3 28.16 27.98 27.49
4 28.50 27.68 27.71
5! 28.62 27.87 27.85

Table 6.1: The PSNR on the 13" slice is indicated for the different codes used and
also the mean PSNR is indicated.

K 1 2 3 4 5
Random 0.21ms 0.3ms 0.22ms | 0.23ms | 0.39ms
New Design | 18.65ms | 22.66ms | 27.39ms | 34.50ms | 38.41ms
Designed 1 | 87.54s 1395s 1411s 3725s 4601s

Table 6.2: Time spent in the generation of the coded apertures for each approach and
different values of K when the scene considered is of size 32x32x4.

In Table 6.1 the values of the PSNR obtained in the simulations and used in Fig. 6.5
are showed. In Figure 6.7 a sample of the coded apertures obtained by the use of the
new approach can be appreciated. Additionally the time spent in the generation of the
coded apertures in each approach for different number of shots is presented in Table

6.2 for an object of size 32x32x4.

6.5 Conclusions
A new strategy for the design of coded apertures in compressed X-ray tomosyn-
thesis has been presented. The proposed approach relies on the analysis of the coher-

ence of the sensing matrix and allows to obtain a family of designs that has a closed
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Figure 6.7: A 64 x 64 window of the designed coded aperture with the new design
approach is depicted for the source number 5 when K = 3 shots are considered.

form solution. The results of the simulations, show that the designs obtained with the
presented approach are better than the results obtained with totally random patterns
and with the designs generated in [3]. Additionally, the time necessary to generate the
designed codes in the presented approach is in the order of seconds while in [3] is in

the order of hours.
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Chapter 7

SPECTRAL SUPER-RESOLUTION IN COLORED CODED
APERTURE SPECTRAL IMAGING

7.1 Introduction

Significant interest has emerged in compressed spectral imaging [69] and optical
architectures like the coded aperture snapshot spectral imaging (CASSI) [70] [71]. The
CASSI system, illustrated in Fig. 7.1, encodes the spectral-spatial information of a
hyperspectral scene into 2D compressed projections. The projections are attained by
spatially coding the optical field using a coded aperture. The coded optical signal is
then dispersed by a prism and integrated by a focal plane array (FPA) with wide spec-
tral response. The spectral scene is then reconstructed by solving a ¢; —minimization
problem [69] [71]. The spectral resolution in CASSI is limited mainly by the pitch size
of the detector and the spectral dispersion of the prism (Fig. 7.2(a)).

In the traditional CASSI, the coded aperture is a binary valued mask which
blocks or allows the light in a pixel to pass. A modified version of CASSI known as
colored CASSI (Fig. 7.1) has been introduced recently. In the colored CASSI, the
coded aperture is replaced by a colored mask in which each pixel has a band pass
spectral response [72] [2]. The use of this colored mask has been shown to improve the
quality of the reconstructions [69] [72].

The colored coded aperture is a patterned multilayer optical coating, which
physically allows the pass of specific bandwidths in different spatial locations [73] [72].
The basic idea is to have a compact two dimensional array of pixels, each one with a
different spectral response. In the fabrication process of these devices many technical
challenges need to be addressed such as preserving the spatial resolution that could be

affected in the coating process [73].
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Figure 7.1: Basic Components of the colored CASSI system. The spatial-spectral scene
f(z,y,\) is modulated by a coded aperture T'(z,y, A), after that the modulated field is
dispersed by a prism with dispersion curve S(\) and finally the whole field is integrated
in a detector array. Notice that in the traditional CASSI T'(z,y, A) € {0,1} VA.

This work shows that colored coded apertures in CASSI not only improve the
quality of image reconstruction but, in addition, they allow the reconstruction of a
larger number of bands, which represents an improvement in the spectral resolution.
Figure 7.2(b) illustrates how colored coded apertures allow the sensing of smaller re-
gions of the spectrum that cannot be sensed with the traditional CASSI architecture.
This property is proved in two steps. First, a model of the colored CASSI is used to
write the reconstruction problem as an inverse problem. In the second step, a matrix
formulation of the system is used to calculate the coherence of the sensing matrix, which
is used to estimate the value of the super resolution factor. This relation provides an
estimate of the number of additional resolvable bands based on the wavelengths pro-
vided by the colored coded aperture. The estimate is valid even when non ideal filters
are used in the colored mask. Numerical simulations confirm these facts and recon-

structions with real data shows the accuracy of this approach in a real implementation

of the colored CASSI.

7.2 CASSI Modeling
The basic components in CASSI are shown in Fig.7.1. The coding of the

scene f(x,y,\) is realized by a coded aperture T'(z,y, \) at the image plane, where
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Figure 7.2: (a): The spectral resolution in the traditional CASSI is determined by
the dispersion of the prism, its spectral range and the detector pixel pitch. (b): The
spectral resolution in the colored CASSI is determined by the spectral response of the
optical filters in the colored coded aperture, by the dispersion of the prism, its spectral
range, and the detector pixel pitch.
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(x,y) are the spatial coordinates and A represents the wavelength components. When
block-unblock coded apertures are used in the CASSI system, T'(z,y, A) is such that
T(x,y,\) € {0,1} VX € A, where A is the spectral range of f(z,y,\) [69] [71]. If
T(x,y,\) is non constant with respect to A, there is a representation of the CASSI
with a color coded aperture. Once the spectral signal f(z,y,A) has been modu-
lated by T'(x,y, ), the optical field is dispersed by the prism and ¢(x,y,\) is ob-
tained as q(z,y,\) = f(z+SN),y,\)T (x + S(A),y,\), where S()\) is the disper-
sion curve of the prism. The compressed measurements g(z,y) in the Focal Plane

Array (FPA) are realized by the integration of g(x,y,\) across the spectral axes as
g(z,y) = [y a(z,y, N)dA.

7.2.1 Discretization of the Model

Consider the following terminology that is used hereafter.

Definition 8. Let L' be the number of bands that can be reconstructed by the tradi-
tional CASSI (block-unblock coded aperture). These are referred as the basic bands. Its
number is given by the number of discrete detector pizels subtended by a pizel of the

scene that 1s dispersed throughout all its spectral components.

Definition 9. Let L be the number of bands that can be reconstructed using the colored

CASSI, the super-resolution factor d is defined as d = L/L'.

Since the FPA is a finite array of pixel sensors, there is just a finite number of
spatial points that can be sensed. To obtain a discretization, the integral operators
and the coded aperture are approximated [71].

Let Q € R? be the spatial domain of the FPA, which can be written as Q =

Unn,ne[N]m,n, Where O, , is defined as
Qi ={(z,y)[A(n = 1/2) <z < A(n+1/2),

A(m —1/2) <y < A(m+1/2)},
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and [N] ={1,2,... N}. The representation of the FPA is then an array of size N x N
conformed by the disjoint union of N? smaller domains of size A x A, and the pixel
(m,n) is associated with the corresponding domain €2,,,. The value A represents the

size of each pixel in the FPA. Let g, ,, be the value of the measurements at the (m,n)

_ r_,Y_
= //g(x,y)rect (A oA m) dydzr, (7.1)
Qm,n

represents the contribution of g(x,y) to each of the disjoint domains, g(z,y) is the opti-

pixel, then

cal field at the image plane summed over the spectral dimension. Now, the continuous

data cube f(z,y,A) is modulated by T'(z,y, A) such that

[y, VT (2, y, ) =

2

Z (TF)pmn(N)rect (% — n,% — m) : (7.2)

M-—1
m=0

3
Il
=)

where (TF)mn(A) = Ton(A) Fn(A) and Ty, () is the spectral response of the colored
mask at pixel (m,n), and where F,, ,()) is defined by F,,,(A) = [[ f(z,y, \)dzdy. A
calculation of the limits involved in the spatial integral operators :nd its approximation
using mid point rules is realized in the Appendix 7.8, which shows that the value of

the measurements at pixel (m,n) can be written as

8mn =

/A A2 Q%J _ % + 1) (TF) 10y 50| ()N

_/AAz QS(AA)J B S(AA)) (TF) 502 | 11 (NN, (7.3)

where |-] is the floor function operator. Appendix 7.8 also shows the discretization

in A\, where the limits of the new bands in the super resolution model are used as the

limit points of the intervals and the mid-point rule is used again for the approximation
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of the integral operator in A, such that the value of the measurements at pixel (m,n)

can be written as L

gmzn = : : <Wm7n7k (TF)m7n+ L%J ,k) ) (7.4)
k=0
where Wmnku = am,n,k+/8m7n,k for u = ]-7 sy C— 27 Wimnk0 = C®mn.k and Wm,n,kec—1 =

Bk The terms cy, n i, By are weights whose values are
S(A)
— 1
AT ) ’
SOw) | SOw)
- _ 2 _
Brnk = —BawA ({ A x|

Appendix 7.8 provides the definition and calculation of this expressions. The T,k

S(A)
A

Xpnk = A)\(k)A2 (

and F,,,, terms are the (m,n, k) elements of the 3-dimensional arrays T' and F,
respectively, whose first two dimensions indicate the spatial location and the third
one indicates the spectral position. The vector T, . is the discretized version of the
spectral response of the color coded aperture at pixel (m,n). Equation (7.4) can be
represented as the matrix equation g = Hf‘, where g is the vectorized representation
of g. The matrix H is of dimension KN (N + |£] —1) x N2L (see Fig. 7.4) with
K being the number of shots and F is the vectorized form of F. Figure 7.4 show the
structure of H for the colored CASSI with a super resolution factor d = 2.

In order to use the sparsity properties of the signal F in a basis 1, it is possible
to write the problem as

g = Hyf, (7.5)

where F = f and f is a column vector whose entries are the coefficients representation
in the basis. The signal recovery of f can be obtained as the solution of the nonlinear

optimization problem [75] [71]
A 1 2
£ = argmin | Az — g3 + 7z, (76)

where A = H1 is the sensing matrix of the problem and 7 a regularization parameter.
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Figure 7.3: (a) A pixel of the scene is filtered by one band pass filter for which the cutoff
frequencies coincide exactly with the boundaries of the basic bands. (b) A pixel of the
scene is filtered by one band pass filter for which the cutoff frequencies do not coincide
with the boundaries of the basic bands. In this case super resolution is achieved.
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7.3 Super-Resolution Analysis

In this section, an estimation of the value of the super resolution factor d is
presented. Two cases are separately analyzed. In the first case, the optical filters in
the colored coded aperture have short transition bands and they are also selected as
complimentary on the spectral range of interest, i.e. the supports in their spectral re-
sponses are disjoint from one filter to another. In the second case, the filters have broad
transition bands and are not necessarily complementary in their spectral response. For
the first case, a simple analysis is used to obtain the number of attainable new bands,
whereas in the second case it is necessary to define a criteria to evaluate the quality
of the reconstructions [91]. The second case will be presented in the next section after

showing the expression of the coherence of the sensing matrix.

7.3.1 Optical filters with ideal transition bands

The prism in CASSI is used to separate the spectral information into bands
[69] [71]. If optical filters are added to separate the spectrum into smaller sections,
there is a spectral resolution increase. There are, however, different cases that depend
on the number of bands and the number of filters in the colored mask. For instance,
consider Fig. 7.3, in which two cases of optical filtering are considered. In the first
case (Fig. 7.3 (a)) the cutoff frequencies of the band pass filter coincide exactly with
the boundaries of the basic bands and therefore there is no additional separation of
the spectral information. In the second case (Fig. 7.3 (b)), the cutoff frequencies of
the filter do not match the boundaries of the basic bands and thus there is separation

of the spectral information as a combined effect of the prism and the filter.

7.3.1.1 When the cutoff frequencies of the filters do not match the bound-
aries of the basic bands
Let B = {BO, By, ... ,BLQI} represent the set of basic bands that can be re-

covered with the classical CASSI system, and ¢ the number of optical filters used in
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the colored coded aperture. Then, the new number of bands that can be reconstructed
|B| is given by
|B| = |B|+0—1, (7.7)

where B = {bo,b1,...,br_1} is the set of new bands.

7.3.1.2 When the cutoff frequencies of the filters match the boundaries of
the basic bands

In the case all the boundaries of the basic bands meet with the boundaries of

the bandpass of some of the filters, the new number of attainable bands is directly

related to the number of filter as

A |B| If o <|B|
1Bl = (7.8)

o If o>|B].

7.4 Coherence of the Sensing Matrix

In compressed sensing, two effective measures to predict the quality of signal
reconstruction are the restricted isometry property (RIP), and the coherence [75] [76].
The former is in general difficult to calculate for large size matrices [75]. On the other
hand, the coherence offers a measure of the ill-posedness of the system, and it must
be as small as possible to guarantee uniqueness of the solution [77]. Additionally, the
coherence can be related with the RIP [76] [77] [92] and, therefore, it is possible to get
an analysis of the problem based on the coherence which implies an specific behavior of
the RIP constant [75] [92]. The use of the coherence also allows to exploit the structure
of the CASSI and colored CASSI, and to quantify the effects of super-resolution factor

d as function of the spectral response of the pixels in the coded aperture.

7.4.1 Matrix Formulation
The structure of the sensing matrix H for the super-resolution model can be
seen in Fig. 7.4. The elements that lie on the indicated diagonals represent the spectral

response of the coded aperture in each band. In Fig. 7.4 the structure of H indicates
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that there is no shifting in the transitions Band 1-Band 2 and Band 3-Band 4. The
reason for this, is that in those transitions the separation of the spectral information
is due to the filters in the coded aperture and not the prism. The qualitative behavior
that can be appreciated in Fig. 7.4 can be represented in precise mathematical terms.
The m-th position in the j-th column of the H matrix can be written as

(70)
¢ ¢ mfN(N+L71)stL§J

h,(m) — If j=m+(N*—N|[5|. .. (7.9)

.= N(N+L-1)s

0 otherwise,
\

with s = LWJ A= LNLJ , and ’f’és) represents the vectorized version of T'(+, -, /)
in the shot s, which is the coded aperture in band ¢ whereas w, is the vectorized version

of w(-,-, ).

7.4.2 Analysis of the Coherence

Let H = [h; hy...hy2;], where each h; is the i column vector of H, of
dimension KN (N—I— L%‘ — 1) x 1. The basis matrix W can be written as ¥ =
[wlT, ¢2T, e ,z,b%zL]T, where each ); is of dimension 1 x N2L. Then, the sens-
ing matrix can be represented as A = H¥ = Zﬁ\ff h;1,, and the element of A in the
(m, n) position can be written as A(m,n) = Z?ZL h;(m)y,(n).

The inner product between the columns m and n of A is

N2L

(A(ym), A(-,n)) =Y (b hy) dhi(m); (n).

0]

Then, the coherence of the sensing matrix A can be written as
IAG,m) [ [[A(,n)]

= Max fiyn (A),

m¥#n

p(A) = max
m;:én
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Figure 7.4: a) The structure of the H matrix of the colored CASSI when a super
resolution factor of d = 2 is considered. b) The spectral response one pixel in the
coded aperture is detailed and how its values are distributed in the H matrix.
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where

NZL (m,n)
Z SDZJRZ’],
Z?]

N2L ) 2 [N2L :
(Z iR ) (Z ‘:Oiijz(Z’n))
1,] ]

and R} = apy(m)ap;(n), iy = (hihy).

Taking into account the structure of the matrix H presented previously, it is
possible to see that there is a set I contained in the set of all possible inner products
of the columns of the H matrix, that can be written as I = {(4, )| # 7, ¢i; # 0},
which is the set of all possible inner products that are different from zero. Considering

I, equation (7.10) can be written as

lo(m,n)|
Hmn (A) = 1 1 (7'11)
o(m,m)2o(n,n)>
where
N2L
o(myn) =@ R + 3 g R (7.12)
i=1 (ij)el

The coherence is then completely determined by the random quantities ¢; ; and ¢;;.
In the following subsections a detailed description and analysis of these two quantities
is presented. The entries of the coded aperture of the traditional CASSI are modeled
using Bernoulli random variables whereas the entries of the color coded aperture are
represented by a uniform random distribution over the number of filters ¢ in the colored

coded aperture.

7.4.2.1 Block-Unblock Coded Aperture with d =1

Consider the coded aperture modeled as an array of i.i.d random variables.
Then, let ¢;; = fozl X, Y, (i,7) € I, where X, Y, are the i.i.d random variables
that represents the value of the pixels involved in the inner product of the columns 7 and
j. Notice that X,., Y, € {0, 1} are Bernoulli random variables with parameter p. There-

fore, the probability mass function of X, Y, is given by fx,v.(n) = p** (1 — p2)1_n n=
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0,1 r=1,..., K since the sequence of products X, Y, are i.i.d Bernoulli random vari-

ables with parameter p?. Using Chebyshev’s inequality, it follows that
1K
Pl —E{pill > o) < 5D Var(Xoy,) (i) €1,
i=1
which implies

Pllos — (K)ol > 2) < 2o —%) (g el (713)

In the particular case of p = 1/2, the following expression is obtained

(o (529G e

This inequality describes the behavior of ¢;; in terms of its mean in K shots, and

indicates the degree of concentration of the inner product of two columns of the matrix

H. For the norm of the columns of H, the expression is

P(lpsi — (Kp)| 2 ) < (1 -p) Vi (7.14)

In the particular case p = 1/2, the expression is

JONCTSROES.

7.4.2.2 Color Coded Aperture with d =1

Considering first short transition bands (ideal filters). In this case, the value
of ¢;; is given by a Binomial distribution with parameters (K,1/0?), if a uniform

distribution! is used to choose the filters. Using again the Chebyshev’s inequality

(o (2902 o

L' The purpose of choosing a uniform distribution for the selection of the filters is to
make a fair comparison with the traditional CASSI in which the entries of the coded
aperture are modeled as two point uniform distribution (i.e. Bernoulli with parameter

p=1/2)

168



and for the norm

(=)= (26 am

When wide transition band filters are used, the spectral response of one filter

T,()\) can take L different values in the interval [0,1]. These values are given for a
particular filter 7,.(A) as indicated in Fig. 7.4, in which one pixel has the sequence of
values T,.(A\1), T, (X2), ..., T-(\;/) in each band, respectively. Then, there is a random
variable that represents the entries of the h; column of H and take its values on the
set {1 (M), To(M\e), ... To(M)}, &k =1,..., L, where k represents the band that is
associated with the h; column. Therefore, the distribution function for X,Y, is given

by
Pronm =30 5 (1= T () B ()

U=

where X, and Y, represent the random variables involved in the inner product of the
vectors h; and h;, and d(n) is the delta Kronecker function. Then, again using the

Chebyshev’s inequality it is possible to get

K K 1 2
P leij—(— e el <|—)|— Q22—@ ; (7.18)
’ o) o o ) oe? o2

o

qi1 = Z T, <)\LN%J>TU <)\LN%J>’ (7.19)

u,v=1

= 31 () 7 () (7:20)

u,v=1

where

For the norm of each column the expression is
K K\ 1 2

P ( Pii — (—) Q2| = 5) < (—> - ((J4 — q—2) , (7.21)
o o) e o

g = ;Tu (ALM)Q, (7.22)

where

Gu = ;Tu (ALNZ.ZJ){ (7.23)
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7.4.2.3 Color Coded Aperture with d > 1

In this case, two situations in which ¢; ; could be different from zero are consid-
ered. In the first situation, the inner products between columns are related to different
basic bands, therefore, they can be represented with the equations (7.18), (7.19) and
(7.20). In the second situation, the inner products for columns inside the basic bands
are considered.

If o ideal filters with o > L’ are used, and their cutoff frequencies match exactly
with the boundaries of the basic bands, it is possible to use equations defined for the
analysis with d = 1 and ideal filters. If real filters are used, the inner product between

two columns in the same basic band is described by the probability mass function?

ila n=Tu (N o) Tu (A At

2.\ ) T (M E ) )

where AL%J represents the support of the Lﬁj basic band and ¢ = 1,...,d — 1.
N

Therefore, taking into account the Chebyshev’s inequality it is possible to get

K\ E\1/[. @&
P(‘Pz’,j— (;) Q1 25) < (;);(qa—gl), (7.24)

o A i
=Y T, (A%J) T, ()\LM + e%) , (7.25)

where

and

Qo = Eg T, [\ ’ T, A + f—L d;ﬂj 2 7.26
7 1 u 7 . 2

2 1 v < LN2J> |_N2J d ( )
The concentration equations for the norm of the columns are still the same as

when d = 1.

2 This inner product for columns inside the basic bands is the most relevant because
it the represents the worst case scenario in terms of the possible values of the inner
product between any two columns of the H matrix
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7.4.3 Quality of reconstructions

Given that the coherence p(A) is a random variable when the elements of the
coded aperture are chosen in a random way, it is possible to use concentration inequal-
ities in equations (7.11) and (7.12) to compare the coherence of CASSI and colored
CASSI. Since the probability space of p(A) is contained in Ry, it follows that [93]

E(u(A))

P(u(A)>e) < ——

(7.27)

Then, given a fixed value of ¢, it is possible to compare two configurations of the CASSI
using the equation (7.27), in order to get a measure of the performance of the system
[80] [78]. In this work, it is taken into account the fact that u(A) = max mn L (A),
where f,,,(A) is specified as before. Thus, is possible to establish a comparison be-
tween two configurations of the CASSI represented by matrices A and Ag through a
comparison between fi,,,(A) and i, (As). This comparison is done considering the
variables fi,, (A)? and i, (A)?, and thus, it implies a direct comparison between the
values of the coherence for the sensing matrix of both architectures. In this way, it is
possible to know which value of the coherence parameter is concentrated around an
small value with higher probability.

To this end, the relationship between the coherence for the traditional CASSI
and the colored CASSI is determined first.

Theorem 52. Let A be the sensing matriz in the traditional CASSI system and A,
be the sensing matriz in the colored CASSI, considering reconstructions of scenes of
dimensions N x N x L. There exists a constant ¢ € R, such that

E {o(m,n)*}

P {ptmn(A)* > e} < .

¢ (7.28)

E {5 (m,n)*}

P{ftmn(Ag)* > e} < .

¢ (7.29)

VYm # n.
Proof: See Appendix 7.10.
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This result establishes a method to compare the quality of the reconstructions
considering the concentration of the coherence as a consequence of the concentration of
tmn(A)?. In order to make this comparison, it is necessary to introduce the following

definitions

Definition 10. Let K be the number of shots in a configuration of the CASSI system
for the reconstruction of scenes of dimensions N x N x L', and let t be the transmittance

per shot. The V factor is defined as V = Kt, where the t is calculated as

t= Z/ﬂ(A)dA /AN2, (7.30)
=1 A

and T;(\) is the spectral response of the i"'pivel.

Definition 11. Let K be the number of shots used in a CASSI system for the recon-
struction of scenes of dimensions N x N x L'. The compression factor is defined as

C=K/L.
Considering these definitions it is possible to establish the following result.

Theorem 53. Let @, ; be as specified in equation (7.18) for the sensing matriz in the
CASSI system and consider the reconstruction of a scene of dimensions N x N x L'
and factor V. Let gpgfj) be as specified in equation (7.18) for the sensing matriz of the
colored CASSI and consider the reconstruction of scenes of dimensions N x N x L' and
factor V. If E (gpﬁ?) < E(y;;) and Var (gpl(‘;)) < Var(y; ;) , then

E{0,(m,n)*} <E{o(m,n)’} Vm#n. (7.31)
Proof: See Appendiz 7.11.

It is important to remark that if the factor V is equal for both systems, this
indicates that the same number of voxels are sensed in both architectures.
Taking into account this result, it is possible to establish the relation of the

colored CASSI and the CASSI in the following corollary.

172



Corollary 54. Let A be the sensing matriz for the CASSI system, and consider the
reconstruction of a scene of dimensions N x N x L'. Let A, be the sensing matriz of

the colored CASSI and take the same V factor for both systems. If o > 2 then
E {Qg(m,n)Q} <E {Q(m, n)z} ) (7.32)
Proof: See Appendix 7.11.

This corollary and Theorem 52 imply that the quality of the reconstruction in
the colored CASSI is better than in the traditional CASSI, when the same V factor is

considered for both systems.

7.4.4 On the super-resolution factor d

As shown in the previous theorems, the functions ¢; ; and ; ;, allow to establish
a way to compare the performance of two configurations of the CASSI in terms of the
coherence of the sensing matrix. This fact is used to compare the performance of the
colored CASSI when super resolution is required, with the traditional CASSI with no
super resolution comparing the functions ¢; ; and ¢;; of these two configurations. In
this manner, the estimate of the maximum value of d is obtained, according to the
number and characteristics of the spectral responses of the filters involved in the coded
aperture.

In [94], it was proved how the resolution of filter array based spectrometers,
could be recalculated when DSP techniques are used to process the collected data.
The approach used in [94], show that even in the case of non ideal spectral filter
responses, it is possible to get more resolution. The way the authors of that work
estimate a super-resolution factor, is by brute force search and do not exploit the
properties of the transfer function matrix of the system. In this Section, an estimate
of the super resolution factor d is proposed analyzing the behavior of the functions
¢i; and ¢;;, always making a comparison with the traditional CASSI architecture
considering ¢ = 1/2, which represents a transmittance of 50% in the black and white

coded aperture.

173



Before doing this comparison, it is necessary to establish a relationship between
the parameters C and V for CASSI and colored CASSI with super resolution factor d.
The parameter V gives the proportion of the set of voxels sensed with the total number
of shots used in the measurement process. Therefore, it is natural to consider the same
value of this factor for both architectures, which implies K,t, = Kt, where K, K,
represents the number of shots and ¢, ¢, the transmittance per shot in each architecture,
respectively. On the other hand, the compression factor is also considered as the same
for both architectures, which implies K,/dL = K/L and therefore K, = dK.

The value of d is estimated as follows.

Definition 12. If d represents the super resolution factor described in equations (7.4)
and (7.6), the value of d when real optical filters are used in the color coded aperture

is estimated as follows: d € N in the model (7.4) is the highest value such that

d < min {ch, CZQ} (7.33)
with
) ) 3
="\ d=—F7 s (7.34)
4 16 (3 - 4)

where the values of ¢1(d, o), q2(d, o) are specified by equations (7.25) and (7.26).

The definition of d in equation (7.33) indicates that it is possible to get a new
number of bands L = dL’, always that the concentration of the random quantities
@i ; and @;; that determine the condition of the sensing matrix is tighter than in the
traditional CASSI with no super resolution. The idea is to make a comparison of the
expected value of this quantities taking into account the variance.

Equation (7.33) indicates how large d could be in model (7.4), with a solution of
equation (7.6) with better quality results than in the traditional CASSI with no super

resolution.
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7.4.5 Impact of measurement noise on d

Previous analysis did not consider the effect of the noise on the attained super-
resolution. Ideally, increasing o with the appropriate set of filters, and the appropriate
C and V would imply an increased spectral resolution. However, in real implementations
with noise, distortions and other non ideal characteristics of the hardware are always
present. In this situation, increasing o could imply a reduction on the bandwidth of the
filters used, which reduces the light throughput and the Signal to Noise Ratio (SNR)
in the captured measurements.

The effect of the noise in super-resolution can introduce a natural limitation on
the super-resolution factor as discussed next.

Let e be the noise added to the model in (7.5) which is considered as independent

of the sensing matrix A. The measurements are given by
g=Afte. (7.35)

For any reconstruction algorithm, represented by the operator A, it follows that [4] [75]

|A (Af +e) — f[|, < Callefls, (7.36)

for all f € Xy, where Yy is the set of all 2k—sparse signals and C € R,. The
constant Cis can be related with the RIP constant as Ca = 1/+/1 — dax(A) [4] [75).
Let A be the sensing matrix of the black and white CASSI, and A, be the sensing
matrix of the colored CASSI. A limit of the performance with A, in the presence of e is
given by the comparison of the upper bounds Calle|l2 and Ca_|le|l2. Super-resolution

is then achieved whenever C'a_ < Ca, which can be equivalently formulated as

1— (A
1 — 09x(A,)

When the matrix A, has columns with equal norm, (7.37) can be written as®
1 — (A

<1,
Va(l—(2k—1)u(A,))

3 The fact that in a unit norm column matrix, the coherence and the RIP are related
is used [4], [75]
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where « is the value of the norm of the columns of A,. Notice that A, = ozAg where
AJ is a normalized column version of A,.

In (7.38), it is possible to see that two sensing matrices A, and A, with equal
coherence ji(A,) = j(A,), lead to different results in the presence of noise, as (7.38)
is satisfied in different ways for each case. Additionally, when o < 1 there is one point

ap at which inequality (7.38) is not satisfied for all o < .

7.4.5.1 About the light throughput

The total energy related with an specific filter in the coded aperture can be
estimated approximately as | supp(7T'()\))|t,, where | supp(7T'(\))| is the support of the
filter and ¢, the gain (maximum amplitude) of the filter. Therefore, an scaling of a
sensing matrix A, can be considered as an scaling on the product |supp(T'(\))|t,.
In this way it is possible to see that a reduction in the support of the filters can be
interpreted as an scaling of the sensing matrix with a factor o < 1. This means that
when the number of filters is increased such that the support of each filter is reduced,
the presence of noise establishes one point «g at which equation (7.38) is not satisfied
for all & < «ap. This also indicates that if a given o is required, the filters selected
should have a support large enough to deal with the presence of noise.

In Figure 7.5 it is possible to see two possible choices for the set of filters in a
colored coded aperture where o = 4. In Figure 7.5(a) the filters used allow the pass
of 50% of the energy in the spectral range of interest A, whereas in Figure 7.5(b) the
filters selected are complementary on A and allow the pass of just 25% of the energy
in A.

It is also important to remark that an scaling of the sensing matrix A,, as an
scaling on the product | supp(7T'()\))|t, can be also considered as an scaling on ¢, which
means a change in the gain of the filters. This implies that two different configurations
of the CASSI with filters with identical support but with different gains could lead
to the same values of p(A) but the quality of their reconstructions in the presence of

noise is different.
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Figure 7.5: Two different choices of the set of filters o in the case that o = 4. (a) The
set of filters cover the spectral range of interest A, each filter allows the transmission
of the same amount of energy which corresponds to 50% of the energy contained in
A. (b) The set of filters cover the spectral range of interest A, each filter allows the
transmission of the same amount of energy which corresponds to 25% of the energy
contained in A.

In the next section, simulation results showing the effect on the quality of the
reconstructions when complementary filters are used in presence of noise, with respect

to non complementary filters are presented.

7.5 Simulations
7.5.1 Parameters of the simulations
7.5.1.1 Multispectral scene

A datacube of dimensions 128 x 128 x 10d is generated for d = 2,3. The RGB
representation of this target can be appreciated in the Figure 7.6 (a). This target is
artificially crated in order to have spectral responses with peaks and fast transitions,
this is done with the purpose to appreciate the performance of the colored CASSI with

respect to the classical CASSI in the super-resolution problem.

7.5.1.2 Spectral responses of the filters
In order to represent the spectral responses of the filters, combinations of But-
terworth transfer functions with order 3 are used. This is done with the purpose of

modeling realistic optical filters. The set of filters selected in each simulation covers
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the spectral range of interest [450nm — 689nm]. The number of these filters is changed

in order to appreciate its effect on the simulations.

7.5.1.3 Prism Curve
The prism curve used for simulations is a realistic prism curve adapted from [82],

in order to emulate as close as possible the real nonlinear behavior of the prism.

7.5.1.4 Reconstruction algorithm and basis used in simulations

In order to represent the multispectral scene in terms of a basis, a DCT basis
W por is selected for the spectral domain, whereas a wavelet Wy, for the spatial domain,
such that the whole basis is represented as Wpor @ Wy, The GPSR algorithm [81] is
used for the reconstructions. The regularization parameter 7 is chosen in an empirical
way, so reconstructions are performed for different values of 7 and the final result is

selected as the one in which higher PSNR is obtained.

7.5.1.5 The measure of the quality

In order to measure the quality of the reconstructions, the Peak Signal to Noise
Ratio (PSNR) is used. The comparison is made between the reconstructed hyperspec-
tral scene and the ground truth, which is given by the original datacube generated for
the simulations. Additionally, sample points of the image are selected in order to check

the quality of the reconstructions in spectral.

7.5.2 Reconstructions
In order to illustrate the performance of the super-resolution, the case in which
d = 2 is considered. In Figures 7.6 and 7.7 the results of simulations are presented.
In Figure 7.6(a) an RGB representation of the target used in simulations is de-
picted, indicating four points pq, po, p3, p4 for which the spectral response is considered.
Figure 7.6(b) shows the reconstructed spectrum at points py, pa, p3, psa, considering the
ground truth (blue line), the colored CASSI (red line), and the classical CASSI (black

line). Because the CASSI can reconstruct just 10 bands, interpolation is used in order
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Figure 7.6: Results of the simulations considering a super resolution factor d = 2. (a)
First row: the original target as an RGB representation of the hyperspectral scene.
Second row: The RGB representation of the hyperspectral scene reconstructed by
the colored CASSI. Third row: The RGB representation of the hyperspectral scene
reconstructed by the traditional CASSI. (b) Comparison of the reconstructed spectral
responses at points pi, pa, p3, p4 indicated in the target, using the colored CASSI and
the traditional CASSI.
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Figure 7.7: Results of the simulations considering a super resolution factor d = 2.
The number of shots used for the traditional CASSI is 5 whereas the number of shots
used for the colored CASSI is 10, such that both architectures have the same C = 0.5.
The first row of each group depict the original bands (ground truth) of the target.
The second row of each group depict the reconstructed bands using the colored CASSI
(CCASSI) considering d = 2. The third row of each group depict the bands obtained
with the traditional CASSI reconstructing 10 bands and interpolating in order to get
a new set of bands. 180



K\o|2] 4 6 8
4 [ 108571 | 0.7599 | 0.6470
6 | 108517 |0.7517 | 0.6460
8 | 10.8529 |0.7073 | 0.6044
10 | 1]0.8366 | 0.6664 | 0.5779
d=2
4 [17]0.9997 [ 0.7902 | 0.7109
6 | 1]0.9996 | 0.7532 | 0.6580
8 |10.9996 | 0.7089 | 0.6060
10 | 1]0.9995 | 0.6810 | 0.6079
d=3

Table 7.1: The values of p(A) related with the Figure 7.8. K and o indicate the
number of shots and the number filters used respectively.

to display 20 bands for the comparison with the colored CASSI with super-resolution.
It is clear from the pictures that the results obtained with the colored CASSI are closer
to the ground truth than the results obtained by the use of the basic CASSI.

In Figure 7.7 it is possible to see all the reconstructed bands using the colored
CASSI and the basic CASSI in comparison with the ground truth. The performance of
the colored CASSI with super resolution is consistently better with respect the basic
CASSI. At the 503[nm] band for instance the colored CASSI reconstructs the band
accurately. In the reconstructed band of the basic CASSI, false information is present,
which is not present in the ground truth. This same behavior occurs in the results in

bands such as 551[nm/|, 563[nm]|, 575[nm|, 587[nm], 611[nm], 635[nm)].

7.5.3 Simulations: Mean PSNR vs ¢

In Figure 7.8(a) it is possible to see how the PSNR of the reconstructions changes
according to the values of ¢. In this simulations no noise is added to the measurements.
It is clear that under this context, the quality of reconstructions improve with higher
values of o with the appropriate factors V and C. Figure 7.8(b) shows the spectral
response at p; on the target of the reconstructions, as d changes from d = 2 to d = 3

when o = 6. Here it is possible to see how as d is increased with a fixed value of o the
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Figure 7.8: Simulation results showing the performance of the colored CASSI with
super-resolution for different values of o and d. (a) The PSNR of the reconstructions
as a function of o for d = 2, 3 and different number of shots. (b) The spectral response
at point p; on the target is reconstructed (blue line) and compared with the original
(black line) for different values of d, while the number of filters is ¢ = 6. (c) A
comparison of the reconstructions obtained with the colored CASSI (red line), the

traditional CASSI (black line) using the single shot modality and the real spectral
response (blue line) at p;.
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quality of the reconstructions is decreased. This is consistent with the nature of the
problem, because increasing d rises the ill posedness of the problem as the number of
bands required is higher, given a fixed value of o. The values of the coherence of the
sensing matrix p(A) are presented in Table 7.1. It can be seen how for a given number
of shots K, the values of the coherence decrease as ¢ is increased.

In Figure 7.9 the effect of additive Gaussian noise in the measurements is con-
sidered using the model defined by equations (7.5) and (7.35). In Figure 7.9 (a) the
filters used in the coded aperture are chosen as complementary filters (see Figure 7.5)
that cover the entire spectral range of interest, and the noise measurements are such
that the SN R takes the values SN R = 10[db], 20[db]. It is clear from the simulations,
that in the presence of noise and with the use of complementary filters, as ¢ is increased
the light throughput is reduced and consequently the results are affected. On the other
hand in Figure 7.9(b) noisy measurements are considered but the filters used in the
colored coded aperture are not complementary, and they cover the spectral range of
interest as well. It is possible to see that in this second case, the reconstruction results
are more robust in the presence of noise when o is increased than in the case when

complementary filters are used.

7.5.4 Estimates of the super-resolution factor d

The data presented in the Table 7.2, shows the numerical values involved in the terms
dy, dy. In order to check the estimate of the super-resolution factor d in equation (7.33),
these values were calculated for different number of filters and three different cases of
partition of the basic bands. When the basic bands are broken in two parts, the super-
resolution factor is achieved when 7 or more filters are used, and higher values of d are

not possible with less than 8 filters.
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Figure 7.9: PSNR of the reconstruction results for different values of ¢ when the
measurements are polluted with additive Gaussian noise. (a) The filters used in the
colored coded aperture are selected in a complementary way (see Figure 7.5). (b) The
filters used in the coded aperture are not complementary but cover the whole spectral
range of interest.

(N\o | 2 3 4 ) 6 7 8
dy 1054083 | 1.27|1.40 | 1.73 | 2.03 | 2.65
dy | 1.86 | 1.67 | 6.05 | 2.10 | 2.89 | 4.40 | 8.96

Partitions in 2 parts

d\o 2 3 4 ) 6 7 8
dy 1055074 | 1.05| 1.33 | 1.60 | 2.06 | 2.31
do, 1096 | 1.18 | 1.23 | 1.61 | 1.85 | 2.27 | 2.7

Partitions in 3 parts

d\o 2 3 4 ) 6 7 8
d; 1050073 |1.06|1.22]1.69 | 1.74 | 1.96
do, |1.021.06|1.34| 140|196 | 1.98|2.14

Partition in 4 parts

Table 7.2: The value of cil, czg
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cco Prism Band-pass Imaging
filter Lens

Figure 7.10: Picture of the testbed used in the implementation of the colored CASSI.
In the picture it is also indicated how the colored coded aperture are implemented for
one example of a color coded aperture of 2 filters (See also Fig. 7.11)

7.6 Experimental Results

Experimental results were obtained considering the super resolution model pro-
posed. The testbed, shown in Fig. 7.10, is used to implement the colored CASSI
system and to verify the simulation results. It is composed of a light source, the tar-
get, the objective lens, the Digital micro-mirror device (DMD) which plays the role of
the coded aperture, imaging lenses, a bandpass filter in which the filters of the colored
coded aperture are contained, the dispersive element and the CCD camera.

The target is illuminated with the source light and the reflected light on the tar-
get is filtered by the bandpass filter (25mm, VIS 400-694nm CWL Mounted Diameter
Filter Kit of Edmund optics), and then redirected trough the objective lenses on the
DMD. Then, the light reflected on the DMD (Texas instruments DMD) is focused into
the prism (Amici prism) imaging plane that disperses the light onto the CCD camera
(Stingray F-033C CCD camera), which integrates all information in a 2-dimensional
array of data.

The system is characterized in order to reduce non uniform conditions and exter-

nal noise. For that purpose, the light source intensity distribution and the CCD spectral
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Figure 7.11: Details on the implementation of the colored coded aperture. (a) The
capture of one shot with a colored coded aperture is the sum of the captures using
coded apertures with one single spectral response. (b) In order to get the capture with
each of the patterns with one single spectral response a filter is located as indicated in
the picture
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Figure 7.12: Results considering a super-resolution factor of d = 2 and using o = 6 filters. (a):
The spectral responses of two different points are reconstructed. The original spectrum (blue line)
measured with an spectrometer is compared with the reconstructed spectrum using the colored CASSI
(red line), and the reconstructed spectrum using the traditional CASSI (black line). The number of
shots used with the traditional CASSI is 5 whereas for the colored CASSI is 10, such that the same
value of C = 0.5 is considered in both cases. It can be appreciated that the curve obtained with
the Colored CASSI with super resolution is closer to the real spectrum than the curve obtained with
the basic CASSI. (b) The reconstructed bands using the traditional CASSI and the colored CASSI
are presented. The first row of each group depict the reconstructed bands using the colored CASSI
(CCASSI). The second row of each group depict the reconstructed bands using the traditional CASSI.
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sensitivity are characterized analyzing their spectral responses using a USB2000+VIS-
NIR Ocean Optics spectrometer with a known spectral response. These non-uniform
spectral response curves are taken into account to quantify the whole spectral responses
in the coded aperture. The non flat spectral nature of the light and the spectral re-
sponse of the camera, causes a final effect in the spectral response of each color T ().
It is represented as Tr(\) = Tlight (A\)Tcamera(A)T'(A), where Tjigni () is the spectral re-
sponse of the light, Ttamera(A) is the spectral response of the camera and T'(\) the
spectral response of the filter. The CCD exposure time is 100 microseconds. The
prism is characterized in order to take into account its non-linear response curve, and
the resultant bandwidth of each spectral basic band. In order to get an estimate of the
values for the weights w; ; 5, the procedure presented in [82] is followed, in which some
measurement shots are captured using monochromatic light, allowing the estimation

of the effect of a single voxel impinging onto the CCD.

7.6.1 Implementation of the colored coded aperture

Figure 7.11 shows the physical implementation of one colored coded aperture. It
is based on the decomposition of a measurement shot in the sum of different captures,
each of them involving just one of the spectral responses of the colored coded aperture,
and complementary patterns on the DMD. In Figure 7.10 it is indicated that, there
is a fixed position in the testbed in which the color filters involved in the colored
coded aperture are located. Additionally, a set of complementary binary patterns are
associated (one pattern per filter) with the captures according to the desired filter.
The mathematical description of this situation, taking into account that if T®) is
the colored coded aperture in shot k, can be represented as T®) = Y7  T,(\)T;,
where T;(\) represents the spectral response of the optical filter ¢ in the colored coded
aperture, and the T; are binary patterns such that 7 T; = 1,,4,. Therefore, for each
shot, o captures are done putting the DMD with the binary pattern defined by each
T; and locating the T;(\) in the bandpass position respectively.
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7.6.2 Experimental results for d = 2

In order to show the experimental results of super-resolution, a factor d = 2 is
considered. According to the characteristics of the filters, the number of filters required
considering equation (7.33) is 6. For the reconstructions the GPSR algorithm [81] was
used. The value of the scalar parameter for regularization was chosen in an empiric
way. The wavelet transform was used as a basis for the spatial domain, and the
discrete cosine transform (DCT) was used for the spectral domain. In Figure 7.12, it is
possible to appreciate the reconstruction of the spectrum for some specific points in the
target, considering 20 bands. This reconstruction is compared with the interpolation
of a 10 bands CASSI. The expected coherence calculated for the sensing matrix using
the basic CASSI is p(A) = 0.8366 whereas the coherence for the colored CASSI is
1(Ay) = 0.6564.

In Figure 7.12(a) the real target used in the experiments is presented with the
spectral responses of some specific points on the target, and an RGB representation
of the reconstructions as well. It is possible to appreciate how the reconstructions
obtained with the colored CASSI with super-resolution (red line) match better with
the real spectral response (blue line), than the reconstructions obtained by interpola-
tion with the traditional CASSI (black line). The RGB mapping of the reconstructed
multispectral images shows also that the results with the colored CASSI with super-
resolution are closer to the real target, than the reconstructed scene using basic CASSI
with interpolation.

Figure 7.12(b) shows the reconstructed bands in both configurations of the
CASSI. As can be seen, the bands reconstructed with the colored CASSI show much
more clear details than the reconstructed bands using basic CASSI with interpolation.
Consider for instance the band at 508[nm], where the details on the letters on the
target are much more clear when the colored CASSI is used that when basic CASSI is

used.
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7.7 Conclusions and Future work

This chapter demonstrates that color coded apertures in CASSI systems can be
used to obtain higher spectral resolution than that achieved by CASSI systems using
binary coded apertures. The increased resolution is related to the number of different
colored filters used in the coded apertures, and on their spectral responses. An estimate
of the super-resolution factor d is obtained using the coherence of the sensing matrix.
This, in turn, provide concentration inequalities on the projection matrices that involve
the characteristics of the set of filters used.

The presence of noise in the measurements is analyzed. It is shown that filters
with complementary spectral responses, in multi-shot measurements, are more affected
by noise than colored coded apertures whose filters’ spectral responses are not comple-
mentary in the spectral range of interest. It is shown that two sensing matrices having
the same set of filters, but with different gains, do not guarantee the same performance.
Thus, the spectral shape, the central wavelengths, and their gain are all important in
the design of the sensing matrix.

The distribution of the filters on the colored coded aperture was defined as
uniformly distributed, in order to have a fair comparison with the traditional CASSI
which uses Bernoulli random variables on the entries of the black and white coded
aperture. A significant improvements can be achieved, however, when the filters are

selected according to some optimal pattern design. This strategy is left for future work.

7.8 Calculation of the integration limits
Taking into account that the rect function is separable, it is possible to determine
when the product between the rect functions involved is different from zero, in order

to define the limits of the integral operators. Because
rect (i — m,> rect <£ — m) £0<=m =m,
A A

and the product rect (% — n) rect <%(A) — n/) is different from zero when A (n' + %) —

SA)>A(n—3)and A(n' +3)—S(\) <A (n+13), it follows that n' = L%J +n.

2
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Then, the integration limits in the x variable are

{A(n—%), A<n+%>+A{%)\>J—S(A)}.
n—3) =50 > An-13) and A(n' —1) - 5(\) <

SO‘)J + n + 1. Then, the integration limits in the

On the other hand, if A (
A(n+1), it follows that n' = {T

x variable are

2
Putting all this together, it follows that the value of the measurements at pixel

(3 (oo D)8 29 -son. a(ned)).

(m,n) is
8mmn =
A[EQR =5 pa(m+})
// (n-1) /A(m—%) (TF>m’"+LT)J (N dydxdA
Apn+)
// S(A) S(A)/A(m_;) (TF)m7n+{¥JH()\)dydxd)\,

and using the Hlld pomt rule approximation for the spatial integral operators, the

measurements can be written as

Emn =

/A A2 Q%J _ % + 1) (TF),,,., 20 ()X

2 (] 5 v

For the discretization in A, the limits of the new bands in the super resolution model

(7.39)

are used as the limit points of the intervals, and the mid-point rule is used again for

the approximation of the integral operator in the A variable as

8mn =
L SCGe) | SOw A
Z AA(/’c)A A - A +1 (TF)m n+{S(Ak)J ()‘k)

S SGw | S
_kZOAA(k)m( (Ak) N (Ak)> (TF)mnﬂs“k)JH()‘k)’
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where )\, = (Mk1 + Ak)/2, Ay = Aey1 — M. Taking into account the properties of

the term L%)‘)J, which are explained in Appendix 7.9, it is possible to write equation

(7.3) as

Ay A® QS (A“J RO 1) (T )

— A A’ (\‘S(Xk)J a S(zk)> (TF)m,n+L§J+u'+l(5‘k)] ;

where ¢ € N. Here ¢ represents the number of pixels of the detector affected by one

voxel of the datacube model [82]. Letting

A
and R R
S(Ae) | S(A)
= — A\ A2 —
IBm,n,k A(k) ( \‘ A A )
it follows that
L—1 c—-1
8mn = <Wmnku(TF)m n+L§J+u k) 5
k=0 u=0
where
AXmyn ke If u=20
Wmnku = Qyn k + /Bm,n,k If w= 1, oo, C— 2
Bk If u=c—1

For the sake of simplicity ¢ = 1 is used for other analysis, therefore the index u would

not be longer necessary.

7.9 The meaning of {%J

According to the Weierstrass approximation theorem [95], if S()) is continuous
in A, then Ve > 0 exists a polynomial p(A\) such that [p(A\) — S(\)| < e VA € A.
Letting € > 0 be an infinitesimal fixed value, it is possible to write S(A) in an ap-

proximate way as S(\) ~ Z?:o a, A" @ € N a, € R. This representation allows the
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separation of the linear and nonlinear components in the dispersion phenomena. Now,

with g(\) = Z?:z a, A", it follows that

- [0

Using the basic properties of the floor function it is possible to get
352 <[ 59 o)

Each term in this last equation has a different meaning. In the term L% + %J , the
coefficient aq includes the effect of the mismatching in the x axes of the dispersed and
modulated hyperspectral image on the FPA | whereas () represents the nonlinearities
in the prism curve. The values of this term are represented by .

In the classical CASSI system the boundaries of the support of each basic band
Ay, are defined by the changes of {%J from one integer to another [69] [71]. Now, this
concept of bands is generalized taking into account that the basic bands can be broken
such that a new set of bands is obtained. Because the basic bands are conformed by d
successive new bands, the number of bands L to reconstruct can be written as L = dL’,
where d is the super-resolution factor, which indicates the number of parts in which
the basic bands are separated, and L' represents the number of basic bands, defined
by the relation L%J , varying A from inf {A} to sup {A} [69] [71].

In the term [al %J, once the value of « is fixed, it changes from one integer to
another for the values of lambda that are multiples integers of A/ay, therefore, this
term defines a delay that it is directly related with the changes from one basic band to
another, but remains invariant when A\ changes inside the support of the basic bands.
This value is represented by LSJ, where k is the index that represent the number of

the band and d the super resolution factor.

7.10 Proof of Theorem 52

Let us consider

Nmn(A>2 =
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then

P{pin(A)? > £} = ]P’{ olm )" > 5}

o(m,m)o(n,n

=P {Q(m7 n>2 > 5@<m7 m)g(n’ n)}

= ZIP’ {o(m,n)* >z} P{o(m, m)o(n,n) = z¢} .
Taking into account that P {o(m,n)? > ze} < % it follows that

Z P {o(m,n)* >z} P{o(m,m)o(n,n) = z,}

< 3 EAL g o, o, m) = w2}

TpE
I} 4

_ E{o(m,n)?} > P {o(m, m)o(n,n) = z}

€ Ty

P {o(m,m)o(n,n) = ¢}

< Edetm.n }Z

mln ()

_E{o(m,n)’} 1
5 mgin(xg)'

Therefore
E{o(m,n)’} 1

5 m}n(xg)'

P {ptmn(A)* >} <

Following the same steps with A, it is possible to get

E{o,(m,n)’} 1
£ mgin(yg)’

P{umn(Ag)Z > 8} <

where y, represents the values of the random variable g,(m,m)o,(n,n). Then, taking

1 1

min(r,) " min(y.)

¢ = max

the desired result is obtained.
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7.11 Proof of Theorem 53

In order to simplify the notation for the proof, consider the following convention
0i = Pii, R,Em’n) = Rg?’") and @y = @i, Rém") = RE?’") (i,4) € I ; where the
index ¢ indicates a numeration of the set I. The quantities ¢;, ¢, are related with the
traditional CASSI and gpia), g&éo) with the colored CASSI. The symbols ~ and ~ are to
be used to represent dependency and non-dependency between two random variables,
respectively. For instance, in one expression in which the variables ; and ¢; are

involved, ¢ ~ j represents that ¢; and ¢; are dependent random variables.

Then, let us consider

E {Qa(m,n)2} —E {g(m,n)2}

- Z <Var<90gg)) — Var(yp;) + E {%(0)}2 _ E{%}Q) [Rgmm)r
K é l
N2L
+> (IE {¢§a>¢§a>} _E {Qpigpj}) Rm) glm)
A
®
2 (E{el”YE{p{"} — E{pi}E{c}) NZL > RMU R
~ i=1 ¢ )
&)
+ Z (Var(gééﬂ)) — Var(¢y) + E {Saéa)} ~E{¢) ) [ mn)}Z
- J
@
+Z< {90 904 } E{gpﬂp }) mn)R(mn
e
®

In the following, the analysis of each term of the previous equation es presented sepa-

rately.
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7.11.1 About the term (D
Taking into account that E {gpz@} =E{¢;} =V, Var <¢£0)> =V (1-1) and

Var (¢;) = ¥ the original expression (D can be represented as

N2L
—y <1 — %) 21 [Rgmmr.

7.11.2 About the term @

For the non independent terms i # j,i ~ 7 it follows that

E{wiwj}ZE{<ZTX (Ax) ) <ZTX (M) )}

K K
= E{Tx,(\)’Tx, (A )} + D E{Tx,(\)*}E{Tx, (\)*}

i=1 i#j
where k # k' € {1,... L'}, and T, (\) represents the spectral response of the filter X;
in the band \,. The values of this last expression according to the characteristics of the

coded aperture are: % —|— Z =V (V + l) when the block unblock coded aperture

i#] 4
with transmittance ¢ = 1/2 is used, and Z#J L =V (V- 1) when the colored coded
aperture is used. Now, calculating the difference between the colored case and the

binary case, and taking into account that E {@50)} =E{p;} =V, it follows that
N2L

2 (E {‘PEU)@J)} —E {Qpi@j}) R™™M RU™™

i#]

1 1
_ y(i. 1 (m.n)
= v(0+2)§ R™MR

i#]
inj
7.11.3 About the term @3
Notice that
N2?L
23D Efpipe BRI =23 E{pid} RVR™M
i=1 ¢ ;
il
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+23 E{g} E{g} R™VRI™.
il

Now, analyzing the term E {y;,} when i ~ ¢ and taking into account the fact
that ; = ;s = (hy,hy) = 32,0 T, (M) and @ = @55 = (hy, hy) = 3000, T, () Ty, ().
It follows that the product ¢;p, can be written as
K K
vide = T, ()’ Ty A) + D T, (M) T, (M) T, (M)
u=1 utv

Using the expectation operator on this expression, it is possible to get

E{pip} = > E{Tx, (M)} E{Ty,(\)}

+ D E{Tx, (W)} E{Tx, (M)} E{Ty, (Ay)} -
uFv

For the binary case E {p;¢¢} = 3V + 1V and for the colored case E {p;p¢} =
VG2V
Making the difference between binary and colored case, the expression @) is

finally represented as

7.11.4 About the term @

Taking into account that
H(m,n H(m,n 2
SSE{pd} [B] = 3 (Var(en + B {p0?) [R]
¢ ¢

it is possible to make the difference between the colored case and the binary case,

getting a representation of expression @) as
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7.11.5 About the term (©)
Notice that

E{p}E{py} (#0 0%l

E {¢upy} = e e
E{¢wpp} L#C, 0~ L.

Because of the symmetry of the problem, for ¢ # ¢, ¢ ~ ¢ it follows that

g%

E {95695@’} -

e, () Ty, (A ><ZTX (M) Tz (A ))}

=Y E{Tx, ()} E{Ty, ()} EA{T2, (M)}

=1

. \\Mw

K
+ > E{Tx, ()} E{Tx, (An) } E ATy, (A} E{ T2 (M)}
i#]
which is equivalent to % (V + %) for the binary case, and (V +1- —) for the

colored case. Therefore, it follows that

2 <]E {gpé")% } E{éepy }) m”)}?éﬁﬂ " =

040
1 1 A
2 m,n) 5(m,n)
>0
L1 1N Ao pimm)

+2) VY (2 - §> R Ry

>0

ot

Putting all this together, it follows that
E {0,(m,n)*} —E {o(m,n)*} = axV* + a1V,

where

1 1 S(m,n 2 H(mmn) p(mn
o= (G5 (Sl e i),

¢ 040
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=l ig)
i~
1 1 (mn) 75(m.n)
2(-——=—- R Rl
* (U o? 4) ; ¢
il

Then, the behavior of the coefficients a, and a; completely determine if the
inequality (7.32) is satisfied or not. In Fig. 7.13 it is possible to appreciate the most
representative values of the whole set of values for the coefficients a; and —ay /as con-
sidering a hyperspectral image of dimensions 64 x 64 x 4, and the same basis functions
used in the simulations and real reconstructions for different values for o. It is clear
that the value of a5 is always non positive, which implies that the polynomial asV?+a,V
is a parabola that opens downwards. One of the roots of this polynomial is on V = 0
and the other one is on —a;/as which means that asV? +a;V <0 VYV > 0 because

—ay/as is always non positive .
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Chapter 8

CONCLUSIONS AND FUTURE WORK

In this dissertation, the study of simple and universal principles for the gen-
eration of good sampling patterns was considered for signals on graphs and for the
analysis of projected measurements in compressed sensing applications. In particu-
lar, the concept of blue-noise sampling was extended to graphs and its connection
to previous theoretical results was explored. In graphs with a locally homogeneous
isoperimetric dimension, blue-noise sampling patterns are characterized by a low red-
ness that is associated to good values of the constants that measure the quality of
a sampling set. The analysis performed was validated by a set of numerical experi-
ments that showed the effectiveness of blue noise for the sampling and reconstruction
of bandlimited signals on graphs. Additionally, the basis for the development of low
complexity algorithms was given, exploiting simple principles that can be derived from
vertex-domain characteristics of a blue noise sampling pattern.

As suggested by professor Austin J. Brockmeier, a relationship between blue-
noise sampling on graphs and clustering techniques like K-means is worth exploring.
In particular, a possible connection between clusters and the open balls used in the
definition of ideal blue-noise sampling can be established, opening the door for new
applications and theoretical insights of graph sampling.

Performing an analysis of bandlimited signals on cographs, it was shown that
by taking advantage of the structure of the cotree, it is possible to calculate with a
low complexity the uniqueness sets for bandlimited signals. Additionally, a closed form
solution was obtained for a subclass of cographs called threshold graphs. These findings

open the door to promising applications where datasets can be modeled by cographs
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and threshold graphs, besides the applications in evolutionary biology and scheduling
problems already existing in the literature.

In the context of compressed sensing applications, optimal sampling patterns
on colored coded apertures are obtained for CASSI systems and compressed X-ray
tomosynthesis architectures. In particular, a family of optimal codes is determined
in closed form via a rigorous analysis of the coherence of the sensing matrix. This
contribution provided a substantial improvement with respect to all the approaches
existing in the literature, where iterative procedures were required for the generation
of optimal patterns. Additionally, analyzing the sampling patterns on a not necessarily
ideal colored coded aperture, a rigorous estimate of the spectral resolution achievable
in colored CASSI systems is provided. These conditions are derived from concentration

inequalities that are calculated by exploiting the structure of the sensing matrix.
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