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Abstract—The design of coded apertures for compressive X-
ray tomosynthesis is addressed here, based on the analysis of
the coherence of the sensing matrix. It is shown that minimizing
the inner products between the columns of the transfer function
matrix, it is possible to obtain significant improvements with
respect to the results obtained with the use of random codes.
The computational cost of optimization is dramatically lower
than other approaches introduced recently.

I. INTRODUCTION

X-ray tomosynthesis imaging plays an important role in
biomedical imaging applications like mammography and
angiography [3]. As in most X-ray computational tomog-
raphy imaging systems, radiation exposure can significantly
increase the risk of adverse radiation effects, producing
damages in body cells [11]. To reduce the damage that radi-
ation can cause, different approaches have been proposed by
lowering the number of angles at which projections are taken
[12]. However, the consequent reduction of measurements
leads to an ill-posed problem, highly sensitive to modeling
and measurement errors. Moreover, the reconstructions based
on filtered backprojection (FBP) with ill-posed systems of
equations produces artifacts and noise which makes the
reconstructions useless for medical diagnosis [9][7].

In order to acquire measurements in parallel, coded aper-
ture X-ray tomosynthesis was introduced in [1]. The substan-
tial differentiation in this approach is the use of a coded aper-
ture between the sources of radiation and the objects. This
coded aperture codes the radiation signal that impinges on
the object allowing a differentiation between the projections
on the detector. As a consequence, multiple projections can
be captured at the same time instead of capturing sequential
measurements as it is done in conventional systems [1]. The
projections used in [1], however, used totally random coded
apertures. No coded aperture optimization was considered.
The optimized design of coded apertures for the compressive
X-ray tomosynthesis system was considered first in [2], the
results obtained in [2] were superior to the ones obtained
with totally random patterns. However, the computational
complexity required for the computation of the optimized
codes in [2] is high and the objective function used for
that purpose is only indirectly linked with the parameters
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Fig. 1: (a)The matrix P determines the mapping of the X-ray
sources to the detector. (b) Coded aperture compressive X-
ray tomosynthesis. The radiation of each source is modulated
by the coded aperture.

that are commonly used in compressed sensing. In this
work, the coded aperture design is addressed considering the
analysis of the coherence of the sensing matrix. It exploits
the highly structured sensing matrix that represents the X-ray
tomosynthesis architecture. The idea is to minimize the inner
products between columns of the sensing matrix considering
a general basis representation of the signal of interest. It is
shown that, families of codes can be obtained which provide
better results than the ones obtained by the use of totally
random patterns, and the results can be also comparable to
the ones obtained in [2]. The reduction in the computation
of the solution is dramatic, because the solution is obtained
in seconds whereas in [2] the time is in the order of hours.
This paper is organized as follows. In Section II, the forward
model of the computed tomography problem is presented. In
the Section III the analysis of the coherence of the sensing
matrix is considered adapting the methods presented in [10],
an analytical solution for the coded apertures is derived. In
Section IV a set of simulations are computed in order to show
the performance of the designs obtained with the approach
presented in this work in comparison with the totally random
patterns and the designs presented in [2]. In Section VI the
conclusions of this work are presented.

II. FORWARD PROJECTION MODEL

Lets consider an X-ray source that is located at position
§ and radiates an object in direction 6, the continuous X-
ray model is given by: y(§, 9 fo (§+ x@ dz, where
the function f corresponds to the three- dlmensmnal object of
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interest. This imaging model is known as the X-ray transform
[2][12].

Because only a discrete number of radon measurements
can be acquired, the continuous model is discretized. Let
F € R¥1X@2xQ3 be the three dimensional array that repre-
sents the object. The value of ()7 indicates the number of
slices of dimensions Q2 X Q3. The detector considered is
of dimension N; X N, and is placed under the considered
object as indicated in Fig 1(a).

The projection measurements are represented by the vector
y. Then, the traditional forward model in tomosynthesis can
be written as y = PF where F is a vectorized version of F,
and the matrix P is the system matrix obtained by specifying
the hardware settings. The entries of P correspond to the
mapping of the cone-beam energy radiating from the X-ray
source onto the detector [2]. As it is shown in Fig. 1(a),
each entry of P represents the portion of the volume of a
given voxel that is irradiated by the X-ray associated with
one detector element. In particular, each row of P indicates
the information gathered by one detector and each column
corresponds to the information gathered from a single voxel
[2].

In compressive X-ray tomosynthesis the measurements
are multiplexed from multiple sources onto the detector.
Coded apertures are located between the sources and the
object to modulate the radiation of each source producing
a coded projection onto the detector plane [1]. The size of
the elements of the coded apertures is fixed to obtain a one to
one correspondence with the detector elements [2]. Let TZ(-k)
be the coded aperture related with the source ¢ in the shot k,
then the measurements y can be represented as

y = CPF (1)

where the matrix C is given by
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where C{") = diag (T{*"). The problem (1) is ill cond-
tioned and cannot be solved using traditional approaches.
Compressed sensing allows the solution of this problem
considering an sparse representation of F in one basis W.
The quality of the reconstructed solution is directly related
with the coherence of the matrix CPW¥ [8][4].

Lets consider the representation of F in the basis ¥ as F =
Wf, where f is the sparse coefficients vector representation.
Then, the problem (1) can be equivalently written as y = Af
where A = CPW is the sensing matrix. The solution of
this problem via compressed sensing can be obtained as the
solution of

. 1
£ =ming |y — Af| + 7] 3)

where 7 is a regularization parameter.
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Fig. 2: A graphical representation of the sensing matrix is
depicted when K = 1 shots and S sources are considered.
The matrix C is composed by the diagonalized version of
the coded apertures related to each source.
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Fig. 3: A graphical representation of the matrix C is depicted,
showing the effects of the condition Zi{:l Cgk) (u) =1
when the number of shots is K = 3 and the number of
sources is S = 2.

ITI. ANALYSIS OF THE SENSING MATRIX AND CODED
APERTURE OPTIMIZATION

A measure of the quality of the solutions of (3) in
compressed sensing is given by the coherence of the sensing
matrix, which is the maximum absolute value for the normal-
ized inner products between any two columns of the sensing
matrix [8][4]. The value of this parameter is desired to be as
small as possible, to guaranty unique recovery and low error
in the numerical solution of the problem as the quality of the
solution is directly related to the coherence [5].

In [10] an approach based on the analysis of the coherence
was developed to exploit the structure of the sensing matrix
in compressive spectral imaging, in order to increase the
quality of the reconstructions. The approach proposed in
[10] shows how an upper bound of the coherence can be
minimized, analyzing the structure of the inner products of
the transfer function matrix of the system. It is shown, that
when the set of measurements is given by y = HWS, it
is possible to achieve a minimum for an upper bound of
the coherence when the inner products for the columns of
the matrix H are minimized. In this work, this approach is
used to consider the computed tomography problem such that
a designed sensing matrix is obtained minimizing the inner
products in the matrix H = CP, considering arbitrary values
on the entries of P.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 13,2020 at 21:16:35 UTC from IEEE Xplore. Restrictions apply.



The inner product of the columns m and n of the matrix
CP is given by

N2

Pm,n = Z

u=1k=1i=1 j=

K

> > P @) C (@)Q) (m,n) 4y
1

where Qq(fﬁ) (m,n) = ng)(m)Pq(f)(n) with Pq(f)(m) repre-
senting the m!"* —component of the row u of the projection
submatrix ¢ related with the source 7. Additionally the
convention C(k)( ) = Cgk) (u,u) is used to simplify the
notation.

Equation (4) can be equivalently written as

=Y

K
( C > ulqi)(m,n)_’_.'.
u=1 =1 k=1
+Z§3 (Z P w)c( >> QU (m,n)  (5)
u 1£] =

Taking into account that Q2 (m, n) > 0, it follows that the
minimum of g@m n is achieved when the terms S5 e C(k)( )

and YK v C k) (u)Cgk) (u) are minimized. Additionally, us-
ing the Cauchy Schwartz inequality the following relation is
obtained

k=1

From this relation it is possible to see that the minimization
of Zle Cgk)(u) and Zf:l Cgk)(u)C;k)(u) is achieved by
the minimization of Zszl Cgk)(u). Because the entries of
the coded apertures are represented by binary nonnegative
entries, this minimization is achieved when!

K
S () =
k=1

of  solutions for
satisfy  this  equality g
written  as [05” (), CP(w),...,C")(u)

m{diag(1xx1)}1 Vu, where 7 represents the random

permutation operator of the columns, and the subindex 1 the
first column of the matrix after applying 7.

K K
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IV. SIMULATIONS

In order to have a precise comparison with the approach
presented in [2], the same simulation scenario is considered.
Then, to simulate the compressive X-ray tomosynthesis the
configuration of a flat 2D detector plane composed by
N1 X Ny = 150 x 150 elements, S = 9 cone-beam X-ray

IThe zero solution is not considered because using it would imply that
there would be a voxel that is not sensed in any of the shots used in the
measurement process
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Fig. 4: (a) Configuration for X-ray tomosynthesis simulation.
The 9 sources are placed uniformly over a 128 x 128 phantom
with 16 slices. For the simulation scenario that was studied
here a = 128,b = 128, ¢ = 675,d = 60,e = 150
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Fig. 5: Left: PSNR of the 13*" slice in the reconstructed dat-
acube. Right: The mean PSNR of the reconstructed datacube.
K = 3 shots are considered. The results obtained in [2] are
depicted in blue color whereas the new designs in red color.

sources placed uniformly in a 3 X 3 geometry and an object
of interest F of dimensions Q2 X Q3 X Q1 = 128 x 128 x 16
are used. Each pixel in the coded aperture corresponds to a
particular detector element as detailed in Fig. 4(a). Therefore,
the coded apertures placed in front of each of the sources are
also composed by 150 x 150 elements.

The ASTRA Tomography Toolbox (All Scale Tomo-
graphic Reconstruction Antwerp) [13] is used to obtain the
system matrix P as well as the projection measurements for
each of the X-ray cone beam sources. The codes developed
according to the ideas presented in Section III are generated
and compared with the totally random codes and the codes
generated in [2]. In the last case the algorithm developed in
[2] is used to obtain a set of codes for K = 1,2, 3,4, 5 shots.
The GPSR algorithm [6] is used for the reconstructions, do-
ing an experimental tunning of the regularization parameter.

A. Results

Figure 5 plots the PSNR of all the reconstructions ob-
tained. It is possible to appreciate that for a number of shots
from K = 2 up to K = 5 the PSNR of the reconstructions
with the designed codes is superior. Also appealing is that
the time necessary to generate those codes is in the order
of seconds. Figure 5 also shows that the time necessary to
obtain the designed codes according to [2] for K = 3 shots
is 34 hours, whereas the designs obtained with the presented
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Fig. 6: The slices 4 and 13 of the reconstructed datacube
are depicted, comparing the results of using random codes
versus the new design approach.

PSNR on 13" slice
K | New approach | Approach of [2] | Random
1 26 27.34 24.83
2 27.70 27.6 25.92
3 27.82 27.76 26.14
4 27.94 27.70 26.48
5 27.98 27.76 27.57
Mean PSNR
1 25.24 26.86 26.21
2 27.85 27.40 27.14
3 28.16 27.98 27.49
4 28.50 27.68 27.71
5 28.62 27.87 27.85

TABLE I: The PSNR on the 13" slice is indicated for the
different codes used and also the mean PSNR is indicated.

approach is 4 seconds. Additionally in Figure 6 the slices 4"
and 13" are showed when random codes are used against
the results obtained with the new designs. In the zoomed
regions it is clear that with the new designs more details in
the reconstructed object can be obtained. In Table I the values
of the PSNR obtained in the simulations and used in Fig. 5
are showed. In Figure 7 a sample of the coded apertures
obtained by the use of the new approach can be appreciated.
Additionally the time spent in the generation of the coded
apertures in each approach for different number of shots is
presented in Table II for an object of size 32x32x4.

K 1 2 3 4 5
Random 0.21ms 0.3ms 0.22ms 0.23ms 0.39ms
New Design | 18.65ms | 22.66ms | 27.39ms | 34.50ms | 38.41ms
Designed 1 87.54s 1395s 1411s 3725s 4601s

TABLE II: Time spent in the generation of the coded
apertures for each approach and different values of K when
the scene considered is of size 32x32x4.
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Fig. 7: A 64 x64 window of the designed coded aperture with
the new design approach is depicted for the source number
5 when K = 3 shots are considered.

V. CONCLUSIONS

A new strategy for the design of coded apertures in
compressed X-ray tomosynthesis has been presented. The
proposed approach relies on the analysis of the coherence of
the sensing matrix and allows to obtain a family of designs
that has a closed form solution. The results of the simulations,
show that the designs obtained with the presented approach
are better than the results obtained with totally random
patterns and with the designs generated in [2]. Additionally,
the time necessary to generate the designed codes in the
presented approach is in the order of seconds while in [2] is
in the order of hours.
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